diff --git a/src/periodograms.jl b/src/periodograms.jl index 771378d5d..24e3c4539 100644 --- a/src/periodograms.jl +++ b/src/periodograms.jl @@ -530,11 +530,11 @@ end """ WelchConfig(s::AbstractArray; n=size(s, ndims(s))>>3, noverlap=n>>1, onesided=eltype(s)<:Real, nfft=nextfastfft(n), - fs=1, window=nothing) + fs=1, window) WelchConfig(nsamples, eltype; n=nsamples>>3, noverlap=n>>1, onesided=eltype<:Real, nfft=nextfastfft(n), - fs=1, window=nothing) + fs=1, window) Captures all configuration options for [`welch_pgram`](@ref) in a single struct (akin to [`MTConfig`](@ref)). When passed on the second argument of [`welch_pgram`](@ref), computes the @@ -559,7 +559,7 @@ julia> wconfig2 = WelchConfig(8, Float64; n=length(x), noverlap=0, window=hannin """ function WelchConfig(nsamples, ::Type{T}; n::Int=nsamples >> 3, noverlap::Int=n >> 1, onesided::Bool=T <: Real, nfft::Int=nextfastfft(n), - fs::Real=1, window::Union{Function,AbstractVector,Nothing}=nothing) where T + fs::Real=1, window::Union{Function,AbstractVector,Nothing}=welch_config_default_window()) where T onesided && T <: Complex && throw(ArgumentError("cannot compute one-sided FFT of a complex signal")) nfft >= n || throw(DomainError((; nfft, n), "nfft must be >= n")) @@ -579,6 +579,12 @@ function WelchConfig(data::AbstractArray; kwargs...) return WelchConfig(size(data, ndims(data)), eltype(data); kwargs...) end +function welch_config_default_window() + # deprecation added in 0.8, TODO for 0.9: replace with just `hanning` + Base.depwarn("Omitting `window` is deprecated; specify `window=nothing` for the old behaviour or `window=hanning` for the future default.", :WelchConfig) + return nothing +end + # Compute an estimate of the power spectral density of a signal s via Welch's # method. The resulting periodogram has length N and is computed with an overlap # region of length M. The method is detailed in "The Use of Fast Fourier Transform @@ -587,7 +593,7 @@ end # vol AU-15, pp 70-73, 1967. """ welch_pgram(s::AbstractVector, n=div(length(s), 8), noverlap=div(n, 2); onesided=eltype(s)<:Real, - nfft=nextfastfft(n), fs=1, window=nothing) + nfft=nextfastfft(n), fs=1, window) Computes the Welch periodogram of a signal `s` based on segments with `n` samples with overlap of `noverlap` samples, and returns a [`Periodogram`](@ref) object. @@ -601,24 +607,26 @@ See [`periodogram`](@ref) for description of optional keyword arguments. ```jldoctest julia> x = rect(10; padding=20); -julia> power(welch_pgram(x)) # 1-sided periodogram +julia> power(welch_pgram(x; window=nothing)) # 1-sided periodogram 2-element Vector{Float64}: 0.9523809523809523 0.04761904761904761 -julia> power(welch_pgram(x; onesided=false)) # 2-sided periodogram +julia> power(welch_pgram(x; onesided=false, window=nothing)) # 2-sided periodogram 3-element Vector{Float64}: 0.9523809523809523 0.023809523809523805 0.023809523809523805 -julia> power(welch_pgram(x, 5; onesided=false)) # 5 samples segment + +julia> power(welch_pgram(x, 5; onesided=false, window=hanning)) # 5 samples segment 5-element Vector{Float64}: - 1.488888888888889 - 0.04444444444444444 - 0.044444444444444446 - 0.044444444444444446 - 0.04444444444444444 + 0.8888888888888888 + 0.3807834425694269 + 0.008105446319461968 + 0.008105446319461968 + 0.3807834425694269 + ``` welch_pgram with ``x = sin(2π(100)t) + 2sin(2π(150)t) + noise `` ```jldoctest diff --git a/test/periodograms.jl b/test/periodograms.jl index 6463e85c3..0cce951db 100644 --- a/test/periodograms.jl +++ b/test/periodograms.jl @@ -106,31 +106,31 @@ end 4.0, 13.656854249492380] @test power(periodogram(data, onesided=false)) ≈ data0 - @test power(welch_pgram(data, length(data), 0, onesided=false)) ≈ data0 + @test power(welch_pgram(data, length(data), 0, onesided=false, window=nothing)) ≈ data0 @test power(spectrogram(data, length(data), 0, onesided=false)) ≈ data0 @test power(periodogram(complex.([data;], [data;]), onesided=false)) ≈ data0*2 - @test power(welch_pgram(complex.([data;], [data;]), length(data), 0, onesided=false)) ≈ data0*2 + @test power(welch_pgram(complex.([data;], [data;]), length(data), 0, onesided=false, window=nothing)) ≈ data0*2 @test power(spectrogram(complex.([data;], [data;]), length(data), 0, onesided=false)) ≈ data0*2 # # ~~~~~~~~ Tests with no window ~~~~~~~~~~~~~~~~~~~ # Matlab: p = pwelch(0:7, [1, 1], 0, 2, 1, 'twosided') expected = Float64[34.5, 0.5] - @test power(welch_pgram(data, 2, 0; onesided=false)) ≈ expected + @test power(welch_pgram(data, 2, 0; onesided=false, window=nothing)) ≈ expected @test mean(power(spectrogram(data, 2, 0; onesided=false)), dims=2) ≈ expected # Matlab: p = pwelch(0:7, [1, 1, 1], 0, 3, 1, 'twosided') expected = Float64[25.5, 1.0, 1.0] - @test power(welch_pgram(data, 3, 0; onesided=false)) ≈ expected + @test power(welch_pgram(data, 3, 0; onesided=false, window=nothing)) ≈ expected @test mean(power(spectrogram(data, 3, 0; onesided=false)), dims=2) ≈ expected # Matlab: p = pwelch(0:7, [1, 1, 1], 1, 3, 1, 'twosided') expected = Float64[35.0, 1.0, 1.0] - @test power(welch_pgram(data, 3, 1; onesided=false)) ≈ expected + @test power(welch_pgram(data, 3, 1; onesided=false, window=nothing)) ≈ expected @test mean(power(spectrogram(data, 3, 1; onesided=false)), dims=2) ≈ expected # Matlab: p = pwelch(0:7, [1, 1, 1, 1], 1, 4, 1, 'twosided') expected = Float64[45, 2, 1, 2] - @test power(welch_pgram(data, 4, 1; onesided=false)) ≈ expected + @test power(welch_pgram(data, 4, 1; onesided=false, window=nothing)) ≈ expected @test mean(power(spectrogram(data, 4, 1; onesided=false)), dims=2) ≈ expected # ~~~~~~~~~~~ This one tests periodogram ~~~~~~~~~~~~ @@ -189,7 +189,7 @@ end 2 ] @test power(periodogram(data; nfft=32)) ≈ expected - @test power(welch_pgram(data, length(data), 0; nfft=32)) ≈ expected + @test power(welch_pgram(data, length(data), 0; nfft=32, window=nothing)) ≈ expected @test power(spectrogram(data, length(data), 0; nfft=32)) ≈ expected # Padded periodogram with window