It is recommended that you symlink the dataset to JSeg/dataset
.
The ADE20K training and validation set can be downloaded from here link. You can download the test set from here.
├── ADEChallengeData2016
│ ├── annotations
│ │ ├── training
│ │ ├── validation
│ ├── images
│ │ ├── training
│ │ ├── validation
The data could be found here after registration.
By convention, **labelTrainIds.png
are used for cityscapes training.
We provided a scripts based on cityscapesscripts
to generate **labelTrainIds.png
.
python tools/convert_datasets/cityscapes.py dataset/cityscapes
├── cityscapes
│ ├── leftImg8bit
│ │ ├── train
│ │ ├── val
│ ├── gtFine
│ │ ├── train
│ │ ├── val
Pascal VOC 2012 could be downloaded from here. Beside, most recent works on Pascal VOC dataset usually exploit extra augmentation data, which could be found here.
If you would like to use augmented VOC dataset, please run following command to convert augmentation annotations into proper format.
python tools/convert_datasets/voc_aug.py data/VOCdevkit data/VOCdevkit/VOCaug
├── VOCdevkit
│ ├── VOC2012
│ │ ├── JPEGImages
│ │ ├── SegmentationClass
│ │ ├── ImageSets
│ │ │ ├── Segmentation
│ ├── VOC2010
│ │ ├── JPEGImages
│ │ ├── SegmentationClassContext
│ │ ├── ImageSets
│ │ │ ├── SegmentationContext
│ │ │ │ ├── train.txt
│ │ │ │ ├── val.txt
│ │ ├── trainval_merged.json
│ ├── VOCaug
│ │ ├── dataset
│ │ │ ├── cls
The data images could be download from DOTA-v1.0 (train/val/test)
The data annotations could be download from iSAID (train/val)
The dataset is a Large-scale Dataset for Instance Segmentation (also have segmantic segmentation) in Aerial Images.
Original file structure
├── iSAID
│ ├── train
│ │ ├── images
│ │ │ ├── part1.zip
│ │ │ ├── part2.zip
│ │ │ ├── part3.zip
│ │ ├── Semantic_masks
│ │ │ ├── images.zip
│ ├── val
│ │ ├── images
│ │ │ ├── part1.zip
│ │ ├── Semantic_masks
│ │ │ ├── images.zip
│ ├── test
│ │ ├── images
│ │ │ ├── part1.zip
│ │ │ ├── part2.zip
After decompression
├── iSAID
│ ├── train
│ │ ├── images
│ │ │ ├── *.png
│ │ ├── Semantic_masks
│ │ │ ├── *_instance_color_RGB.png
│ ├── val
│ │ ├── images
│ │ │ ├── *.png
│ │ ├── Semantic_masks
│ │ │ ├── *_instance_color_RGB.png
│ ├── test
│ │ ├── images
│ │ │ ├── *.png
Processed file structure
├── iSAID_Patches
│ ├── train
│ │ ├── images
│ │ │ ├── *_sub_img.png
│ │ ├── Semantic_masks
│ │ │ ├── *_sub_img_instance_color_RGB.png
│ ├── val
│ │ ├── images
│ │ │ ├── *_sub_img.png
│ │ ├── Semantic_masks
│ │ │ ├── *_sub_img_instance_color_RGB.png
│ ├── test
│ │ ├── images
│ │ │ ├── *_sub_img.png
python tools/convert_datasets/isaid.py --src=./datasets/iSAID --target=./datasets/iSAID_Patches
In our default setting (patch_width
=800, patch_height
=800, overlap_area
=200), it will generate 28029 images for training and 9512 images for validation.
The data could be downloaded from Google Drive here.
Or it can be downloaded from zenodo, you should run the following command:
# Download Train.zip
wget https://zenodo.org/record/5706578/files/Train.zip
# Download Val.zip
wget https://zenodo.org/record/5706578/files/Val.zip
# Download Test.zip
wget https://zenodo.org/record/5706578/files/Test.zip
For LoveDA dataset, please run the following command to download and re-organize the dataset.
python tools/convert_datasets/loveda.py /path/to/loveDA
More details about LoveDA can be found here.
The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.
For Potsdam dataset, please run the following command to download and re-organize the dataset.
python tools/convert_datasets/potsdam.py /path/to/potsdam
In our default setting, it will generate 3456 images for training and 2016 images for validation.
The Vaihingen dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.
For Vaihingen dataset, please run the following command to download and re-organize the dataset.
python tools/convert_datasets/vaihingen.py /path/to/vaihingen
In our default setting (clip_size
=512, stride_size
=256), it will generate 344 images for training and 398 images for validation.