forked from qiskit-community/qiskit-aqua
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQCMatEl.py
executable file
·663 lines (586 loc) · 27.2 KB
/
QCMatEl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#
# Class MatEl for matrix element files.
#
"""
A class for entire matrix-element files and related functions.
Individual operator matrices are class QCOpMat (see QCOpMat.py)
and low-level I/O is done via the qcmatrixio module (see
qcmatrixio.F).
Class
-----
MatEl -- a container for all the data in a matrix element file.
Properties
----------
unit -- return the fortran unit to be used while reading or writing.
matlist -- return a list of the names of the operator matrices in the
object. Names are the label strings read from a file;
standard names are in QCMatEl.mat_names.
debug -- True to turn on extra printing.
scalars -- Array of scalar result values.
Methods
-------
MatEl (debug=False,file=None):
Create an object, setting the debug flag. If the file name is given,
the file is read into the object; otherwise the object is empty
except for default header parameters. Any additional keyword arguments
are passed to MatEl.read if the file is specified.
addobj (obj):
Add obj (a QCOpMat object) to the set. The name of the object
is stored in upper case and synonyms from mat_names_synonyms
are converted to their full versions.
delobj (name):
Delete the named operator object if it is present.
scalar (name,*val):
return/set-and-return one of the scalars, named in QCMatEl.scalar_names
or QCMatEl.scalar_names_synonyms
set_scalars (name=value,...):
set several scalar values at once. the versions of the names in
scalar_names_synonyms, which have no blanks or punctuation, are
useful here because all are valid keywords.
read (fname,check_status=False):
open the matrix element file named fname and load its contents. If
check_status is true, then the job status scalar is checked for
the successful completion flag (1.0).
write (fname):
open the matrix element file named fname and store to it.
print(doinp=False,**kwargs):
Print the object and its contents. Optional keyword arguments
are passed to print(). This is also called indirectly by
actions that access the __str__ method. doinp indicates whether
the data should be printed in a form useful in python code.
def load_head (self,title="No title",natoms=None,nbasis=0,nbsuse=None,
icharg=0,multip=1,ne=None,iopcl=0,icgu=None,nfc=0,nfv=0,itran=0,
ian=None,iattyp=None,atmchg=None,atznuc=None,c=None,atmwgt=None,
labfil="Gaussian matrix elements",progversion="QCMatEl.py 1.0"):
update an object with new values for the header information. the
remaining header elements, such as the basis set dimensions, are
reinitialized, so this call should preceed setting new values for
scalars, the basis set, and storing matrices.
update (matfi=None, matfo=None, check_status=True, doinit=False, **kwargs):
update the object contents by running a gaussian job and retrieving
results. keyword arguments are passed on to makegauinp through rungau
and specify what is to be computed. temporary files are used for the
matrix element input and output files unless they are named.
check_status indicates whether the successful job completion flag
in the output matrix element file is to be checked, and IOError
signalled if the job failed. if doinit is true then the object
is reinitialized, so that only the contents of the output matrix
element file from the calculation will be present; otherwise the
new results are merged into the old object, leaving any existing data
not changed by the new calculation as is.
returns (true,None,None) if the calculation was successful, or
(false,input,output) with the names of the text input
and output files if the calculation failed.
Other functions
---------------
DimTuple (n1,n2,n3,n4,n5):
return a tuple of the specified dimensions, omitting 1s and 0s.
optfile (namei,suffix="",retfd=True):
return a open file object (retfd True) or the name for a file
with an optional name.
makegauinp (matfi, matfo, tinput=None, dofock=False, motran=None,
aotype=None, window=None, miscroute=None, model="HF",
basis="ChkBasis",program="g16",progargs=[]):
generate a gaussian input file for a job which takes input from one
matrix element file and returns results in another. returns the name
of the generated file, which is tinput if this was specified or else
a suitable temporary file and also an updated list of command line
arguments.
dofock is true if orbitals have been provided in the input file and
the fock matrix implied by their density is to be computed, or
"density" if the density provided is to be used as-is, "SCF" to
perform a full SCF calculation starting from a generated initial
guess, and "SCFREAD" to start an SCF calculation from the orbitals
in the file.
aotype is "regular", "raf1", "raf2", or "raf3" to request AO 2e-integrals.
motran is "full" or "partial" to request a full or partial integral
transformation. closed-shell full transformations produce one M^4/8
array, where M=number of active orbitals, closed-shell partial
transformations produce one (M^2/2,M,O) array where O is the number
of active occupieds. open-shell full transformation produces
three arrays: M^4/8 AA, (M^2/2,M^2/2) BA and M^4/8 BB. open-shell
partial transformation produces four arrays: (M^2/2,M,OA) AA,
(M^2/2,M,OB) AB, (M^2/2,M,OA) BA, and (M^2/2,M,OB) BB, where OA
and OB are the numbers of active alpha and beta electrons.
window specifies the active orbitals for a transformation. The
default is frozen-core, with the usual (largest) definition of
the core. Other values are "full" for all orbitals, "frzngc"
to freeze the largest noble-gas core, "frzingc" to freeze the
second-largest noble-gas core, and a tuple (m,n) with m and n
positive to use orbitals m through n, or -m to skip the first m
occupieds and -n to skip the lowest n virtuals.
model is the Hamiltonian to be used if a Fock matrix is formed.
basis is the basis set if this is not to be read from the input files.
miscroute is other keywords to include in the gaussian route
section.
The molecule specification and basis are taken from the input
matrix element file, as is the specification for spin restricted
or unrestricted, complex orbitals, etc.
rungau (matfi, matfo, program="g16", progargs=[], debug=False,
toutput=None, **kwargs):
run gaussian given the named matrix element files for input and output.
a text input file is generated based on keywords passed on to makegauinp.
returns the names of the generated text input and output files. the
text output file has a generated name unless toutput is specified.
progargs are any extra flags to pass to the command to run gaussian;
the strings in the list do not require shell-type quoting, e.g.
progargs=["-c=0-3","-m=2gb"] would set the CPUs and memory.
Module data
-----------
scalar_names -- dict containing the scalar result values held in in an
internal array
mat_names_arr -- array containing the names of standard operator matrices,
which if written to a file are in a canonical order.
mat_names -- dict containing the standard operator names, with values
giving the canonical order.
head_scalars -- dict listing the scalars which are stored in header
records in the file.
head_arrays -- dict listing the arrays which are setored in header
records in the file.
"""
__version__ = 2.0
import sys
import io
import re
import os
import subprocess
import tempfile
import numpy as np
INTSIZE_NAME = "GAUOPEN_INTSIZE"
doi8 = False
import qcmatrixio as qcmio
INTTYPE = "int32"
import QCOpMat as qco
# name of scalars in the /Gen/ areray
scalar_names_arr = ["VIRIAL","X-EFIELD","Y-EFIELD","Z-EFIELD","TE SCF ENERGY","SCRF G-FACTOR","SCRF A0",
"THERMAL ENERGY","ECC","ECC(T)","EVAR1","ZPE","COMPOUND ENERGY","NIMAG","DEPUHF","EPUHF","ECBS2","ECBSI",
"EPMP2","EPMP3","GEOM RMSF","ECIS-MP2","SCF RMSDP","S2-A","ECIS","DEUMP4D","EBDREF","EMP5","S4SD","EFC",
"SCFTAU","ESCF","EUMP2","EUMP3","EUMP4","CBS OIII","EPRF","EMP4DQ","EMP4SDQ","SCALAR40","ENUCREP",
"PSCFT","ETOTAL","S2SCF","S2-1","S2-D","A0","SCALAR48","TEMPERATURE","PRESSURE","FREQSCALE","INACTNUCREP",
"DE2-SINGLES","DE2","RF NUC","RF ELEC","CURVATURE","IRC RC","EXTFLAG","ESCF1IT","JOB STATUS","NDERIV"]
# label for the scalars element in the file and in the object
LENGS = 1000
GSNAME = "GAUSSIAN SCALARS"
WLENBUF = 4000
WLENBFS = 2000
FRAGNAME = "INTEGER FRAGMENT"
# names for standard order of matrices in file, for writing
mat_names_arr = ["SHELL TO ATOM MAP","SHELL TYPES","NUMBER OF PRIMITIVES PER SHELL",
"PRIMITIVE EXPONENTS","CONTRACTION COEFFICIENTS","P(S=P) CONTRACTION COEFFICIENTS",
"COORDINATES OF EACH SHELL","BONDS PER ATOM","BONDED ATOMS","BOND TYPES","GAUSSIAN SCALARS",
"INTEGER ISO","INTEGER SPIN","REAL ZEFFECTIVE","REAL GFACTOR","REAL ZNUCLEAR",
"NUCLEAR GRADIENT","NUCLEAR FORCE CONSTANTS","ELECTRIC DIPOLE MOMENT",
"ELECTRIC DIPOLE POLARIZABILITY","ELECTRIC DIPOLE DERIVATIVES",
"DIPOLE POLARIZABILITY DERIVATIVES","ELECTRIC DIPOLE HYPERPOLARIZABILITY",
"OVERLAP","CORE HAMILTONIAN ALPHA","CORE HAMILTONIAN BETA","KINETIC ENERGY",
"ORTHOGONAL BASIS","DIPOLE INTEGRALS","QUADRUPOLE INTEGRALS",
"OCTOPOLE INTEGRALS","HEXADECAPOLE INTEGRALS","DIP VEL INTEGRALS","R X DEL INTEGRALS",
"ALPHA ORBITAL ENERGIES","BETA ORBITAL ENERGIES","ALPHA MO COEFFICIENTS",
"BETA MO COEFFICIENTS","ALPHA DENSITY MATRIX","BETA DENSITY MATRIX",
"ALPHA SCF DENSITY MATRIX","BETA SCF DENSITY MATRIX","ALPHA FOCK MATRIX",
"BETA FOCK MATRIX","OVERLAP DERIVATIVES","CORE HAMILTONIAN DERIVATIVES",
"F(X)","DENSITY DERIVATIVES","FOCK DERIVATIVES","ALPHA UX","BETA UX",
"ALPHA MO DERIVATIVES","BETA MO DERIVATIVES","ALPHA SCF DENSITY","BETA SCF DENSITY",
"ALPHA MP FIRST ORDER DENSITY","BETA MP FIRST ORDER DENSITY",
"ALPHA MP2 DENSITY","BETA MP2 DENSITY","ALPHA MP3 DENSITY","BETA MP3 DENSITY",
"ALPHA MP4 DENSITY","BETA MP4 DENSITY","ALPHA CI ONE-PARTICLE DENSITY",
"BETA CI ONE-PARTICLE DENSITY","ALPHA CI DENSITY","BETA CI DENSITY",
"ALPHA QCI/CC DENSITY","BETA QCI/CC DENSITY","ALPHA DENSITY CORRECT TO SECOND ORDER",
"BETA DENSITY CORRECT TO SECOND ORDER","ALPHA ONIOM DENSITY","BETA ONIOM DENSITY",
"GIAO D2H/DBDM","GIAO L/R3", "REGULAR 2E INTEGRALS", "RAFFENETTI 2E INTEGRALS",
"AA MO 2E INTEGRALS", "AB MO 2E INTEGRALS", "BA MO 2E INTEGRALS", "BB MO 2E INTEGRALS"]
# scalars in the header records
head_scalars_arr = ["title","natoms","nbasis","nbsuse","icharg","multip","ne","iopcl",
"icgu","nfc","nfv","itran","idum9","nshellao","nprimao","nshelldb","nprimdb","nbondtot"]
# arrays in the header records
head_arrays_arr = ["ian","iattyp","atmchg","c","ibf","ibftyp","atmwgt"]
scalar_names = {name.upper():i for i,name in enumerate(scalar_names_arr)}
scalar_synonyms = {re.sub("[ ()-]*","",name).upper():name for name in scalar_names_arr}
mat_names = {name.upper():i for i,name in enumerate(mat_names_arr)}
mat_names_synonyms = {re.sub("[ ()-]*","",name).upper():name for name in mat_names_arr}
head_scalars = {name:i for i,name in enumerate(head_scalars_arr)}
head_arrays = {name:i for i,name in enumerate(head_arrays_arr)}
# default atomic weights, elements 0 to 109
defatw = [ 0.00000000, 1.00782504, 4.00260325, 7.01600450, 9.01218250,
11.00930530, 12.00000000, 14.00307401, 15.99491464, 18.99840325,
19.99243910, 22.98976970, 23.98504500, 26.98154130, 27.97692840,
30.97376340, 31.97207180, 34.96885273, 39.96238310, 38.96370790,
39.96259070, 44.95591360, 47.94794670, 50.94396250, 51.94050970,
54.93804630, 55.93493930, 58.93319780, 57.93534710, 62.92959920,
63.92914540, 68.92558090, 73.92117880, 74.92159550, 79.91652050,
78.91833610, 83.91150640, 84.91170000, 87.90560000, 88.90540000,
89.90430000, 92.90600000, 97.90550000, 98.90630000,101.90370000,
102.90480000,105.90320000,106.90509000,113.90360000,114.90410000,
117.90180000,120.90380000,129.90670000,126.90040000,131.90420000,
132.90542900,137.90500000,138.90610000,139.90530000,140.90740000,
141.90750000,144.91270000,151.91950000,152.92090000,157.92410000,
158.92500000,163.92880000,164.93030000,165.93040000,168.93440000,
173.93900000,174.94090000,179.94680000,180.94800000,183.95100000,
186.95600000,189.95860000,192.96330000,194.96480000,196.96660000,
201.97060000,204.97450000,207.97660000,208.98040000,208.98250000,
210.98750000,222.01750000,223.01980000,226.02540000,227.02780000,
232.03820000,231.03590000,238.05080000,237.04800000,242.05870000,
243.06140000,246.06740000,247.07020000,249.07480000,252.08290000,
252.08270000,255.09060000,259.10100000,262.10970000,261.10870000,
262.11410000,266.12190000,264.12470000, 0.00000000,268.13880000]
maxan = len(defatw) - 1
def DimTuple (n1,n2,n3,n4,n5):
if n5 > 1: return (n1,n2,n3,n4,n5)
elif n4 > 1: return (n1,n2,n3,n4)
elif n3 > 1: return (n1,n2,n3)
elif n2 > 1: return (n1,n2)
else: return((n1,))
def optfile (namei,suffix="",retfd=True):
if namei is None:
fi = tempfile.NamedTemporaryFile (mode='w+t',suffix=suffix,delete=False)
else:
fi = open (namei,"w+t")
if retfd: return (fi)
else:
name = fi.name
fi.close()
return (name)
def makegauinp (matfi, matfo, tinput=None, dofock=False, motran=None,
aotype=None, window=None, miscroute=None, model="HF",
symm="nosymm", haveorbs=True, basis="ChkBasis",
program="g16", revision="b01", progargs=[]):
# This routine operates in two ways, because g16a03 requires building
# an input file while for g16b01 and later and for gdv everything can
# be done using command-line arguments. For the first case, the name of
# the input file is returned along with an unaltered copy of progargs;
# for the second case, None is returned instead of a file name and an
# updated progargs is returned with the appropriate switches.
newpa = progargs;
if revision is "a03":
fi = optfile (tinput,suffix=".gjf")
fi.write ("%oldmat=i4labels,")
fi.write (matfi+"\n")
else:
fi = io.StringIO()
if doi8: newpa.append ("-IM="+matfi)
else: newpa.append ("-IM4="+matfi)
fi.write ("#p "+model+" geom=allcheck " + basis + " test output=(matrix")
if not doi8: fi.write (",i4labels")
if motran is not None: fi.write (",mo2el")
fi.write (") ")
if symm != "": fi.write(symm+" ")
if dofock is False:
if haveorbs: fi.write("guess=(copychk,only)")
else: fi.write("guess=(*none*,only)")
elif dofock is True: fi.write ("guess=read scf=(novaracc,maxcyc=-1)")
elif dofock.upper() == "DENSITY": fi.write ("guess=copychk scf=(novaracc,maxcyc=-1)")
elif dofock.upper() == "SCF": fi.write ("scf=(novaracc)")
elif dofock.upper() == "SCFREAD": fi.write ("guess=read scf=(novaracc)")
else: raise TypeError
if aotype is not None:
fi.write(" scf=conventional ")
if aotype == 0 or aotype == "regular" or aotype == "noraff": fi.write ("noraff")
else: fi.write ("int=raf%d" % aotype)
if motran == "partial": fi.write(" tran=iabc")
elif motran == "full": fi.write(" tran=full")
if window is not None: fi.write (" window="+str(window))
if miscroute is not None: fi.write (" "+miscroute)
if revision is "a03":
fi.write("\n\n"+matfo+"\n\n")
itemp = fi.name
else:
if doi8: newpa.append ("-OM="+matfo)
else: newpa.append ("-OM4="+matfo)
newpa.append ("-X="+fi.getvalue())
itemp = None
fi.close()
return (itemp,newpa)
def rungau (matfi, matfo, program="g16", progargs=[], debug=False, toutput=None, **kwargs):
itemp,pargs = makegauinp (matfi,matfo,program=program,progargs=progargs,**kwargs)
otemp = optfile (toutput,suffix=".log",retfd=False)
try:
unlink (matfo)
except:
pass
if itemp is None: fi = subprocess.DEVNULL
else: fi = open (itemp,mode="r")
fo = open (otemp,mode="w")
pargs.insert (0,program)
if debug: print ("rungau program",program,"progargs",pargs,"itemp",
itemp,"otemp",otemp,file=sys.stderr)
subprocess.call(pargs,stdin=fi,stdout=fo)
if itemp is not None: fi.close()
fo.close()
return (itemp,otemp)
class MatEl (object):
def __init__ (self,debug=False,file=None,**kwargs):
self.__DEBUG = debug
self.__FH = None
self.labfil = "Gaussian matrix elements"
self.fversion = 2
self.__NLAB = 11
self.gversion = "QCMatEl.py %f" % 1.0
self.title = "No title"
self.__LENREC = 4000
self.__LEN12L = 4
self.__LEN4L = 4
self.__REC11 = np.array([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],dtype=INTTYPE)
self.__GSCAL = np.zeros((LENGS))
self.natoms = 0
self.nbasis = 1
self.nbsuse = 1
self.icharg = 0
self.multip = 0
self.ne = 0
self.iopcl = 0
self.icgu = 0
self.nfc = 0
self.nfv = 0
self.itran = 0
self.idum9 = 0
self.nshlao = 0
self.nprmao = 0
self.nshldb = 0
self.nprmdb = 0
self.nbondtot = 0
self.ian = None
self.iattyp = None
self.atmchg = None
self.atmwgt = None
self.c = None
self.ibfatm = np.array([0],dtype=INTTYPE)
self.ibftyp = np.array([0],dtype=INTTYPE)
self.__MATLIST = {}
if file is not None: self.read(file,**kwargs)
@property
def unit (self): return self.__FH
@unit.setter
def unit (self,iu):
self.__FH = iu
return (self.__FH)
@property
def debug (self): return self.__DEBUG
@debug.setter
def debug (self,value):
self.__DEBUG = value
return (self.__DEBUG)
@property
def matlist (self): return self.__MATLIST
@property
def scalars (self): return self.__GSCAL
@property
def nfrag (self):
if FRAGNAME in self.__MATLIST: return max (self.__MATLIST[FRAGNAME].array)
else: return 0;
def addobj (self,obj):
name = obj.name.upper()
if name in mat_names_synonyms: name = mat_names_synonyms[name]
obj.name = name
self.__MATLIST[obj.name] = obj
def delobj (self,namei):
name = namei.upper()
if name in mat_names_synonyms: name = mat_names_synonyms[name]
if name in self.__MATLIST: del self.__MATLIST[name]
def scalar (self,namei,*val):
name = namei.upper()
if name in scalar_synonyms: name = scalar_synonyms[name]
assert name in scalar_names
if len(val) > 0: self.__GSCAL[scalar_names[name]] = val[0]
return (self.__GSCAL[scalar_names[name]])
def set_scalars (self,**kwargs):
for name in kwargs: self.scalar (name,kwargs[name])
def read (self,fname,check_status=False):
if self.__DEBUG: print ("read file",fname)
self.unit,self.labfil,self.fversion,self.__NLAB,self.gversion,self.title, \
self.natoms,self.nbasis,self.nbsuse,self.icharg,self.multip,self.ne, \
self.__LEN12L,self.__LEN4L,self.iopcl,self.icgu = qcmio.open_read (fname)
if self.unit < 1:
print ("failed to open matrix element file",fname," for reading.")
raise IOError
self.labfil = self.labfil.rstrip().decode("utf-8")
self.gversion = self.gversion.rstrip().decode("utf-8")
self.title = self.title.rstrip().decode("utf-8")
self.ian,self.iattyp,self.atmchg,self.c,self.ibfatm,self.ibftyp,self.atmwgt, \
self.nfc,self.nfv,self.itran,self.idum9,self.nshlao,self.nprmao,\
self.nshldb,self.nprmdb,self.nbondtot = \
qcmio.rd_head (self.unit,self.__NLAB,self.natoms,self.nbasis)
gotone = True
while (gotone):
cbuf,ni,nr,ntot,lenbuf,n1,n2,n3,n4,n5,asym,nri,eof = qcmio.rd_labl(self.unit,self.fversion)
cbuf = cbuf.rstrip().decode("utf-8")
gotone = not eof
if nri == 2: type = "c"
else: type = "d"
if (gotone):
dimens = DimTuple (n1,n2,n3,n4,n5)
lr = qcmio.lenarr(n1,n2,n3,n4,n5)
if (ni >= 1) and (nr == 0):
arr = qcmio.rd_ibuf(self.unit,ni*ntot,ni*lenbuf)
myobj = qco.OpMat (cbuf,arr,asym=asym,nelem=ni,dimens=dimens)
elif (ni == 0) and (nr >= 1):
if (nri == 1): arr = qcmio.rd_rbuf(self.unit,nr*ntot,nr*lenbuf)
else: arr = qcmio.rd_cbuf(self.unit,nr*ntot,nr*lenbuf)
myobj = qco.OpMat (cbuf,arr,asym=asym,nelem=nr,dimens=dimens)
elif qcmio.aoints(cbuf):
if nr == 1: arr = qcmio.rd_2e1 (self.unit,lr,ntot,lenbuf)
else:
arr = qcmio.rd_2en (self.unit,nr,lr,lr*nr,ntot,lenbuf)
arr = arr.reshape((lr,nr),order='F')
myobj = qco.OpMat (cbuf,arr,nelem=nr,dimens=dimens)
elif (ni == 1):
lnz,arr = qcmio.rd_rind(self.unit,nr,lr,ntot,lenbuf)
if nr == 1: arr = np.reshape(arr,(lr),order='F')
else: arr = arr.T
myobj = qco.OpMat (cbuf,arr,asym=asym,nelem=nr,dimens=dimens)
else:
raise IOError
qcmio.rd_skip (self.unit,ntot,lenbuf)
if cbuf == GSNAME: self.__GSCAL = arr
else: self.__MATLIST[cbuf] = myobj
qcmio.close_matf (self.unit)
if check_status: assert self.scalar("JOB STATUS") == 1.0
def print(self,doinp=False,**kwargs):
if doinp:
sep = "\n"
f2d = "%d"
f3d = "%d"
f6d = "%d"
f8d = "%d"
else:
sep = " "
f2d = "%2d"
f3d = "%3d"
f6d = "%6d"
f8d = "%8d"
fstr = "Label=%s" + sep + "IVers=" + f2d + sep + "NLab=" + f2d + sep + "Version=%s"
print (fstr % (self.labfil,self.fversion,self.__NLAB,self.gversion),**kwargs)
print ("Title=%s" % self.title,**kwargs)
fstr = "NAtoms=" + f6d + sep + "NBasis=" + f6d + sep + "NBsUse=" + f6d + sep + "ICharg=" + f6d + \
sep + "Multip=" + f6d + sep + "NE=" + f6d + sep + "Len12L=%1d" + sep + "Len4L=%1d" + \
sep + "IOpCl=" + f6d + sep + "ICGU=" + f3d
print (fstr % (self.natoms,self.nbasis,self.nbsuse,self.icharg,self.multip,self.ne,
self.__LEN12L,self.__LEN4L,self.iopcl,self.icgu),**kwargs)
qco.print1d (False,"i",1,"IAn",self.ian,doinp=doinp,**kwargs)
qco.print1d (False,"i",1,"IAtTyp",self.iattyp,doinp=doinp,**kwargs)
qco.print1d (False,"d",1,"AtmChg",self.atmchg,doinp=doinp,**kwargs)
qco.print1d (False,"d",2,"C",self.c,doinp=doinp,**kwargs)
qco.print1d (False,"i",2,"IBfAtm",self.ibfatm,doinp=doinp,**kwargs)
qco.print1d (False,"i",2,"IBfTyp",self.ibftyp,doinp=doinp,**kwargs)
qco.print1d (False,"d",1,"AtmWgt",self.atmwgt,doinp=doinp,**kwargs)
fstr = "NFC=" + f6d + sep + "NFV=" + f6d + sep + "ITran=" + f6d
print (fstr % (self.nfc,self.nfv,self.itran),**kwargs)
fstr = "NShlAO=" + f8d + sep + "NPrmAO=" + f8d + sep + "NShlDB=" + \
f8d + sep + "NPrmDB=" + f8d + sep + "NBTot=" + f8d
print (fstr % (self.nshlao,self.nprmao,self.nshldb,self.nprmdb,self.nbondtot),**kwargs)
for lab in mat_names_arr:
if lab == GSNAME:
if not qco.doinpprt (GSNAME,self.__GSCAL,doinp=doinp,**kwargs):
qco.printlab (GSNAME,0,1,1,len(self.__GSCAL),0,len(self.__GSCAL),1,1,1,1,0,doinp=doinp,**kwargs)
qco.print1d (True,"d",5," ",self.__GSCAL,doinp=doinp,**kwargs)
else:
if lab in self.__MATLIST:
if not qco.doinpprt (lab,self.__MATLIST[lab].array,doinp=doinp,**kwargs):
self.__MATLIST[lab].print_mat(doinp=doinp,**kwargs)
for lab in sorted(self.__MATLIST):
if not lab in mat_names:
if not qco.doinpprt (lab,self.__MATLIST[lab].array,doinp=doinp,**kwargs):
self.__MATLIST[lab].print_mat(**kwargs)
def __str__ (self):
stream = io.StringIO()
self.print(file=stream)
str = stream.getvalue()
return (str[:-1])
def write (self,fname):
if self.__DEBUG: print ("write file",fname)
self.unit = qcmio.open_write (fname,self.labfil,self.gversion,self.title,
self.natoms,self.nbasis,self.nbsuse,self.icharg,self.multip,
self.ne,self.iopcl,self.icgu)
if self.unit < 1:
print ("failed to open matrix element file",fname," for writing.")
raise IOError
qcmio.wr_head (self.unit,self.ian,self.iattyp,
self.atmchg,self.c,self.ibfatm,self.ibftyp,self.atmwgt,self.nfc,
self.nfv,self.itran,self.idum9,self.nshlao,self.nprmao,self.nshldb,
self.nprmdb,self.nbondtot)
for lab in mat_names_arr:
if lab == GSNAME:
y = self.__GSCAL.reshape((1,self.__GSCAL.size),order='F')
nnz = max(qcmio.numnzr(y),1)
qcmio.wr_labl(self.unit,GSNAME,1,1,nnz,WLENBFS,LENGS,1,1,1,1,0)
qcmio.wr_rind(self.unit,nnz,WLENBFS,y)
else:
if lab in self.__MATLIST: self.__MATLIST[lab].write(self.unit,WLENBUF)
for lab in sorted(self.__MATLIST):
if not lab in mat_names: self.__MATLIST[lab].write(self.unit,WLENBUF)
qcmio.wr_labl(self.unit,"END",0,0,0,0,0,0,0,0,0,False)
qcmio.close_matf(self.unit)
def update (self, matfi=None, matfo=None, check_status=True, doinit=False, **kwargs):
matinp = optfile (matfi,suffix=".mat",retfd=False)
matout = optfile (matfo,suffix=".mat",retfd=False)
self.write (matinp)
itemp,otemp = rungau (matinp,matout,**kwargs)
if doinit: self.__init__()
try:
self.read (matout,check_status=check_status)
except:
print ("Gaussian failed; retaining matinp",matinp,"matout",matout,
"input",itemp,"output",otemp,file=sys.stderr)
return (False,itemp,otemp)
if itemp is not None and ("tinput" not in kwargs or kwargs["tinput"] is None):
os.unlink (itemp)
if "toutput" not in kwargs or kwargs["toutput"] is None: os.unlink (otemp)
if matfi is None: os.unlink (matinp)
if matfo is None: os.unlink (matout)
return (True,None,None)
def load_head (self,title="No title",natoms=None,nbasis=None,nbsuse=None,
icharg=0,multip=1,ne=None,iopcl=0,icgu=None,nfc=0,nfv=0,
itran=0,ian=None,iattyp=None,atmchg=None,atznuc=None,
c=None,atmwgt=None,labfil="Gaussian matrix elements",
progversion="QCMatEl.py 1.0"):
self.title = title
self.labfil = labfil
self.gversion = progversion
assert natoms is not None
self.natoms = natoms
if nbasis is None: self.nbasis = 1
else: self.nbasis = nbasis
if nbsuse is None: self.nbsuse = self.nbasis
else: self.nbsuse = nbsuse
self.icharg = icharg
self.multip = multip
self.ne = ne
self.iopcl = iopcl
if icgu is None:
if iopcl == 6: self.icgu = 221
else: self.icgu = 10*((iopcl % 4)//2) + (iopcl % 2) + 111
else: self.icgu = icgu
self.nfc = nfc
self.nfv = nfv
self.itran = itran
self.idum9 = 0
self.nshlao = 0
self.nprmao = 0
self.nshldb = 0
self.nprmdb = 0
self.nbondtot = 0
assert len(ian) == self.natoms
self.ian = np.array(ian,dtype=INTTYPE)
if iattyp is None: self.iattyp = np.zeros((natoms,),dtype=INTTYPE)
else:
assert len(iattyp) == self.natoms
self.iattyp = np.array(iattyp,dtype=INTTYPE)
if atmchg is None: self.atmchg = np.array(self.ian,dtype="float64")
else:
assert len(atmchg) == self.natoms
self.atmchg = np.array(atmchg,dtype="float64")
assert len(c) == (3*self.natoms)
self.c = np.array(c,dtype="float64")
if atmwgt is None:
self.atmwgt = np.array([defatw[min(max(ia,0),maxan)] for ia in self.ian],dtype="float64")
else:
assert len(atmwgt) == self.natoms
self.atmwgt = np.array(atmwgt,dtype="float64")
self.ibfatm = np.zeros((self.nbasis,),dtype=INTTYPE)
self.ibftyp = np.zeros((self.nbasis,),dtype=INTTYPE)
self.__MATLIST = {}
for i in range(len(self.__GSCAL)): self.__GSCAL[i] = 0.0e0
if atznuc is None: znuc = self.atmchg
else:
assert len(atznuc) == self.natoms
znuc = np.array(atznuc,dtype="float64")
self.addobj(qco.OpMat("REAL ZNUCLEAR",znuc))