-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisual_utils.py
65 lines (50 loc) · 2.22 KB
/
Visual_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import os
import numpy as np
pwd = os.getcwd() # 当前目录
"""可视化折线图"""
def visualize(data,name):
exampleData = data.values.tolist() #转换成列表
length_zu = len(exampleData) # 得到数据行数
length_yuan = len(exampleData[0]) # 得到每行长度
weiyi = list()
yali = list()
sudu = list()
for i in range(1, length_zu): # 从第二行开始读取
weiyi.append(exampleData[i][1]) # 将第一列数据从第二行读取到最后一行赋给列表weiyi
yali.append(exampleData[i][2]) # 将第二列数据从第二行读取到最后一行赋给列表yali
sudu.append(exampleData[i][4]) # 将第四列数据从第二行读取到最后一行赋给列表sudu
plt.rcParams['font.sans-serif'] = ['SimHei'] #设置中文字体显示
fig,ax1 =plt.subplots()
ax2 = ax1.twinx()
ax1.plot(weiyi, yali, '*', label='压力',color='orange') # 绘制位移与压力的折线图
ax1.set_ylabel('压力')
ax2.plot(weiyi, sudu, '--', label='速度',color='green') # 绘制位移与速度的折线图
ax2.set_ylabel('速度')
fig.legend(loc="center", bbox_transform=ax1.transAxes) #图例的摆放位置
ax1.set_xlabel('位移')
plt.title('铆压数据')
plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'both')
dir = os.path.join(pwd+'\original_plot', name + ".png"); # 保存可视化后的折线图
plt.savefig(dir)
plt.show() # 显示折线图
"""绘制损失函数曲线"""
def plot_loss_result(losses):
epoches = np.arange(1, len(losses) + 1, dtype=np.int32)
plt.plot(epoches, losses, label='loss')
plt.xlabel('epoches')
plt.ylabel('loss')
plt.legend()
"""可视化精度结果"""
def plot_train_and_test_result(train_accs,test_accs):
epoches = np.arange(1,len(train_accs)+1,dtype=np.int32)
plt.plot(epoches,train_accs,label='train accuracy')
plt.plot(epoches,test_accs, label='test accuracy')
plt.xlabel('epoches')
plt.ylabel('accuracy')
plt.legend()
"""输出神经网络结构的信息"""
def printNetInfo(net):
for name,parameters in net.named_parameters():
print(name,":",parameters.size())