-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLSH_program.py
209 lines (186 loc) · 6.93 KB
/
LSH_program.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import pandas as pd
import pickle
from collections import defaultdict
import copy
import sys
from operator import itemgetter
from random import randint
import time
def load(doc) :
'''
Load the pickle file
'''
file = open(doc,'rb')
data = pickle.load(file)
file.close()
return data
def shingling(data , k) :
'''
shingles_dict stores the input matrix.
Keys of the dictionary are the shingles and the value is matrix values (rows)
'''
num_of_doc = len(data)
shingles_dict=defaultdict(lambda : set([]))
for doc in range (0,num_of_doc) :
for x in range (0,len(data[doc])-k+1) :
shingles_dict[data[doc][x:x+k]].add(doc)
print("Shingling done")
return shingles_dict
def hashfunc(num, length):
'''
num is the number of hash functions to be created.
Returns list of (a,b) pairs.
Hash function is of the form (ax+b)modlength
Here a and b is always smaller than the number of shingles.
'''
a = randint(1,length)
b = randint(1,length)
functions = {(a,b)}
while len(functions) < num:
a = randint(1,length)
b = randint(1,length)
functions.update({(a,b)})
return list(functions)
def genhash(length, num, x, func):
'''
length is the number of shingles.
num is the number of hash functions.
x is the row for which hash function value is to be calculated.
func is the list returned by hashfunc()
Returns the list containing hash functions value for row x.
'''
hashes = []
for i in range (0, num):
val = (func[i][0] * x + func[i][1]) % length
hashes.append(val)
return hashes
def signature_matrix(shingles, num, no_of_doc, func):
'''
shingles is the Input matrix with value of dictionary as the shingles.
num is the number of minhash functions to be generated.
no_of_doc is the number of documents in data.
func is the list returned by hashfunc()
'''
shingles_list = list(shingles.keys())
listofinfinity = [sys.maxsize] * no_of_doc
signature_mat = {}
for x in range (0, num):
signature_mat[x] = copy.deepcopy(listofinfinity)
print("initialization of Signature matrix done")
# Has keys as the hash function and values as list for all documents
for row in range (0, len(shingles_list)): # Keys
hashes = genhash(len(shingles_list), num, row, func)
for col in shingles[shingles_list[row]] :
for n in range (0, num):
if hashes[n] < signature_mat[n][col]:
signature_mat[n][col] = hashes[n]
print("Signature Matrix created")
signature_mat_list = []
for key,value in signature_mat.items():
signature_mat_list+=[value]
signature_mat_list = np.array(signature_mat_list)
return signature_mat_list
def L2_norm(x,y):
'''This function is used to normalize a vector length using L2 norm '''
return sum(pow((x[i] - y[i]), 2) for i in range(len(x))) ** (1/2)
def cosine_similarity(x,y):
'''
Computes the cosine similarity between two vectors
'''
numerator=0
zeroes=np.zeros(len(x))
for i in range(len(x)):
numerator=numerator+(x[i]*y[i])
A = L2_norm(x,zeroes)
B = L2_norm(y,zeroes)
return numerator/ (A*B)
def LSH(signature_mat, b, rows,num_docs):
'''It is responsible for the local sensitive hashing. It divides the signature matrix into bands
and documents having the same hashed value in a certain band are put into same bucket
This function takes parameters:
signature_mat : The Signature matrix obtained after minhashing
b: number of bands in which signature matrix is divided
rows: number of rows each band has
num_docs: the number of documents in the corpus
It returns two values:
buckets: An array of dictionaries which holds the hashed vectors for each band
hashed:It is the mapping using which docid was hashed into buckets
'''
buckets=np.full(b,{})
hashed=np.zeros((num_docs,b),dtype=int)
for i in range(b):
for j in range(num_docs):
l=signature_mat[int(i*rows):int((i+1)*rows), j]
h=hash(tuple(l))
if buckets[i].get(h):
buckets[i][h].append(j)
else:
buckets[i][h]=[j]
hashed[j][i]=h
return hashed,buckets
def query_processing(hashed, buckets,signature_mat,query,t):
'''This function is used to find the similar documents for a query within the same bucket
obtained from LSH.
The metric for search is Cosine Similarity
The various parameters are
hashed:It is the mapping using which docid was hashed into buckets
buckets: An array of dictionaries which holds the hashed vectors for each band
signature_mat: The Signature matrix obtained after minhashing
query: the query document number to be searched in the corpus
t: the threhold value for diciding similarity
This function returns a sorted list of documents on the basis of similarity with the query document
'''
c=[]
for b,h in enumerate(hashed[query]):
c.extend(buckets[b][h])
c=set(c)
sim_list=[]
for doc in c:
if doc==query:
continue
A = signature_mat[:,doc]
B = signature_mat[:,query]
sim = cosine_similarity(A,B)
if(sim>=t):
sim_list.append((round(sim, 3),doc))
sim_list.sort(reverse=True)
return sim_list
def main():
data = load('human_data.obj')
k = 5
num_docs_initially=len(data)
text=input("Enter sequence to be searched ")
data[num_docs_initially]=text
print("Time required for Shingling ")
start_time = time.time()
shingles = shingling(data , k)
print("--- %s seconds ---" % (time.time() - start_time))
print("Time required for Hashing ")
start_time = time.time()
number_of_hash_functions=100
func = hashfunc(number_of_hash_functions, len(data))
print("--- %s seconds ---" % (time.time() - start_time))
print("Time required for Signature Matrix ")
start_time = time.time()
signature_mat = signature_matrix(shingles, number_of_hash_functions , len(data), func)
print("--- %s seconds ---" % (time.time() - start_time))
b=5
rows=int(number_of_hash_functions/b)
threshold=0.9
start_time = time.time()
hashed, buckets=LSH(signature_mat,b,rows,len(data))
print("Banding Done")
val = len(data)-1
print("Time required for LSH ")
print("--- %s seconds ---" % (time.time() - start_time))
start_time = time.time()
print("Time required for query time ")
sim_list=query_processing(hashed, buckets,signature_mat,val,threshold)
print("--- %s seconds ---" % (time.time() - start_time))
print("Similar DNA Patterns")
for item in sim_list:
print("Pattern number " + str(item[1]) + " with cosine similarity of " +str(item[0]) )
print(data[item[1]])
#uncomment to run
main()