forked from NVIDIA/tacotron2
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhparams.py
84 lines (70 loc) · 2.7 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from text import symbols
class Hparams:
def __init__(self):
################################
# Experiment Parameters #
################################
self.epochs = 500
self.iters_per_checkpoint = 1000
self.seed = 1234
self.dynamic_loss_scaling = True
self.fp16_run = False
self.distributed_run = False
self.cudnn_enabled = True
self.cudnn_benchmark = False
self.ignore_layers = ["embedding.weight"]
################################
# Data Parameters #
################################
self.training_files = "DATASET/train.csv.txt"
self.validation_files = "DATASET/val.csv.txt"
self.text_cleaners = ["basic_cleaners"]
self.symbols_lang = "en" # en: English characters; py: Chinese Pinyin symbols
################################
# Audio Parameters #
################################
self.n_mel_channels = 80
################################
# Model Parameters #
################################
self.n_symbols = len(symbols(self.symbols_lang))
self.symbols_embedding_dim = 512
# Encoder parameters
self.encoder_kernel_size = 5
self.encoder_n_convolutions = 3
self.encoder_embedding_dim = 512
# Decoder parameters
self.n_frames_per_step = 3
self.decoder_rnn_dim = 1024
self.prenet_dim = 256
self.max_decoder_steps = 1000
self.gate_threshold = 0.5
self.p_attention_dropout = 0.1
self.p_decoder_dropout = 0.1
# Attention parameters
self.attention_rnn_dim = 1024
self.attention_dim = 128
# Location Layer parameters
self.attention_location_n_filters = 32
self.attention_location_kernel_size = 31
# Mel-post processing network parameters
self.postnet_embedding_dim = 512
self.postnet_kernel_size = 5
self.postnet_n_convolutions = 5
################################
# Optimization Hyperparameters #
################################
self.use_saved_learning_rate = False
self.learning_rate = 1e-3
self.weight_decay = 1e-6
self.grad_clip_thresh = 1.0
self.batch_size = 32
self.mask_padding = True # set model's padded outputs to padded values
def __str__(self):
return "\n".join(
["Hyper Parameters:"]
+ ["{}:{}".format(key, getattr(self, key, None)) for key in self.__dict__]
)
def create_hparams():
"""Create model hyperparameters. Parse nondefault from object args."""
return Hparams()