-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjCrowSearchAlgorithm.m
111 lines (101 loc) · 2.33 KB
/
jCrowSearchAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
%[2016]-"A novel metaheuristic method for solving constrained
%engineering optimization problems: Crow search algorithm"
% (9/12/2020)
function CSA = jCrowSearchAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
AP = 0.1; % awareness probability
fl = 1.5; % flight length
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'AP'), AP = opts.AP; end
if isfield(opts,'fl'), fl = opts.fl; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Global update
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Save memory
fitM = fit;
Xm = X;
% Pre
Xnew = zeros(N,dim);
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
% Iteration
while t <= max_Iter
for i = 1:N
% Random select 1 memory crow to follow
k = randi([1,N]);
% Awareness of crow m (2)
if rand() >= AP
r = rand();
for d = 1:dim
% Crow m does not know it has been followed (1)
Xnew(i,d) = X(i,d) + r * fl * (Xm(k,d) - X(i,d));
end
else
for d = 1:dim
% Crow m fools crow i by flying randomly
Xnew(i,d) = lb + (ub - lb) * rand();
end
end
end
% Fitness
for i = 1:N
% Fitness
Fnew = fun(feat,label,(Xnew(i,:) > thres),opts);
% Check feasibility
if all(Xnew(i,:) >= lb) && all(Xnew(i,:) <= ub)
% Update crow
X(i,:) = Xnew(i,:);
fit(i) = Fnew;
% Memory update (5)
if fit(i) < fitM(i)
Xm(i,:) = X(i,:);
fitM(i) = fit(i);
end
% Global update
if fitM(i) < fitG
fitG = fitM(i);
Xgb = Xm(i,:);
end
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (CSA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
CSA.sf = Sf;
CSA.ff = sFeat;
CSA.nf = length(Sf);
CSA.c = curve;
CSA.f = feat;
CSA.l = label;
end