-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjSineCosineAlgorithm.m
88 lines (78 loc) · 1.84 KB
/
jSineCosineAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
%[2016]-"SCA: A sine cosine algorithm for solving optimization
%problems"
% (9/12/2020)
function SCA = jSineCosineAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
alpha = 2; % constant
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'alpha'), alpha = opts.alpha; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Pre
fitD = inf;
fit = zeros(1,N);
curve = inf;
t = 1;
% Iterations
while t <= max_Iter
% Destination point
for i = 1:N
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Destination update
if fit(i) < fitD
fitD = fit(i);
Xdb = X(i,:);
end
end
% Parameter r1, decreases linearly from alpha to 0 (3.4)
r1 = alpha - t * (alpha / max_Iter);
for i = 1:N
for d = 1:dim
% Random parameter r2 & r3 & r4
r2 = (2 * pi) * rand();
r3 = 2 * rand();
r4 = rand();
% Position update (3.3)
if r4 < 0.5
% Sine update (3.1)
X(i,d) = X(i,d) + r1 * sin(r2) * abs(r3 * Xdb(d) - X(i,d));
else
% Cosine update (3.2)
X(i,d) = X(i,d) + r1 * cos(r2) * abs(r3 * Xdb(d) - X(i,d));
end
end
% Boundary
XB = X(i,:); XB(XB < lb) = lb; XB(XB > ub) = ub;
X(i,:) = XB;
end
curve(t) = fitD;
fprintf('\nIteration %d Best (SCA)= %f',t,curve(t))
t = t + 1;
end
% Selects features
Pos = 1:dim;
Sf = Pos((Xdb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
SCA.sf = Sf;
SCA.ff = sFeat;
SCA.nf = length(Sf);
SCA.c = curve;
SCA.f = feat;
SCA.l = label;
end