-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathideucl.py
135 lines (110 loc) · 5.38 KB
/
ideucl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
from scipy.optimize import linear_sum_assignment
from ._base_metric import _BaseMetric
from .. import _timing
from collections import defaultdict
from .. import utils
class IDEucl(_BaseMetric):
"""Class which implements the ID metrics"""
@staticmethod
def get_default_config():
"""Default class config values"""
default_config = {
'THRESHOLD': 0.4, # Similarity score threshold required for a IDTP match. 0.4 for IDEucl.
'PRINT_CONFIG': True, # Whether to print the config information on init. Default: False.
}
return default_config
def __init__(self, config=None):
super().__init__()
self.fields = ['IDEucl']
self.float_fields = self.fields
self.summary_fields = self.fields
# Configuration options:
self.config = utils.init_config(config, self.get_default_config(), self.get_name())
self.threshold = float(self.config['THRESHOLD'])
@_timing.time
def eval_sequence(self, data):
"""Calculates IDEucl metrics for all frames"""
# Initialise results
res = {'IDEucl' : 0}
# Return result quickly if tracker or gt sequence is empty
if data['num_tracker_dets'] == 0 or data['num_gt_dets'] == 0.:
return res
data['centroid'] = []
for t, gt_det in enumerate(data['gt_dets']):
# import pdb;pdb.set_trace()
data['centroid'].append(self._compute_centroid(gt_det))
oid_hid_cent = defaultdict(list)
oid_cent = defaultdict(list)
for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])):
matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold)
# I hope the orders of ids and boxes are maintained in `data`
for ind, gid in enumerate(gt_ids_t):
oid_cent[gid].append(data['centroid'][t][ind])
match_idx_gt, match_idx_tracker = np.nonzero(matches_mask)
for m_gid, m_tid in zip(match_idx_gt, match_idx_tracker):
oid_hid_cent[gt_ids_t[m_gid], tracker_ids_t[m_tid]].append(data['centroid'][t][m_gid])
oid_hid_dist = {k : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_hid_cent.items()}
oid_dist = {int(k) : np.sum(np.linalg.norm(np.diff(np.array(v), axis=0), axis=1)) for k, v in oid_cent.items()}
unique_oid = np.unique([i[0] for i in oid_hid_dist.keys()]).tolist()
unique_hid = np.unique([i[1] for i in oid_hid_dist.keys()]).tolist()
o_len = len(unique_oid)
h_len = len(unique_hid)
dist_matrix = np.zeros((o_len, h_len))
for ((oid, hid), dist) in oid_hid_dist.items():
oid_ind = unique_oid.index(oid)
hid_ind = unique_hid.index(hid)
dist_matrix[oid_ind, hid_ind] = dist
# opt_hyp_dist contains GT ID : max dist covered by track
opt_hyp_dist = dict.fromkeys(oid_dist.keys(), 0.)
cost_matrix = np.max(dist_matrix) - dist_matrix
rows, cols = linear_sum_assignment(cost_matrix)
for (row, col) in zip(rows, cols):
value = dist_matrix[row, col]
opt_hyp_dist[int(unique_oid[row])] = value
assert len(opt_hyp_dist.keys()) == len(oid_dist.keys())
hyp_length = np.sum(list(opt_hyp_dist.values()))
gt_length = np.sum(list(oid_dist.values()))
id_eucl =np.mean([np.divide(a, b, out=np.zeros_like(a), where=b!=0) for a, b in zip(opt_hyp_dist.values(), oid_dist.values())])
res['IDEucl'] = np.divide(hyp_length, gt_length, out=np.zeros_like(hyp_length), where=gt_length!=0)
return res
def combine_classes_class_averaged(self, all_res, ignore_empty_classes=False):
"""Combines metrics across all classes by averaging over the class values.
If 'ignore_empty_classes' is True, then it only sums over classes with at least one gt or predicted detection.
"""
res = {}
for field in self.float_fields:
if ignore_empty_classes:
res[field] = np.mean([v[field] for v in all_res.values()
if v['IDEucl'] > 0 + np.finfo('float').eps], axis=0)
else:
res[field] = np.mean([v[field] for v in all_res.values()], axis=0)
return res
def combine_classes_det_averaged(self, all_res):
"""Combines metrics across all classes by averaging over the detection values"""
res = {}
for field in self.float_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res, len(all_res))
return res
def combine_sequences(self, all_res):
"""Combines metrics across all sequences"""
res = {}
for field in self.float_fields:
res[field] = self._combine_sum(all_res, field)
res = self._compute_final_fields(res, len(all_res))
return res
@staticmethod
def _compute_centroid(box):
box = np.array(box)
if len(box.shape) == 1:
centroid = (box[0:2] + box[2:4])/2
else:
centroid = (box[:, 0:2] + box[:, 2:4])/2
return np.flip(centroid, axis=1)
@staticmethod
def _compute_final_fields(res, res_len):
"""
Exists only to match signature with the original Identiy class.
"""
return {k:v/res_len for k,v in res.items()}