-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpointrend_r50_512x512_ade20k_160k.py
65 lines (63 loc) · 2.16 KB
/
pointrend_r50_512x512_ade20k_160k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
_base_ = [
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
norm_cfg = dict(type='BN')
model = dict(
type='CascadeEncoderDecoder',
num_stages=2,
pretrained='jittorhub://resnet50_v1c-2cccc1ad.pkl',
backbone=dict(type='ResNetV1c',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
dilations=(1, 1, 1, 1),
strides=(1, 2, 2, 2),
norm_cfg=norm_cfg,
norm_eval=False,
contract_dilation=True),
neck=dict(type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=4),
decode_head=[
dict(type='FPNHead',
in_channels=[256, 256, 256, 256],
in_index=[0, 1, 2, 3],
feature_strides=[4, 8, 16, 32],
channels=128,
dropout_ratio=-1,
num_classes=150,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0)),
dict(type='PointHead',
in_channels=[256],
in_index=[0],
channels=256,
num_fcs=3,
coarse_pred_each_layer=True,
dropout_ratio=-1,
num_classes=150,
align_corners=False,
loss_decode=dict(type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0))
],
# model training and testing settings
train_cfg=dict(num_points=2048,
oversample_ratio=3,
importance_sample_ratio=0.75),
test_cfg=dict(mode='whole',
subdivision_steps=2,
subdivision_num_points=8196,
scale_factor=2))
scheduler = dict(type='PolyLR',
warmup='linear',
warmup_iters=200,
warmup_ratio=1e-6,
max_steps=160000,
power=1.0,
min_lr=0)