-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathjWhaleOptimizationAlgorithm.m
119 lines (110 loc) · 2.62 KB
/
jWhaleOptimizationAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
%[2016]-"The whale optimization algorithm"
% (9/12/2020)
function WOA = jWhaleOptimizationAlgorithm(feat,label,opts)
% Parameters
lb = 0;
ub = 1;
thres = 0.5;
b = 1; % constant
if isfield(opts,'T'), max_Iter = opts.T; end
if isfield(opts,'N'), N = opts.N; end
if isfield(opts,'b'), b = opts.b; end
if isfield(opts,'thres'), thres = opts.thres; end
% Objective function
fun = @jFitnessFunction;
% Number of dimensions
dim = size(feat,2);
% Initial
X = zeros(N,dim);
for i = 1:N
for d = 1:dim
X(i,d) = lb + (ub - lb) * rand();
end
end
% Fitness
fit = zeros(1,N);
fitG = inf;
for i = 1:N
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Global best
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
% Pre
curve = zeros(1,max_Iter);
curve(1) = fitG;
t = 2;
while t <= max_Iter
% Define a, linearly decreases from 2 to 0
a = 2 - t * (2 / max_Iter);
for i = 1:N
% Parameter A (2.3)
A = 2 * a * rand() - a;
% Paramater C (2.4)
C = 2 * rand();
% Parameter p, random number in [0,1]
p = rand();
% Parameter l, random number in [-1,1]
l = -1 + 2 * rand();
% Whale position update (2.6)
if p < 0.5
% {1} Encircling prey
if abs(A) < 1
for d = 1:dim
% Compute D (2.1)
Dx = abs(C * Xgb(d) - X(i,d));
% Position update (2.2)
X(i,d) = Xgb(d) - A * Dx;
end
% {2} Search for prey
elseif abs(A) >= 1
for d = 1:dim
% Select a random whale
k = randi([1,N]);
% Compute D (2.7)
Dx = abs(C * X(k,d) - X(i,d));
% Position update (2.8)
X(i,d) = X(k,d) - A * Dx;
end
end
% {3} Bubble-net attacking
elseif p >= 0.5
for d = 1:dim
% Distance of whale to prey
dist = abs(Xgb(d) - X(i,d));
% Position update (2.5)
X(i,d) = dist * exp(b * l) * cos(2 * pi * l) + Xgb(d);
end
end
% Boundary
XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
X(i,:) = XB;
end
% Fitness
for i = 1:N
% Fitness
fit(i) = fun(feat,label,(X(i,:) > thres),opts);
% Global best
if fit(i) < fitG
fitG = fit(i);
Xgb = X(i,:);
end
end
curve(t) = fitG;
fprintf('\nIteration %d Best (WOA)= %f',t,curve(t))
t = t + 1;
end
% Select features
Pos = 1:dim;
Sf = Pos((Xgb > thres) == 1);
sFeat = feat(:,Sf);
% Store results
WOA.sf = Sf;
WOA.ff = sFeat;
WOA.nf = length(Sf);
WOA.c = curve;
WOA.f = feat;
WOA.l = label;
end