-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment.py
131 lines (125 loc) · 5.75 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.nn as nn
import os
import random
import time
import argparse
from tensorboardX import SummaryWriter
import numpy as np
import pandas as pd
import albumentations
from efficientnet_pytorch import EfficientNet
from torch.utils.data import DataLoader
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
from util import LabelSmoothCELoss, GradualWarmupScheduler
from dataset import Data
from model import EfficientDualPool
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data-folder', type=str, default='train')
parser.add_argument('--model', type=str, default='efficientnet-b0')
parser.add_argument('--epoch', type=int, default=25)
parser.add_argument('--bs', type=int, default=64)
args, _ = parser.parse_known_args()
return args
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def evaluate(data_set, model):
data_loader = DataLoader(dataset=data_set, batch_size=16, shuffle=False)
model.eval()
m = nn.Softmax(dim=1)
val_preds = torch.zeros((len(data_set),4), device=device)
with torch.no_grad():
for i, (inputs, labels) in enumerate(data_loader):
inputs = inputs.to(device)
preds = model(inputs)
preds = m(preds)
val_preds[i*data_loader.batch_size:i*data_loader.batch_size+inputs.shape[0]]=preds
val_labels = torch.argmax(val_preds, dim=1)
return val_preds, val_labels
if __name__ == '__main__':
args = parse_args()
seed_everything(47)
current_time = time.strftime("%Y_%m_%d_%H.%M", time.localtime())
classes = ['normal', 'calling', 'smoking', 'smoking_calling']
train_list = []
for label, folder in enumerate(classes):
for img in os.listdir(os.path.join(args.data_folder, folder)):
train_list.append((os.path.join(args.data_folder, folder, img), label))
train_df = pd.DataFrame(train_list, columns=['img', 'label'])
train_transform = albumentations.Compose([
albumentations.HorizontalFlip(p=0.5),
albumentations.Resize(224, 224),
albumentations.Normalize()])
test_transform = albumentations.Compose([
albumentations.Resize(224, 224),
albumentations.Normalize()])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
criterion = LabelSmoothCELoss(reduction='none')
skf = KFold(n_splits=3, shuffle=True, random_state=47)
total_val = 0
for fold, (train_idx, val_idx) in enumerate(skf.split(train_df), 1):
train_writer = SummaryWriter(log_dir=os.path.join('tbx_log', current_time, str(fold), 'train'))
val_writer = SummaryWriter(log_dir=os.path.join('tbx_log', current_time, str(fold), 'val'))
best_val = []
print('=' * 20, 'Fold', fold, '=' * 20)
model = EfficientNet.from_pretrained(args.model, num_classes=4)
# model = pretrainedmodels.se_resnext50_32x4d(num_classes=1000, pretrained='imagenet')
# model.last_linear = nn.Linear(2048,3)
model = model.to(device)
train_set = Data(train_df.iloc[train_idx].reset_index(drop=True), train_transform)
val_set = Data(train_df.iloc[val_idx].reset_index(drop=True), test_transform)
train_loader = DataLoader(dataset=train_set, batch_size=args.bs, shuffle=True)
val_loader = DataLoader(dataset=val_set, batch_size=16, shuffle=False)
optim = torch.optim.Adam(model.parameters(), lr=0.0005)
# optim = SWA(base_optim, swa_start=770, swa_freq=77, swa_lr=0.0001)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epoch+5, eta_min=5e-6)
# scheduler_warmup = GradualWarmupScheduler(optim, multiplier=1, total_epoch=5, after_scheduler=scheduler)
for epoch in range(1, args.epoch+1):
model.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optim.zero_grad()
inputs = inputs.to(device)
labels = labels.to(device)
try:
outputs = model(inputs)
except RuntimeError as e:
if 'out of memory' in str(e):
print('| WARNING: ran out of memory')
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
else:
raise e
loss = criterion(outputs, labels)
loss, _ = loss.topk(k=loss.shape[0] // 3)
loss = loss.mean()
loss.backward()
optim.step()
running_loss += loss.item() * len(labels)
# if epoch>9:
# optim.swap_swa_sgd()
train_loss = running_loss / len(train_set)
val_preds, val_labels = evaluate(val_set, model)
val_loss = criterion(outputs, labels).mean()
val_acc = accuracy_score(val_labels.cpu(), train_df.iloc[val_idx]['label'])
train_writer.add_scalar('Epoch Loss', train_loss, epoch)
val_writer.add_scalar('Epoch Loss', val_loss, epoch)
val_writer.add_scalar('Acc', val_acc, epoch)
scheduler.step()
if len(best_val) < 5:
best_val.append(val_acc)
else:
best_val.sort()
best_val[0] = max(best_val[0], val_acc)
print('epoch {}: val_acc {}, val_loss {}, train_loss {}'.format(epoch, val_acc, val_loss, train_loss))
total_val += sum(best_val) #后续改成best前几的平均
print(total_val/15)