diff --git a/dev/index.html b/dev/index.html index 9ec8fd9b7..9ac4a402b 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,170 +1,170 @@ -Home · GeometryOps.jl

GeometryOps

Documentation for GeometryOps.

GeometryOps.AbstractBarycentricCoordinateMethodType
abstract type AbstractBarycentricCoordinateMethod

Abstract supertype for barycentric coordinate methods. The subtypes may serve as dispatch types, or may cache some information about the target polygon.

API

The following methods must be implemented for all subtypes:

  • barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})
  • barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V
  • barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V

The rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.

source
GeometryOps.DouglasPeuckerType
DouglasPeucker <: SimplifyAlg
+Home · GeometryOps.jl

GeometryOps

Documentation for GeometryOps.

GeometryOps.AbstractBarycentricCoordinateMethodType
abstract type AbstractBarycentricCoordinateMethod

Abstract supertype for barycentric coordinate methods. The subtypes may serve as dispatch types, or may cache some information about the target polygon.

API

The following methods must be implemented for all subtypes:

  • barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})
  • barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V
  • barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V

The rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.

source
GeometryOps.DouglasPeuckerType
DouglasPeucker <: SimplifyAlg
 
-DouglasPeucker(; number, ratio, tol)

Simplifies geometries by removing points below tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum distance a point will be from the line joining its neighboring points.

source
GeometryOps.MeanValueType
MeanValue() <: AbstractBarycentricCoordinateMethod

This method calculates barycentric coordinates using the mean value method.

References

source
GeometryOps.RadialDistanceType
RadialDistance <: SimplifyAlg

Simplifies geometries by removing points less than tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum distance between points.

source
GeometryOps.SimplifyAlgType
abstract type SimplifyAlg

Abstract type for simplification algorithms.

API

For now, the algorithm must hold the number, ratio and tol properties.

Simplification algorithm types can hook into the interface by implementing the _simplify(trait, alg, geom) methods for whichever traits are necessary.

source
GeometryOps.VisvalingamWhyattType
VisvalingamWhyatt <: SimplifyAlg
+DouglasPeucker(; number, ratio, tol)

Simplifies geometries by removing points below tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum distance a point will be from the line joining its neighboring points.

source
GeometryOps.MeanValueType
MeanValue() <: AbstractBarycentricCoordinateMethod

This method calculates barycentric coordinates using the mean value method.

References

source
GeometryOps.RadialDistanceType
RadialDistance <: SimplifyAlg

Simplifies geometries by removing points less than tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum distance between points.

source
GeometryOps.SimplifyAlgType
abstract type SimplifyAlg

Abstract type for simplification algorithms.

API

For now, the algorithm must hold the number, ratio and tol properties.

Simplification algorithm types can hook into the interface by implementing the _simplify(trait, alg, geom) methods for whichever traits are necessary.

source
GeometryOps.VisvalingamWhyattType
VisvalingamWhyatt <: SimplifyAlg
 
-VisvalingamWhyatt(; kw...)

Simplifies geometries by removing points below tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum area of a triangle made with a point and its neighboring points.

source
GeometryOps._detMethod
_det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}

Returns the determinant of the matrix formed by hcat'ing two points s1 and s2.

Specifically, this is:

s1[1] * s2[2] - s1[2] * s2[1]
source
GeometryOps._equals_curvesMethod
_equals_curves(c1, c2, closed_type1, closed_type2)::Bool

Two curves are equal if they share the same set of point, representing the same geometry. Both curves must must be composed of the same set of points, however, they do not have to wind in the same direction, or start on the same point to be equivalent. Inputs: c1 first geometry c2 second geometry closedtype1::Bool true if c1 is closed by definition (polygon, linear ring) closedtype2::Bool true if c2 is closed by definition (polygon, linear ring)

source
GeometryOps._intersection_pointMethod
_intersection_point(
+VisvalingamWhyatt(; kw...)

Simplifies geometries by removing points below tol distance from the line between its neighboring points.

Keywords

  • ratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.

  • number: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.

  • tol: the minimum area of a triangle made with a point and its neighboring points.

source
GeometryOps._detMethod
_det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}

Returns the determinant of the matrix formed by hcat'ing two points s1 and s2.

Specifically, this is:

s1[1] * s2[2] - s1[2] * s2[1]
source
GeometryOps._equals_curvesMethod
_equals_curves(c1, c2, closed_type1, closed_type2)::Bool

Two curves are equal if they share the same set of point, representing the same geometry. Both curves must must be composed of the same set of points, however, they do not have to wind in the same direction, or start on the same point to be equivalent. Inputs: c1 first geometry c2 second geometry closedtype1::Bool true if c1 is closed by definition (polygon, linear ring) closedtype2::Bool true if c2 is closed by definition (polygon, linear ring)

source
GeometryOps._intersection_pointMethod
_intersection_point(
     (a1, a2)::Tuple,
     (b1, b2)::Tuple,
-)

Calculates the intersection point between two lines if it exists, and as if the line extended to infinity, and the fractional component of each line from the initial end point to the intersection point. Inputs: (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line Outputs: (x, y)::Tuple{::Real, ::Real} intersection point (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection Both are ::Nothing if point doesn't exist!

Calculation derivation can be found here: https://stackoverflow.com/questions/563198/

source
GeometryOps._line_intersectsMethod
_line_intersects(
+)

Calculates the intersection point between two lines if it exists, and as if the line extended to infinity, and the fractional component of each line from the initial end point to the intersection point. Inputs: (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line Outputs: (x, y)::Tuple{::Real, ::Real} intersection point (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection Both are ::Nothing if point doesn't exist!

Calculation derivation can be found here: https://stackoverflow.com/questions/563198/

source
GeometryOps._line_intersectsMethod
_line_intersects(
     edges_a::Vector{Edge},
     edges_b::Vector{Edge}
-)::Bool

Returns true if there is at least one intersection between edges within the two lists of edges.

source
GeometryOps._overlapsMethod
_overlaps(
+)::Bool

Returns true if there is at least one intersection between edges within the two lists of edges.

source
GeometryOps._overlapsMethod
_overlaps(
     (a1, a2)::Edge,
     (b1, b2)::Edge
-)::Bool

If the edges overlap, meaning that they are colinear but each have one endpoint outside of the other edge, return true. Else false.

source
GeometryOps.applyMethod
apply(f, target::Type{<:AbstractTrait}, obj; crs)

Reconstruct a geometry or feature using the function f on the target trait.

f(target_geom) => x where x also has the target trait, or an equivalent.

The result is an functionally similar geometry with values depending on f

Flipped point the order in any feature or geometry, or iterables of either:

```juia import GeoInterface as GI import GeometryOps as GO geom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]), GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])

flipped_geom = GO.apply(GI.PointTrait, geom) do p (GI.y(p), GI.x(p)) end

source
GeometryOps.centroidMethod
centroid(trait, geom)::Tuple{T, T}

Returns the centroid of a polygon or multipolygon, which is calculated by weighting edges by their area component by convention.

source
GeometryOps.centroidMethod
centroid(geom)::Tuple{T, T}

Returns the centroid of a given line segment, linear ring, polygon, or mutlipolygon.

source
GeometryOps.centroidMethod
centroid(
+)::Bool

If the edges overlap, meaning that they are colinear but each have one endpoint outside of the other edge, return true. Else false.

source
GeometryOps.applyMethod
apply(f, target::Type{<:AbstractTrait}, obj; crs)

Reconstruct a geometry or feature using the function f on the target trait.

f(target_geom) => x where x also has the target trait, or an equivalent.

The result is an functionally similar geometry with values depending on f

Flipped point the order in any feature or geometry, or iterables of either:

```juia import GeoInterface as GI import GeometryOps as GO geom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]), GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])

flipped_geom = GO.apply(GI.PointTrait, geom) do p (GI.y(p), GI.x(p)) end

source
GeometryOps.centroidMethod
centroid(trait, geom)::Tuple{T, T}

Returns the centroid of a polygon or multipolygon, which is calculated by weighting edges by their area component by convention.

source
GeometryOps.centroidMethod
centroid(geom)::Tuple{T, T}

Returns the centroid of a given line segment, linear ring, polygon, or mutlipolygon.

source
GeometryOps.centroidMethod
centroid(
     trait::Union{GI.LineStringTrait, GI.LinearRingTrait},
     geom,
-)::Tuple{T, T}

Returns the centroid of a line string or linear ring, which is calculated by weighting line segments by their length by convention.

source
GeometryOps.centroid_and_areaMethod
centroid_and_area(
+)::Tuple{T, T}

Returns the centroid of a line string or linear ring, which is calculated by weighting line segments by their length by convention.

source
GeometryOps.centroid_and_areaMethod
centroid_and_area(
     ::Union{GI.LineStringTrait, GI.LinearRingTrait}, 
     geom,
-)::(::Tuple{T, T}, ::Real)

Returns the centroid and area of a given geom.

source
GeometryOps.centroid_and_areaMethod
centroid_and_area(
     ::Union{GI.LineStringTrait, GI.LinearRingTrait},
     geom,
-)::(::Tuple{T, T}, ::Real)

Returns the centroid and area of a given a line string or a linear ring. Note that this is only valid if the line segment or linear ring is closed.

source
GeometryOps.centroid_and_lengthMethod
centroid_and_length(geom)::(::Tuple{T, T}, ::Real)

Returns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.

source
GeometryOps.centroid_and_lengthMethod
centroid_and_length(geom)::(::Tuple{T, T}, ::Real)

Returns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.

source
GeometryOps.containsMethod
contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool

Return true if the second geometry is completely contained by the first geometry. The interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b) must not intersect the exterior of the primary (geometry a). contains returns the exact opposite result of within.

Examples

import GeometryOps as GO, GeoInterface as GI
+)::(::Tuple{T, T}, ::Real)

Returns the centroid and area of a given a line string or a linear ring. Note that this is only valid if the line segment or linear ring is closed.

source
GeometryOps.centroid_and_lengthMethod
centroid_and_length(geom)::(::Tuple{T, T}, ::Real)

Returns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.

source
GeometryOps.centroid_and_lengthMethod
centroid_and_length(geom)::(::Tuple{T, T}, ::Real)

Returns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.

source
GeometryOps.containsMethod
contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool

Return true if the second geometry is completely contained by the first geometry. The interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b) must not intersect the exterior of the primary (geometry a). contains returns the exact opposite result of within.

Examples

import GeometryOps as GO, GeoInterface as GI
 line = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])
 point = (1, 2)
 
 GO.contains(line, point)
 # output
-true
source
GeometryOps.crossesMethod
 crosses(geom1, geom2)::Bool

Return true if the intersection results in a geometry whose dimension is one less than the maximum dimension of the two source geometries and the intersection set is interior to both source geometries.

TODO: broken

Examples

import GeoInterface as GI, GeometryOps as GO
+true
source
GeometryOps.crossesMethod
 crosses(geom1, geom2)::Bool

Return true if the intersection results in a geometry whose dimension is one less than the maximum dimension of the two source geometries and the intersection set is interior to both source geometries.

TODO: broken

Examples

import GeoInterface as GI, GeometryOps as GO
 
 line1 = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])
 line2 = GI.LineString([(-2, 2), (4, 2)])
 
 GO.crosses(line1, line2)
 # output
-true
source
GeometryOps.disjointMethod
disjoint(geom1, geom2)::Bool

Return true if the intersection of the two geometries is an empty set.

Examples

import GeometryOps as GO, GeoInterface as GI
+true
source
GeometryOps.disjointMethod
disjoint(geom1, geom2)::Bool

Return true if the intersection of the two geometries is an empty set.

Examples

import GeometryOps as GO, GeoInterface as GI
 
 poly = GI.Polygon([[(-1, 2), (3, 2), (3, 3), (-1, 3), (-1, 2)]])
 point = (1, 1)
 GO.disjoint(poly, point)
 
 # output
-true
source
GeometryOps.equalsMethod
equals(trait_a, geom_a, trait_b, geom_b)

Two geometries which are not of the same type cannot be equal so they always return false.

source
GeometryOps.equalsMethod
equals(geom1, geom2)::Bool

Compare two Geometries return true if they are the same geometry.

Examples

import GeometryOps as GO, GeoInterface as GI
+true
source
GeometryOps.equalsMethod
equals(trait_a, geom_a, trait_b, geom_b)

Two geometries which are not of the same type cannot be equal so they always return false.

source
GeometryOps.equalsMethod
equals(geom1, geom2)::Bool

Compare two Geometries return true if they are the same geometry.

Examples

import GeometryOps as GO, GeoInterface as GI
 poly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])
 poly2 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])
 
 GO.equals(poly1, poly2)
 # output
-true
source
GeometryOps.equalsMethod
equals(
     ::GI.LinearRingTrait, l1,
     ::GI.LinearRingTrait, l2,
-)::Bool

Two linear rings are equal if they share the same set of points going along the curve. Note that rings are closed by definition, so they can have, but don't need, a repeated last point to be equal.

source
GeometryOps.equalsMethod
equals(
+)::Bool

Two linear rings are equal if they share the same set of points going along the curve. Note that rings are closed by definition, so they can have, but don't need, a repeated last point to be equal.

source
GeometryOps.equalsMethod
equals(
     ::GI.LinearRingTrait, l1,
     ::Union{GI.LineTrait, GI.LineStringTrait}, l2,
-)::Bool

A linear ring and a line/linestring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal

source
GeometryOps.equalsMethod
equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool

Two multipoints are equal if they share the same set of points.

source
GeometryOps.equalsMethod
equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool

A point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

Two multipolygons are equal if they share the same set of polygons.

source
GeometryOps.equalsMethod
equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

A polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.

source
GeometryOps.equalsMethod
equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool

A point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.

source
GeometryOps.equalsMethod
equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool

Two points are the same if they have the same x and y (and z if 3D) coordinates.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool

A polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

Two polygons are equal if they share the same exterior edge and holes.

source
GeometryOps.equalsMethod
equals(
+)::Bool

A linear ring and a line/linestring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal

source
GeometryOps.equalsMethod
equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool

Two multipoints are equal if they share the same set of points.

source
GeometryOps.equalsMethod
equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool

A point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

Two multipolygons are equal if they share the same set of polygons.

source
GeometryOps.equalsMethod
equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

A polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.

source
GeometryOps.equalsMethod
equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool

A point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.

source
GeometryOps.equalsMethod
equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool

Two points are the same if they have the same x and y (and z if 3D) coordinates.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool

A polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.

source
GeometryOps.equalsMethod
equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool

Two polygons are equal if they share the same exterior edge and holes.

source
GeometryOps.equalsMethod
equals(
     ::Union{GI.LineTrait, GI.LineStringTrait}, l1,
     ::GI.LinearRingTrait, l2,
-)::Bool

A line/linestring and a linear ring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal

source
GeometryOps.equalsMethod
equals(
+)::Bool

A line/linestring and a linear ring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal

source
GeometryOps.equalsMethod
equals(
     ::Union{GI.LineTrait, GI.LineStringTrait}, l1,
     ::Union{GI.LineTrait, GI.LineStringTrait}, l2,
-)::Bool

Two lines/linestrings are equal if they share the same set of points going along the curve. Note that lines/linestrings aren't closed by defintion.

source
GeometryOps.equalsMethod
equals(::T, geom_a, ::T, geom_b)::Bool

Two geometries of the same type, which don't have a equals function to dispatch off of should throw an error.

source
GeometryOps.flattenMethod
flatten(target::Type{<:GI.AbstractTrait}, geom)

Lazily flatten any geometry, feature or iterator of geometries or features so that objects with the specified trait are returned by the iterator.

source
GeometryOps.flipMethod
flip(obj)

Swap all of the x and y coordinates in obj, otherwise keeping the original structure (but not necessarily the original type).

source
GeometryOps.intersectionMethod
intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}

Return an intersection point between two geometries. Return nothing if none are found. Else, the return type depends on the input. It will be a union between: a point, a line, a linear ring, a polygon, or a multipolygon

Example

import GeoInterface as GI, GeometryOps as GO
+)::Bool

Two lines/linestrings are equal if they share the same set of points going along the curve. Note that lines/linestrings aren't closed by defintion.

source
GeometryOps.equalsMethod
equals(::T, geom_a, ::T, geom_b)::Bool

Two geometries of the same type, which don't have a equals function to dispatch off of should throw an error.

source
GeometryOps.flattenMethod
flatten(target::Type{<:GI.AbstractTrait}, geom)

Lazily flatten any geometry, feature or iterator of geometries or features so that objects with the specified trait are returned by the iterator.

source
GeometryOps.flipMethod
flip(obj)

Swap all of the x and y coordinates in obj, otherwise keeping the original structure (but not necessarily the original type).

source
GeometryOps.intersectionMethod
intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}

Return an intersection point between two geometries. Return nothing if none are found. Else, the return type depends on the input. It will be a union between: a point, a line, a linear ring, a polygon, or a multipolygon

Example

import GeoInterface as GI, GeometryOps as GO
 
 line1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])
 line2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])
 GO.intersection(line1, line2)
 
 # output
-(125.58375366067547, -14.83572303404496)
source
GeometryOps.intersectionMethod
intersection(
     ::GI.AbstractTrait, geom_a,
     ::GI.AbstractTrait, geom_b,
 )::Union{
     ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?
     ::Nothing
-}

Calculates the intersection between two line segments. Return nothing if there isn't one.

source
GeometryOps.intersectionMethod
intersection(
     ::GI.LineTrait, line_a,
     ::GI.LineTrait, line_b,
 )::Union{
     ::Tuple{::Real, ::Real},
     ::Nothing
-}

Calculates the intersection between two line segments. Return nothing if there isn't one.

source
GeometryOps.intersectionMethod
intersection(
     ::GI.PolygonTrait, poly_a,
     ::GI.PolygonTrait, poly_b,
 )::Union{
     ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?
     ::Nothing
-}

Calculates the intersection between two line segments. Return nothing if there isn't one.

source
GeometryOps.intersection_pointsMethod
intersection_points(
     geom_a,
     geom_b,
 )::Union{
     ::Vector{::Tuple{::Real, ::Real}},
     ::Nothing,
-}

Return a list of intersection points between two geometries. If no intersection point was possible given geometry extents, return nothing. If none are found, return an empty list.

source
GeometryOps.intersection_pointsMethod
intersection_points(
+}

Return a list of intersection points between two geometries. If no intersection point was possible given geometry extents, return nothing. If none are found, return an empty list.

source
GeometryOps.intersection_pointsMethod
intersection_points(
     ::GI.AbstractTrait, geom_a,
     ::GI.AbstractTrait, geom_b,
 )::Union{
     ::Vector{::Tuple{::Real, ::Real}},
     ::Nothing,
-}

Calculates the list of intersection points between two geometries, inlcuding line segments, line strings, linear rings, polygons, and multipolygons. If no intersection points were possible given geometry extents, return nothing. If none are found, return an empty list.

source
GeometryOps.intersectsMethod
intersects(geom1, geom2)::Bool

Check if two geometries intersect, returning true if so and false otherwise.

Example

import GeoInterface as GI, GeometryOps as GO
+}

Calculates the list of intersection points between two geometries, inlcuding line segments, line strings, linear rings, polygons, and multipolygons. If no intersection points were possible given geometry extents, return nothing. If none are found, return an empty list.

source
GeometryOps.intersectsMethod
intersects(geom1, geom2)::Bool

Check if two geometries intersect, returning true if so and false otherwise.

Example

import GeoInterface as GI, GeometryOps as GO
 
 line1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])
 line2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])
 GO.intersects(line1, line2)
 
 # output
-true
source
GeometryOps.intersectsMethod
intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool

Returns true if two geometries intersect with one another and false otherwise. For all geometries but lines, convert the geometry to a list of edges and cross compare the edges for intersections.

source
GeometryOps.intersectsMethod
intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool

Returns true if two line segments intersect and false otherwise.

source
GeometryOps.isclockwiseMethod
isclockwise(line::Union{LineString, Vector{Position}})::Bool

Take a ring and return true or false whether or not the ring is clockwise or counter-clockwise.

Example

import GeoInterface as GI, GeometryOps as GO
+true
source
GeometryOps.intersectsMethod
intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool

Returns true if two geometries intersect with one another and false otherwise. For all geometries but lines, convert the geometry to a list of edges and cross compare the edges for intersections.

source
GeometryOps.intersectsMethod
intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool

Returns true if two line segments intersect and false otherwise.

source
GeometryOps.isclockwiseMethod
isclockwise(line::Union{LineString, Vector{Position}})::Bool

Take a ring and return true or false whether or not the ring is clockwise or counter-clockwise.

Example

import GeoInterface as GI, GeometryOps as GO
 
 ring = GI.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)])
 GO.isclockwise(ring)
 
 # output
-true
source
GeometryOps.isconcaveMethod
isconcave(poly::Polygon)::Bool

Take a polygon and return true or false as to whether it is concave or not.

Examples

import GeoInterface as GI, GeometryOps as GO
+true
source
GeometryOps.isconcaveMethod
isconcave(poly::Polygon)::Bool

Take a polygon and return true or false as to whether it is concave or not.

Examples

import GeoInterface as GI, GeometryOps as GO
 
 poly = GI.Polygon([[(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]])
 GO.isconcave(poly)
 
 # output
-false
source
GeometryOps.overlapsMethod
overlaps(geom1, geom2)::Bool

Compare two Geometries of the same dimension and return true if their intersection set results in a geometry different from both but of the same dimension. This means one geometry cannot be within or contain the other and they cannot be equal

Examples

import GeometryOps as GO, GeoInterface as GI
+false
source
GeometryOps.overlapsMethod
overlaps(geom1, geom2)::Bool

Compare two Geometries of the same dimension and return true if their intersection set results in a geometry different from both but of the same dimension. This means one geometry cannot be within or contain the other and they cannot be equal

Examples

import GeometryOps as GO, GeoInterface as GI
 poly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])
 poly2 = GI.Polygon([[(1,1), (1,6), (6,6), (6,1), (1,1)]])
 
 GO.overlaps(poly1, poly2)
 # output
-true
source
GeometryOps.overlapsMethod
overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool

For any non-specified pair, all have non-matching dimensions, return false.

source
GeometryOps.overlapsMethod
overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool

If the lines overlap, meaning that they are colinear but each have one endpoint outside of the other line, return true. Else false.

source
GeometryOps.overlapsMethod
overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool

For any non-specified pair, all have non-matching dimensions, return false.

source
GeometryOps.overlapsMethod
overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool

If the lines overlap, meaning that they are colinear but each have one endpoint outside of the other line, return true. Else false.

source
GeometryOps.overlapsMethod
overlaps(
     ::GI.MultiPointTrait, points1,
     ::GI.MultiPointTrait, points2,
-)::Bool

If the multipoints overlap, meaning some, but not all, of the points within the multipoints are shared, return true.

source
GeometryOps.overlapsMethod
overlaps(
+)::Bool

If the multipoints overlap, meaning some, but not all, of the points within the multipoints are shared, return true.

source
GeometryOps.overlapsMethod
overlaps(
     ::GI.MultiPolygonTrait, polys1,
     ::GI.MultiPolygonTrait, polys2,
-)::Bool

Return true if at least one pair of polygons from multipolygons overlap. Else false.

source
GeometryOps.overlapsMethod
overlaps(
+)::Bool

Return true if at least one pair of polygons from multipolygons overlap. Else false.

source
GeometryOps.overlapsMethod
overlaps(
     ::GI.MultiPolygonTrait, polys1,
     ::GI.PolygonTrait, poly2,
-)::Bool

Return true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.

source
GeometryOps.overlapsMethod
overlaps(
+)::Bool

Return true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.

source
GeometryOps.overlapsMethod
overlaps(
     ::GI.PolygonTrait, poly1,
     ::GI.MultiPolygonTrait, polys2,
-)::Bool

Return true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.

source
GeometryOps.overlapsMethod
overlaps(
+)::Bool

Return true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.

source
GeometryOps.overlapsMethod
overlaps(
     trait_a::GI.PolygonTrait, poly_a,
     trait_b::GI.PolygonTrait, poly_b,
-)::Bool

If the two polygons intersect with one another, but are not equal, return true. Else false.

source
GeometryOps.overlapsMethod
overlaps(
+)::Bool

If the two polygons intersect with one another, but are not equal, return true. Else false.

source
GeometryOps.overlapsMethod
overlaps(
     ::Union{GI.LineStringTrait, GI.LinearRing}, line1,
     ::Union{GI.LineStringTrait, GI.LinearRing}, line2,
-)::Bool

If the curves overlap, meaning that at least one edge of each curve overlaps, return true. Else false.

source
GeometryOps.point_in_polygonMethod
point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool

Take a Point and a Polygon and determine if the point resides inside the polygon. The polygon can be convex or concave. The function accounts for holes.

Examples

import GeoInterface as GI, GeometryOps as GO
+)::Bool

If the curves overlap, meaning that at least one edge of each curve overlaps, return true. Else false.

source
GeometryOps.point_in_polygonMethod
point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool

Take a Point and a Polygon and determine if the point resides inside the polygon. The polygon can be convex or concave. The function accounts for holes.

Examples

import GeoInterface as GI, GeometryOps as GO
 
 point = (-77.0, 44.0)
 poly = GI.Polygon([[(-81, 41), (-81, 47), (-72, 47), (-72, 41), (-81, 41)]])
 GO.point_in_polygon(point, poly)
 
 # output
-true
source
GeometryOps.point_on_lineMethod
point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool

Return true if a point is on a line. Accept a optional parameter to ignore the start and end vertices of the linestring.

Examples

import GeoInterface as GI, GeometryOps as GO
+true
source
GeometryOps.point_on_lineMethod
point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool

Return true if a point is on a line. Accept a optional parameter to ignore the start and end vertices of the linestring.

Examples

import GeoInterface as GI, GeometryOps as GO
 
 point = (1, 1)
 line = GI.LineString([(0, 0), (3, 3), (4, 4)])
 GO.point_on_line(point, line)
 
 # output
-true
source
GeometryOps.polygon_to_lineMethod
polygon_to_line(poly::Polygon)

Converts a Polygon to LineString or MultiLineString

Examples

import GeometryOps as GO, GeoInterface as GI
+true
source
GeometryOps.polygon_to_lineMethod
polygon_to_line(poly::Polygon)

Converts a Polygon to LineString or MultiLineString

Examples

import GeometryOps as GO, GeoInterface as GI
 
 poly = GI.Polygon([[(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)]])
 GO.polygon_to_line(poly)
 # output
-GeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)
source
GeometryOps.polygonizeMethod
polygonize(A; minpoints=10)
-polygonize(xs, ys, A; minpoints=10)

Convert matrix A to polygons.

If xs and ys are passed in they are used as the pixel center points.

Keywords

  • minpoints: ignore polygons with less than minpoints points.
source
GeometryOps.rebuildMethod
rebuild(geom, child_geoms)

Rebuild a geometry from child geometries.

By default geometries will be rebuilt as a GeoInterface.Wrappers geometry, but rebuild can have methods added to it to dispatch on geometries from other packages and specify how to rebuild them.

(Maybe it should go into GeoInterface.jl)

source
GeometryOps.reconstructMethod
reconstruct(geom, components)

Reconstruct geom from an iterable of component objects that match its structure.

All objects in components must have the same GeoInterface.trait.

Ususally used in combination with flatten.

source
GeometryOps.reprojectMethod
reproject(geometry; source_crs, target_crs, transform, always_xy, time)
+GeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)
source
GeometryOps.polygonizeMethod
polygonize(A; minpoints=10)
+polygonize(xs, ys, A; minpoints=10)

Convert matrix A to polygons.

If xs and ys are passed in they are used as the pixel center points.

Keywords

  • minpoints: ignore polygons with less than minpoints points.
source
GeometryOps.rebuildMethod
rebuild(geom, child_geoms)

Rebuild a geometry from child geometries.

By default geometries will be rebuilt as a GeoInterface.Wrappers geometry, but rebuild can have methods added to it to dispatch on geometries from other packages and specify how to rebuild them.

(Maybe it should go into GeoInterface.jl)

source
GeometryOps.reconstructMethod
reconstruct(geom, components)

Reconstruct geom from an iterable of component objects that match its structure.

All objects in components must have the same GeoInterface.trait.

Ususally used in combination with flatten.

source
GeometryOps.reprojectMethod
reproject(geometry; source_crs, target_crs, transform, always_xy, time)
 reproject(geometry, source_crs, target_crs; always_xy, time)
-reproject(geometry, transform; always_xy, time)

Reproject any GeoInterface.jl compatible geometry from source_crs to target_crs.

The returned object will be constructed from GeoInterface.WrapperGeometry geometries, wrapping views of a Vector{Proj.Point{D}}, where D is the dimension.

Arguments

  • geometry: Any GeoInterface.jl compatible geometries.
  • source_crs: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.
  • target_crs: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.

If these a passed as keywords, transform will take priority. Without it target_crs is always needed, and source_crs is needed if it is not retreivable from the geometry with GeoInterface.crs(geometry).

Keywords

-always_xy: force x, y coordinate order, true by default. false will expect and return points in the crs coordinate order. -time: the time for the coordinates. Inf by default.

source
GeometryOps.signed_distanceMethod
signed_distance(geom, x::Real, y::Real)::Float64

Calculates the signed distance from the geometry geom to the point defined by (x, y). Points within geom have a negative distance, and points outside of geom have a positive distance.

If geom is a MultiPolygon, then this function returns the maximum distance to any of the polygons in geom.

source
GeometryOps.simplifyMethod
simplify(obj; kw...)
+reproject(geometry, transform; always_xy, time)

Reproject any GeoInterface.jl compatible geometry from source_crs to target_crs.

The returned object will be constructed from GeoInterface.WrapperGeometry geometries, wrapping views of a Vector{Proj.Point{D}}, where D is the dimension.

Arguments

  • geometry: Any GeoInterface.jl compatible geometries.
  • source_crs: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.
  • target_crs: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.

If these a passed as keywords, transform will take priority. Without it target_crs is always needed, and source_crs is needed if it is not retreivable from the geometry with GeoInterface.crs(geometry).

Keywords

-always_xy: force x, y coordinate order, true by default. false will expect and return points in the crs coordinate order. -time: the time for the coordinates. Inf by default.

source
GeometryOps.signed_distanceMethod
signed_distance(geom, x::Real, y::Real)::Float64

Calculates the signed distance from the geometry geom to the point defined by (x, y). Points within geom have a negative distance, and points outside of geom have a positive distance.

If geom is a MultiPolygon, then this function returns the maximum distance to any of the polygons in geom.

source
GeometryOps.simplifyMethod
simplify(obj; kw...)
 simplify(::SimplifyAlg, obj)

Simplify a geometry, feature, feature collection, or nested vectors or a table of these.

RadialDistance, DouglasPeucker, or VisvalingamWhyatt algorithms are available, listed in order of increasing quality but decreaseing performance.

PoinTrait and MultiPointTrait are returned unchanged.

The default behaviour is simplify(DouglasPeucker(; kw...), obj). Pass in other SimplifyAlg to use other algorithms.

Example

Simplify a polygon to have six points:

import GeoInterface as GI
 import GeometryOps as GO
 
@@ -194,5 +194,5 @@
 GI.npoint(simple)
 
 # output
-6
source
GeometryOps.t_valueMethod
t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)

Returns the "T-value" as described in Hormann's presentation [HormannPresentation] on how to calculate the mean-value coordinate.

Here, sᵢ is the vector from vertex vᵢ to the point, and rᵢ is the norm (length) of sᵢ. s must be Point and r must be real numbers.

\[tᵢ = \frac{\mathrm{det}\left(sᵢ, sᵢ₊₁\right)}{rᵢ * rᵢ₊₁ + sᵢ ⋅ sᵢ₊₁}\]

```

source
GeometryOps.to_edgesMethod
to_edges()

Convert any geometry or collection of geometries into a flat vector of Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}} edges.

source
GeometryOps.unwrapFunction
unwrap(target::Type{<:AbstractTrait}, obj)
-unwrap(f, target::Type{<:AbstractTrait}, obj)

Unwrap the geometry to vectors, down to the target trait.

If f is passed in it will be applied to the target geometries as they are found.

source
GeometryOps.weighted_meanMethod
weighted_mean(weight::Real, x1, x2)

Returns the weighted mean of x1 and x2, where weight is the weight of x1.

Specifically, calculates x1 * weight + x2 * (1 - weight).

Note

The idea for this method is that you can override this for custom types, like Color types, in extension modules.

source
  • HormannPresentationK. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.
+6
source
GeometryOps.t_valueMethod
t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)

Returns the "T-value" as described in Hormann's presentation [HormannPresentation] on how to calculate the mean-value coordinate.

Here, sᵢ is the vector from vertex vᵢ to the point, and rᵢ is the norm (length) of sᵢ. s must be Point and r must be real numbers.

\[tᵢ = \frac{\mathrm{det}\left(sᵢ, sᵢ₊₁\right)}{rᵢ * rᵢ₊₁ + sᵢ ⋅ sᵢ₊₁}\]

```

source
GeometryOps.to_edgesMethod
to_edges()

Convert any geometry or collection of geometries into a flat vector of Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}} edges.

source
GeometryOps.unwrapFunction
unwrap(target::Type{<:AbstractTrait}, obj)
+unwrap(f, target::Type{<:AbstractTrait}, obj)

Unwrap the geometry to vectors, down to the target trait.

If f is passed in it will be applied to the target geometries as they are found.

source
GeometryOps.weighted_meanMethod
weighted_mean(weight::Real, x1, x2)

Returns the weighted mean of x1 and x2, where weight is the weight of x1.

Specifically, calculates x1 * weight + x2 * (1 - weight).

Note

The idea for this method is that you can override this for custom types, like Color types, in extension modules.

source
  • HormannPresentationK. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.
diff --git a/dev/search/index.html b/dev/search/index.html index 229e222d3..016b44742 100644 --- a/dev/search/index.html +++ b/dev/search/index.html @@ -1,2 +1,2 @@ -Search · GeometryOps.jl

Loading search...

    +Search · GeometryOps.jl

    Loading search...

      diff --git a/dev/search_index.js b/dev/search_index.js index f07c4e299..afa0f3ab6 100644 --- a/dev/search_index.js +++ b/dev/search_index.js @@ -1,3 +1,3 @@ var documenterSearchIndex = {"docs": -[{"location":"source/GeometryOps/#GeometryOps.jl","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"","category":"section"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"module GeometryOps\n\nusing GeoInterface\nusing GeometryBasics\nimport Proj\nusing LinearAlgebra\nimport ExactPredicates\n\nusing GeoInterface.Extents: Extents\n\nconst GI = GeoInterface\nconst GB = GeometryBasics\n\nconst TuplePoint = Tuple{Float64,Float64}\nconst Edge = Tuple{TuplePoint,TuplePoint}\n\ninclude(\"primitives.jl\")\ninclude(\"utils.jl\")\n\ninclude(\"methods/bools.jl\")\ninclude(\"methods/signed_distance.jl\")\ninclude(\"methods/signed_area.jl\")\ninclude(\"methods/centroid.jl\")\ninclude(\"methods/intersects.jl\")\ninclude(\"methods/contains.jl\")\ninclude(\"methods/crosses.jl\")\ninclude(\"methods/disjoint.jl\")\ninclude(\"methods/overlaps.jl\")\ninclude(\"methods/within.jl\")\ninclude(\"methods/polygonize.jl\")\ninclude(\"methods/barycentric.jl\")\ninclude(\"methods/equals.jl\")\n\ninclude(\"transformations/flip.jl\")\ninclude(\"transformations/simplify.jl\")\ninclude(\"transformations/reproject.jl\")\ninclude(\"transformations/tuples.jl\")\n\nend","category":"page"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"","category":"page"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/primitives/#Primitive-functions","page":"Primitive functions","title":"Primitive functions","text":"","category":"section"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"This file mainly defines the apply function.","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"\"\"\"\n apply(f, target::Type{<:AbstractTrait}, obj; crs)\n\nReconstruct a geometry or feature using the function `f` on the `target` trait.\n\n`f(target_geom) => x` where `x` also has the `target` trait, or an equivalent.\n\nThe result is an functionally similar geometry with values depending on `f`","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Flipped point the order in any feature or geometry, or iterables of either:","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"```juia\nimport GeoInterface as GI\nimport GeometryOps as GO\ngeom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]),\n GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])\n\nflipped_geom = GO.apply(GI.PointTrait, geom) do p\n (GI.y(p), GI.x(p))\nend\n\"\"\"\napply(f, ::Type{Target}, geom; kw...) where Target = _apply(f, Target, geom; kw...)\n\n_apply(f, ::Type{Target}, geom; kw...) where Target =\n _apply(f, Target, GI.trait(geom), geom; kw...)\nfunction _apply(f, ::Type{Target}, ::Nothing, A::AbstractArray; threaded=false, kw...) where Target\n _maptasks(eachindex(A); threaded) do i\n _apply(f, Target, A[i]; kw...)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to _apply over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, ::Nothing, iterable; kw...) where Target =\n map(x -> _apply(f, Target, x; kw...), iterable)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, ::GI.FeatureCollectionTrait, fc;\n crs=GI.crs(fc), calc_extent=false, threaded=false\n) where Target\n features = _maptasks(1:GI.nfeature(fc); threaded) do i\n feature = GI.getfeature(fc, i)\n _apply(f, Target, feature; crs, calc_extent)::GI.Feature\n end\n if calc_extent\n extent = reduce(features; init=GI.extent(first(features))) do acc, f\n Extents.union(acc, Extents.extent(f))\n end\n return GI.FeatureCollection(features; crs, extent)\n else\n return GI.FeatureCollection(features; crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap features","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, ::GI.FeatureTrait, feature;\n crs=GI.crs(feature), calc_extent=false, threaded=false\n) where Target\n properties = GI.properties(feature)\n geometry = _apply(f, Target, GI.geometry(feature); crs, calc_extent)\n if calc_extent\n extent = GI.extent(geometry)\n return GI.Feature(geometry; properties, crs, extent)\n else\n return GI.Feature(geometry; properties, crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Reconstruct nested geometries","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, trait, geom;\n crs=GI.crs(geom), calc_extent=false, threaded=false\n)::(GI.geointerface_geomtype(trait)) where Target","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"TODO handle zero length...","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" geoms = _maptasks(1:GI.ngeom(geom); threaded) do i\n _apply(f, Target, GI.getgeom(geom, i); crs, calc_extent)\n end\n if calc_extent\n extent = GI.extent(first(geoms))\n for g in geoms\n extent = Extents.union(extent, GI.extent(g))\n end\n return rebuild(geom, geoms; crs, extent)\n else\n return rebuild(geom, geoms; crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, ::Trait, geom; crs=GI.crs(geom), kw...) where {Target,Trait<:Target} = f(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, trait::GI.PointTrait, geom; crs=nothing, kw...) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{GI.PointTrait}, trait::GI.PointTrait, geom; kw...) = f(geom)\n_apply(f, ::Type{GI.FeatureTrait}, ::GI.FeatureTrait, feature; kw...) = f(feature)\n_apply(f, ::Type{GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc; kw...) = f(fc)\n\n\"\"\"\n unwrap(target::Type{<:AbstractTrait}, obj)\n unwrap(f, target::Type{<:AbstractTrait}, obj)\n\nUnwrap the geometry to vectors, down to the target trait.\n\nIf `f` is passed in it will be applied to the target geometries\nas they are found.\n\"\"\"\nfunction unwrap end\nunwrap(target::Type, geom) = unwrap(identity, target, geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Add dispatch argument for trait","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, geom) = unwrap(f, target, GI.trait(geom), geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to unwrap over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, ::Nothing, iterable) =\n map(x -> unwrap(f, target, x), iterable)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, ::GI.FeatureCollectionTrait, fc) =\n map(x -> unwrap(f, target, x), GI.getfeature(fc))\nunwrap(f, target::Type, ::GI.FeatureTrait, feature) = unwrap(f, target, GI.geometry(feature))\nunwrap(f, target::Type, trait, geom) = map(g -> unwrap(f, target, g), GI.getgeom(geom))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, ::Type{Target}, ::Trait, geom) where {Target,Trait<:Target} = f(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, trait::GI.PointTrait, geom) =\n throw(ArgumentError(\"target $target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type{GI.PointTrait}, trait::GI.PointTrait, geom) = f(geom)\nunwrap(f, target::Type{GI.FeatureTrait}, ::GI.FeatureTrait, feature) = f(feature)\nunwrap(f, target::Type{GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc) = f(fc)\n\n\"\"\"\n flatten(target::Type{<:GI.AbstractTrait}, geom)\n\nLazily flatten any geometry, feature or iterator of geometries or features\nso that objects with the specified trait are returned by the iterator.\n\"\"\"\nflatten(::Type{Target}, geom) where {Target<:GI.AbstractTrait} = flatten(identity, Target, geom)\nflatten(f, ::Type{Target}, geom) where {Target<:GI.AbstractTrait} = _flatten(f, Target, geom)\n\n_flatten(f, ::Type{Target}, geom) where Target = _flatten(f, Target, GI.trait(geom), geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to flatten over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, ::Nothing, iterable) where Target =\n Iterators.flatten(Iterators.map(x -> _flatten(f, Target, x), iterable))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Flatten feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _flatten(f, ::Type{Target}, ::GI.FeatureCollectionTrait, fc) where Target\n Iterators.map(GI.getfeature(fc)) do feature\n _flatten(f, Target, feature)\n end |> Iterators.flatten\nend\n_flatten(f, ::Type{Target}, ::GI.FeatureTrait, feature) where Target =\n _flatten(f, Target, GI.geometry(feature))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, ::Trait, geom) where {Target,Trait<:Target} = (f(geom),)\n_flatten(f, ::Type{Target}, trait, geom) where Target =\n Iterators.flatten(Iterators.map(g -> _flatten(f, Target, g), GI.getgeom(geom)))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, trait::GI.PointTrait, geom) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{<:GI.PointTrait}, ::GI.PointTrait, geom) = (f(geom),)\n_flatten(f, ::Type{<:GI.FeatureTrait}, ::GI.FeatureTrait, feature) = (f(feature),)\n_flatten(f, ::Type{<:GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc) = (f(fc),)\n\n\n\"\"\"\n reconstruct(geom, components)\n\nReconstruct `geom` from an iterable of component objects that match its structure.\n\nAll objects in `components` must have the same `GeoInterface.trait`.\n\nUsusally used in combination with `flatten`.\n\"\"\"\nreconstruct(geom, components) = first(_reconstruct(geom, components))\n\n_reconstruct(geom, components) =\n _reconstruct(typeof(GI.trait(first(components))), geom, components, 1)\n_reconstruct(::Type{Target}, geom, components, iter) where Target =\n _reconstruct(Target, GI.trait(geom), geom, components, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to reconstruct over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _reconstruct(::Type{Target}, ::Nothing, iterable, components, iter) where Target\n vect = map(iterable) do x\n obj, iter = _reconstruct(Target, x, components, iter)\n obj\n end\n return vect, iter\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Reconstruct feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _reconstruct(::Type{Target}, ::GI.FeatureCollectionTrait, fc, components, iter) where Target\n features = map(GI.getfeature(fc)) do feature\n newfeature, iter = _reconstruct(Target, feature, components, iter)\n newfeature\n end\n return GI.FeatureCollection(features; crs=GI.crs(fc)), iter\nend\nfunction _reconstruct(::Type{Target}, ::GI.FeatureTrait, feature, components, iter) where Target\n geom, iter = _reconstruct(Target, GI.geometry(feature), components, iter)\n return GI.Feature(geom; properties=GI.properties(feature), crs=GI.crs(feature)), iter\nend\nfunction _reconstruct(::Type{Target}, trait, geom, components, iter) where Target\n geoms = map(GI.getgeom(geom)) do subgeom\n subgeom1, iter = _reconstruct(Target, GI.trait(subgeom), subgeom, components, iter)\n subgeom1\n end\n return rebuild(geom, geoms), iter\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{Target}, ::Trait, geom, components, iter) where {Target,Trait<:Target} =\n iterate(components, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{<:GI.PointTrait}, ::GI.PointTrait, geom, components, iter) = iterate(components, iter)\n_reconstruct(::Type{<:GI.FeatureTrait}, ::GI.FeatureTrait, feature, components, iter) = iterate(feature, iter)\n_reconstruct(::Type{<:GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc, components, iter) = iterate(fc, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{Target}, trait::GI.PointTrait, geom, components, iter) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))\n\n\nconst BasicsGeoms = Union{GB.AbstractGeometry,GB.AbstractFace,GB.AbstractPoint,GB.AbstractMesh,\n GB.AbstractPolygon,GB.LineString,GB.MultiPoint,GB.MultiLineString,GB.MultiPolygon,GB.Mesh}\n\n\"\"\"\n rebuild(geom, child_geoms)\n\nRebuild a geometry from child geometries.\n\nBy default geometries will be rebuilt as a GeoInterface.Wrappers\ngeometry, but `rebuild` can have methods added to it to dispatch\non geometries from other packages and specify how to rebuild them.\n\n(Maybe it should go into GeoInterface.jl)\n\"\"\"\nrebuild(geom, child_geoms; kw...) = rebuild(GI.trait(geom), geom, child_geoms; kw...)\nfunction rebuild(trait::GI.AbstractTrait, geom, child_geoms; crs=GI.crs(geom), extent=nothing)\n T = GI.geointerface_geomtype(trait)\n if GI.is3d(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"The Boolean type parameters here indicate 3d-ness and measure coordinate presence respectively.","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" return T{true,false}(child_geoms; crs, extent)\n else\n return T{false,false}(child_geoms; crs, extent)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"So that GeometryBasics geoms rebuild as themselves","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function rebuild(trait::GI.AbstractTrait, geom::BasicsGeoms, child_geoms; crs=nothing)\n GB.geointerface_geomtype(trait)(child_geoms)\nend\nfunction rebuild(trait::GI.AbstractTrait, geom::Union{GB.LineString,GB.MultiPoint}, child_geoms; crs=nothing)\n GB.geointerface_geomtype(trait)(GI.convert.(GB.Point, child_geoms))\nend\nfunction rebuild(trait::GI.PolygonTrait, geom::GB.Polygon, child_geoms; crs=nothing)\n Polygon(child_geoms[1], child_geoms[2:end])\nend\n\nusing Base.Threads: nthreads, @threads, @spawn","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Threading utility, modified Mason Protters threading PSA run f over ntasks, where f recieves an AbstractArray/range of linear indices","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _maptasks(f, taskrange; threaded=false)\n if threaded\n ntasks = length(taskrange)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Customize this as needed. More tasks have more overhead, but better load balancing","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" tasks_per_thread = 2\n chunk_size = max(1, ntasks ÷ (tasks_per_thread * nthreads()))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"partition the range into chunks","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" task_chunks = Iterators.partition(taskrange, chunk_size)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Map over the chunks","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" tasks = map(task_chunks) do chunk","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Spawn a task to process this chunk","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" @spawn begin","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Where we map f over the chunk indices","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" map(f, chunk)\n end\n end","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Finally we join the results into a new vector","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" return reduce(vcat, map(fetch, tasks))\n else\n return map(f, taskrange)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/polygonize/#Polygonizing-raster-data","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"export polygonize","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The methods in this file are able to convert a raster image into a set of polygons, by contour detection using a clockwise Moore neighborhood method.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The main entry point is the polygonize function.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"polygonize","category":"page"},{"location":"source/methods/polygonize/#Example","page":"Polygonizing raster data","title":"Example","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Here's a basic implementation, using the Makie.peaks() function. First, let's investigate the nature of the function:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"using Makie, GeometryOps\nn = 49\nxs, ys = LinRange(-3, 3, n), LinRange(-3, 3, n)\nzs = Makie.peaks(n)\nz_max_value = maximum(abs.(extrema(zs)))\nf, a, p = heatmap(\n xs, ys, zs;\n axis = (; aspect = DataAspect(), title = \"Exact function\")\n)\ncb = Colorbar(f[1, 2], p; label = \"Z-value\")\nf","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Now, we can use the polygonize function to convert the raster data into polygons.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"For this particular example, we chose a range of z-values between 0.8 and 3.2, which would provide two distinct polyogns with holes.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"polygons = polygonize(xs, ys, 0.8 .< zs .< 3.2)","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"This returns a list of GeometryBasics.Polygon, which can be plotted immediately, or wrapped directly in a GeometryBasics.MultiPolygon. Let's see how these look:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"f, a, p = poly(polygons; label = \"Polygonized polygons\", axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Finally, let's plot the Makie contour lines on top, to see how well the polygonization worked:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"contour!(a, zs; labels = true, levels = [0.8, 3.2], label = \"Contour lines\")\nf","category":"page"},{"location":"source/methods/polygonize/#Implementation","page":"Polygonizing raster data","title":"Implementation","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The implementation follows:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"\"\"\"\n polygonize(A; minpoints=10)\n polygonize(xs, ys, A; minpoints=10)\n\nConvert matrix `A` to polygons.\n\nIf `xs` and `ys` are passed in they are used as the pixel center points.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Keywords","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"- `minpoints`: ignore polygons with less than `minpoints` points.\n\"\"\"\npolygonize(A::AbstractMatrix; kw...) = polygonize(axes(A)..., A; kw...)\n\nfunction polygonize(xs, ys, A::AbstractMatrix; minpoints=10)\n # This function uses a lazy map to get contours.\n contours = Iterators.map(get_contours(A)) do contour\n poly = map(contour) do xy\n x, y = Tuple(xy)\n Point2f(x + first(xs) - 1, y + first(ys) - 1)\n end\n end\n # If we filter off the minimum points, then it's a hair more efficient\n # not to convert contours with length < missingpoints to polygons.\n if minpoints > 1\n contours = Iterators.filter(contours) do contour\n length(contour) > minpoints\n end\n return map(Polygon, contours)\n else\n return map(Polygon, contours)\n end\nend\n\n# rotate direction clockwise\nrot_clockwise(dir) = (dir) % 8 + 1\n# rotate direction counterclockwise\nrot_counterclockwise(dir) = (dir + 6) % 8 + 1\n\n# move from current pixel to next in given direction\nfunction move(pixel, image, dir, dir_delta)\n newp = pixel + dir_delta[dir]\n height, width = size(image)\n if (0 < newp[1] <= height) && (0 < newp[2] <= width)\n if image[newp] != 0\n return newp\n end\n end\n return CartesianIndex(0, 0)\nend\n\n# finds direction between two given pixels\nfunction from_to(from, to, dir_delta)\n delta = to - from\n return findall(x -> x == delta, dir_delta)[1]\nend\n\nfunction detect_move(image, p0, p2, nbd, border, done, dir_delta)\n dir = from_to(p0, p2, dir_delta)\n moved = rot_clockwise(dir)\n p1 = CartesianIndex(0, 0)\n while moved != dir ## 3.1\n newp = move(p0, image, moved, dir_delta)\n if newp[1] != 0\n p1 = newp\n break\n end\n moved = rot_clockwise(moved)\n end\n\n if p1 == CartesianIndex(0, 0)\n return\n end\n\n p2 = p1 ## 3.2\n p3 = p0 ## 3.2\n done .= false\n while true\n dir = from_to(p3, p2, dir_delta)\n moved = rot_counterclockwise(dir)\n p4 = CartesianIndex(0, 0)\n done .= false\n while true ## 3.3\n p4 = move(p3, image, moved, dir_delta)\n if p4[1] != 0\n break\n end\n done[moved] = true\n moved = rot_counterclockwise(moved)\n end\n push!(border, p3) ## 3.4\n if p3[1] == size(image, 1) || done[3]\n image[p3] = -nbd\n elseif image[p3] == 1\n image[p3] = nbd\n end\n\n if (p4 == p0 && p3 == p1) ## 3.5\n break\n end\n p2 = p3\n p3 = p4\n end\nend\n\n\"\"\"\n get_contours(A::AbstractMatrix)\n\nReturns contours as vectors of `CartesianIndex`.\n\"\"\"\nfunction get_contours(image::AbstractMatrix)\n nbd = 1\n lnbd = 1\n image = Float64.(image)\n contour_list = Vector{typeof(CartesianIndex[])}()\n done = [false, false, false, false, false, false, false, false]\n\n # Clockwise Moore neighborhood.\n dir_delta = (CartesianIndex(-1, 0), CartesianIndex(-1, 1), CartesianIndex(0, 1), CartesianIndex(1, 1),\n CartesianIndex(1, 0), CartesianIndex(1, -1), CartesianIndex(0, -1), CartesianIndex(-1, -1))\n\n height, width = size(image)\n\n for i = 1:height\n lnbd = 1\n for j = 1:width\n fji = image[i, j]\n is_outer = (image[i, j] == 1 && (j == 1 || image[i, j-1] == 0)) ## 1 (a)\n is_hole = (image[i, j] >= 1 && (j == width || image[i, j+1] == 0))\n\n if is_outer || is_hole\n # 2\n border = CartesianIndex[]\n from = CartesianIndex(i, j)\n\n if is_outer\n nbd += 1\n from -= CartesianIndex(0, 1)\n\n else\n nbd += 1\n if fji > 1\n lnbd = fji\n end\n from += CartesianIndex(0, 1)\n end\n\n p0 = CartesianIndex(i, j)\n detect_move(image, p0, from, nbd, border, done, dir_delta) ## 3\n if isempty(border) ##TODO\n push!(border, p0)\n image[p0] = -nbd\n end\n push!(contour_list, border)\n end\n if fji != 0 && fji != 1\n lnbd = abs(fji)\n end\n\n end\n end\n\n return contour_list\nend","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/reproject/#Geometry-reprojection","page":"Geometry reprojection","title":"Geometry reprojection","text":"","category":"section"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"export reproject","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This file is pretty simple - it simply reprojects a geometry pointwise from one CRS to another. It uses the Proj package for the transformation, but this could be moved to an extension if needed.","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This works using the apply functionality.","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"\"\"\"\n reproject(geometry; source_crs, target_crs, transform, always_xy, time)\n reproject(geometry, source_crs, target_crs; always_xy, time)\n reproject(geometry, transform; always_xy, time)\n\nReproject any GeoInterface.jl compatible `geometry` from `source_crs` to `target_crs`.\n\nThe returned object will be constructed from `GeoInterface.WrapperGeometry`\ngeometries, wrapping views of a `Vector{Proj.Point{D}}`, where `D` is the dimension.\n\n# Arguments\n\n- `geometry`: Any GeoInterface.jl compatible geometries.\n- `source_crs`: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.\n- `target_crs`: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.\n\nIf these a passed as keywords, `transform` will take priority.\nWithout it `target_crs` is always needed, and `source_crs` is\nneeded if it is not retreivable from the geometry with `GeoInterface.crs(geometry)`.\n\n# Keywords\n\n-`always_xy`: force x, y coordinate order, `true` by default.\n `false` will expect and return points in the crs coordinate order.\n-`time`: the time for the coordinates. `Inf` by default.\n\"\"\"\nfunction reproject(geom;\n source_crs=nothing, target_crs=nothing, transform=nothing, kw...\n)\n if isnothing(transform)\n if isnothing(source_crs)\n source_crs = if GI.trait(geom) isa Nothing && geom isa AbstractArray\n GeoInterface.crs(first(geom))\n else\n GeoInterface.crs(geom)\n end\n end","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"If its still nothing, error","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":" isnothing(source_crs) && throw(ArgumentError(\"geom has no crs attatched. Pass a `source_crs` keyword\"))","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"Otherwise reproject","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":" reproject(geom, source_crs, target_crs; kw...)\n else\n reproject(geom, transform; kw...)\n end\nend\nfunction reproject(geom, source_crs, target_crs;\n time=Inf,\n always_xy=true,\n transform=Proj.Transformation(Proj.CRS(source_crs), Proj.CRS(target_crs); always_xy),\n kw...\n)\n reproject(geom, transform; time, target_crs, kw...)\nend\nfunction reproject(geom, transform::Proj.Transformation; time=Inf, target_crs=nothing, kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; crs=target_crs, kw...) do p\n transform(GI.x(p), GI.y(p), GI.z(p))\n end\n else\n return apply(PointTrait, geom; crs=target_crs, kw...) do p\n transform(GI.x(p), GI.y(p))\n end\n end\nend","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/overlaps/#Overlaps","page":"Overlaps","title":"Overlaps","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"export overlaps","category":"page"},{"location":"source/methods/overlaps/#What-is-overlaps?","page":"Overlaps","title":"What is overlaps?","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"The overlaps function checks if two geometries overlap. Two geometries can only overlap if they have the same dimension, and if they overlap, but one is not contained, within, or equal to the other.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"Note that this means it is impossible for a single point to overlap with a single point and a line only overlaps with another line if only a section of each line is colinear.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\nl1 = GI.LineString([(0.0, 0.0), (0.0, 10.0)])\nl2 = GI.LineString([(0.0, -10.0), (0.0, 3.0)])\nf, a, p = lines(GI.getpoint(l1), color = :blue)\nscatter!(GI.getpoint(l1), color = :blue)\nlines!(GI.getpoint(l2), color = :orange)\nscatter!(GI.getpoint(l2), color = :orange)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"We can see that the two lines overlap in the plot:","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"overlap(l1, l2)","category":"page"},{"location":"source/methods/overlaps/#Implementation","page":"Overlaps","title":"Implementation","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"Note that that since only elements of the same dimension can overlap, any two geometries with traits that are of different dimensions autmoatically can return false.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"For geometries with the same trait dimension, we must make sure that they share a point, an edge, or area for points, lines, and polygons/multipolygons respectivly, without being contained.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"\"\"\"\n overlaps(geom1, geom2)::Bool\n\nCompare two Geometries of the same dimension and return true if their\nintersection set results in a geometry different from both but of the same\ndimension. This means one geometry cannot be within or contain the other and\nthey cannot be equal\n\n# Examples\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(1,1), (1,6), (6,6), (6,1), (1,1)]])\n\nGO.overlaps(poly1, poly2)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"output","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"true\n```\n\"\"\"\noverlaps(geom1, geom2)::Bool = overlaps(\n GI.trait(geom1),\n geom1,\n GI.trait(geom2),\n geom2,\n)\n\n\"\"\"\n overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool\n\nFor any non-specified pair, all have non-matching dimensions, return false.\n\"\"\"\noverlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2) = false\n\n\"\"\"\n overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n )::Bool\n\nIf the multipoints overlap, meaning some, but not all, of the points within the\nmultipoints are shared, return true.\n\"\"\"\nfunction overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n)\n one_diff = false # assume that all the points are the same\n one_same = false # assume that all points are different\n for p1 in GI.getpoint(points1)\n match_point = false\n for p2 in GI.getpoint(points2)\n if equals(p1, p2) # Point is shared\n one_same = true\n match_point = true\n break\n end\n end\n one_diff |= !match_point # Point isn't shared\n one_same && one_diff && return true\n end\n return false\nend\n\n\"\"\"\n overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool\n\nIf the lines overlap, meaning that they are colinear but each have one endpoint\noutside of the other line, return true. Else false.\n\"\"\"\noverlaps(::GI.LineTrait, line1, ::GI.LineTrait, line) =\n _overlaps((a1, a2), (b1, b2))\n\n\"\"\"\n overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n )::Bool\n\nIf the curves overlap, meaning that at least one edge of each curve overlaps,\nreturn true. Else false.\n\"\"\"\nfunction overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n)\n edges_a, edges_b = map(sort! ∘ to_edges, (line1, line2))\n for edge_a in edges_a\n for edge_b in edges_b\n _overlaps(edge_a, edge_b) && return true\n end\n end\n return false\nend\n\n\"\"\"\n overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n )::Bool\n\nIf the two polygons intersect with one another, but are not equal, return true.\nElse false.\n\"\"\"\nfunction overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n)\n edges_a, edges_b = map(sort! ∘ to_edges, (poly_a, poly_b))\n return _line_intersects(edges_a, edges_b) &&\n !equals(trait_a, poly_a, trait_b, poly_b)\nend\n\n\"\"\"\n overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n )::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the\nmultipolygon. Else false.\n\"\"\"\nfunction overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n)\n for poly2 in GI.getgeom(polys2)\n overlaps(poly1, poly2) && return true\n end\n return false\nend\n\n\"\"\"\n overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.PolygonTrait, poly2,\n )::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the\nmultipolygon. Else false.\n\"\"\"\noverlaps(trait1::GI.MultiPolygonTrait, polys1, trait2::GI.PolygonTrait, poly2) =\n overlaps(trait2, poly2, trait1, polys1)\n\n\"\"\"\n overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n )::Bool\n\nReturn true if at least one pair of polygons from multipolygons overlap. Else\nfalse.\n\"\"\"\nfunction overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n)\n for poly1 in GI.getgeom(polys1)\n overlaps(poly1, polys2) && return true\n end\n return false\nend\n\n\"\"\"\n _overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n )::Bool\n\nIf the edges overlap, meaning that they are colinear but each have one endpoint\noutside of the other edge, return true. Else false.\n\"\"\"\nfunction _overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"meets in more than one point","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":" on_top = ExactPredicates.meet(a1, a2, b1, b2) == 0","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"one end point is outside of other segment","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":" a_fully_within = point_on_seg(a1, b1, b2) && point_on_seg(a2, b1, b2)\n b_fully_within = point_on_seg(b1, a1, a2) && point_on_seg(b2, a1, a2)\n return on_top && (!a_fully_within && !b_fully_within)\nend","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/barycentric/#Barycentric-coordinates","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"export barycentric_coordinates, barycentric_coordinates!, barycentric_interpolate\nexport MeanValue","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Generalized barycentric coordinates are a generalization of barycentric coordinates, which are typically used in triangles, to arbitrary polygons.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"They provide a way to express a point within a polygon as a weighted average of the polygon's vertices.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"In the case of a triangle, barycentric coordinates are a set of three numbers (λ_1 λ_2 λ_3), each associated with a vertex of the triangle. Any point within the triangle can be expressed as a weighted average of the vertices, where the weights are the barycentric coordinates. The weights sum to 1, and each is non-negative.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"For a polygon with n vertices, generalized barycentric coordinates are a set of n numbers (λ_1 λ_2 λ_n), each associated with a vertex of the polygon. Any point within the polygon can be expressed as a weighted average of the vertices, where the weights are the generalized barycentric coordinates.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"As with the triangle case, the weights sum to 1, and each is non-negative.","category":"page"},{"location":"source/methods/barycentric/#Example","page":"Barycentric coordinates","title":"Example","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This example was taken from this page of CGAL's documentation.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"using GeometryOps, Makie\nusing GeometryOps.GeometryBasics\n# Define a polygon\npolygon_points = Point3f[\n(0.03, 0.05, 0.00), (0.07, 0.04, 0.02), (0.10, 0.04, 0.04),\n(0.14, 0.04, 0.06), (0.17, 0.07, 0.08), (0.20, 0.09, 0.10),\n(0.22, 0.11, 0.12), (0.25, 0.11, 0.14), (0.27, 0.10, 0.16),\n(0.30, 0.07, 0.18), (0.31, 0.04, 0.20), (0.34, 0.03, 0.22),\n(0.37, 0.02, 0.24), (0.40, 0.03, 0.26), (0.42, 0.04, 0.28),\n(0.44, 0.07, 0.30), (0.45, 0.10, 0.32), (0.46, 0.13, 0.34),\n(0.46, 0.19, 0.36), (0.47, 0.26, 0.38), (0.47, 0.31, 0.40),\n(0.47, 0.35, 0.42), (0.45, 0.37, 0.44), (0.41, 0.38, 0.46),\n(0.38, 0.37, 0.48), (0.35, 0.36, 0.50), (0.32, 0.35, 0.52),\n(0.30, 0.37, 0.54), (0.28, 0.39, 0.56), (0.25, 0.40, 0.58),\n(0.23, 0.39, 0.60), (0.21, 0.37, 0.62), (0.21, 0.34, 0.64),\n(0.23, 0.32, 0.66), (0.24, 0.29, 0.68), (0.27, 0.24, 0.70),\n(0.29, 0.21, 0.72), (0.29, 0.18, 0.74), (0.26, 0.16, 0.76),\n(0.24, 0.17, 0.78), (0.23, 0.19, 0.80), (0.24, 0.22, 0.82),\n(0.24, 0.25, 0.84), (0.21, 0.26, 0.86), (0.17, 0.26, 0.88),\n(0.12, 0.24, 0.90), (0.07, 0.20, 0.92), (0.03, 0.15, 0.94),\n(0.01, 0.10, 0.97), (0.02, 0.07, 1.00)]\n# Plot it!\n# First, we'll plot the polygon using Makie's rendering:\nf, a1, p1 = poly(\n polygon_points;\n color = last.(polygon_points), colormap = cgrad(:jet, 18; categorical = true),\n axis = (;\n aspect = DataAspect(), title = \"Makie mesh based polygon rendering\", subtitle = \"CairoMakie\"\n ),\n figure = (; resolution = (800, 400),)\n)\n\nMakie.update_state_before_display!(f) # We have to call this explicitly, to get the axis limits correct\n# Now that we've plotted the first polygon,\n# we can render it using barycentric coordinates.\na1_bbox = a1.finallimits[] # First we get the extent of the axis\next = GeometryOps.GI.Extent(NamedTuple{(:X, :Y)}(zip(minimum(a1_bbox), maximum(a1_bbox))))\n\na2, p2box = poly( # Now, we plot a cropping rectangle around the axis so we only show the polygon\n f[1, 2],\n GeometryOps.GeometryBasics.Polygon( # This is a rectangle with an internal hole shaped like the polygon.\n Point2f[(ext.X[1], ext.Y[1]), (ext.X[2], ext.Y[1]), (ext.X[2], ext.Y[2]), (ext.X[1], ext.Y[2]), (ext.X[1], ext.Y[1])],\n [reverse(Point2f.(polygon_points))]\n );\n color = :white, xautolimits = false, yautolimits = false,\n axis = (;\n aspect = DataAspect(), title = \"Barycentric coordinate based polygon rendering\", subtitle = \"GeometryOps\",\n limits = (ext.X, ext.Y),\n )\n)\nhidedecorations!(a1)\nhidedecorations!(a2)\ncb = Colorbar(f[2, :], p1.plots[1]; vertical = false, flipaxis = true)\n# Finally, we perform barycentric interpolation on a grid,\nxrange = LinRange(ext.X..., widths(a2.scene.px_area[])[1] * 4) # 2 rendered pixels per \"physical\" pixel\nyrange = LinRange(ext.Y..., widths(a2.scene.px_area[])[2] * 4) # 2 rendered pixels per \"physical\" pixel\n@time mean_values = barycentric_interpolate.(\n (MeanValue(),), # The barycentric coordinate algorithm (MeanValue is the only one for now)\n (Point2f.(polygon_points),), # The polygon points as `Point2f`\n (last.(polygon_points,),), # The values per polygon point - can be anything which supports addition and division\n Point2f.(xrange, yrange') # The points at which to interpolate\n)\n# and render!\nhm = heatmap!(\n a2, xrange, yrange, mean_values;\n colormap = p1.colormap, # Use the same colormap as the original polygon plot\n colorrange = p1.plots[1].colorrange[], # Access the rendered mesh plot's colorrange directly\n transformation = (; translation = Vec3f(0,0,-1)), # This gets the heatmap to render \"behind\" the previously plotted polygon\n xautolimits = false, yautolimits = false\n)\nf","category":"page"},{"location":"source/methods/barycentric/#Barycentric-coordinate-API","page":"Barycentric coordinates","title":"Barycentric-coordinate API","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"In some cases, we actually want barycentric interpolation, and have no interest in the coordinates themselves.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"However, the coordinates can be useful for debugging, and when performing 3D rendering, multiple barycentric values (depth, uv) are needed for depth buffering.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"const _VecTypes = Union{Tuple{Vararg{T, N}}, GeometryBasics.StaticArraysCore.StaticArray{Tuple{N}, T, 1}} where {N, T}\n\n\"\"\"\n abstract type AbstractBarycentricCoordinateMethod\n\nAbstract supertype for barycentric coordinate methods.\nThe subtypes may serve as dispatch types, or may cache\nsome information about the target polygon.\n\n# API\nThe following methods must be implemented for all subtypes:\n- `barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})`\n- `barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V`\n- `barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V`\nThe rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.\n\"\"\"\nabstract type AbstractBarycentricCoordinateMethod end\n\n\nBase.@propagate_inbounds function barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real}\n @boundscheck @assert length(λs) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n\n @error(\"Not implemented yet for method $(method).\")\nend\nBase.@propagate_inbounds barycentric_coordinates!(λs::Vector{<: Real}, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real} = barycentric_coordinates!(λs, MeanValue(), polypoints, point)\n\nBase.@propagate_inbounds function barycentric_coordinates(method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real}\n λs = zeros(promote_type(T1, T2), length(polypoints))\n barycentric_coordinates!(λs, method, polypoints, point)\n return λs\nend\nBase.@propagate_inbounds barycentric_coordinates(polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real} = barycentric_coordinates(MeanValue(), polypoints, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n λs = barycentric_coordinates(method, polypoints, point)\n return sum(λs .* values)\nend\nBase.@propagate_inbounds barycentric_interpolate(polypoints::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), polypoints, values, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(exterior) + isempty(interiors) ? 0 : sum(length.(interiors))\n @boundscheck @assert length(exterior) >= 3\n λs = barycentric_coordinates(method, exterior, interiors, point)\n return sum(λs .* values)\nend\nBase.@propagate_inbounds barycentric_interpolate(exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), exterior, interiors, values, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon::Polygon{2, T1}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V}\n exterior = decompose(Point{2, promote_type(T1, T2)}, polygon.exterior)\n if isempty(polygon.interiors)\n @boundscheck @assert length(values) == length(exterior)\n return barycentric_interpolate(method, exterior, values, point)\n else # the poly has interiors\n interiors = reverse.(decompose.((Point{2, promote_type(T1, T2)},), polygon.interiors))\n @boundscheck @assert length(values) == length(exterior) + sum(length.(interiors))\n return barycentric_interpolate(method, exterior, interiors, values, point)\n end\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon::Polygon{2, T1}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), polygon, values, point)","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"3D polygons are considered to have their vertices in the XY plane, and the Z coordinate must represent some value. This is to say that the Z coordinate is interpreted as an M coordinate.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Base.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon::Polygon{3, T1}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real}\n exterior_point3s = decompose(Point{3, promote_type(T1, T2)}, polygon.exterior)\n exterior_values = getindex.(exterior_point3s, 3)\n exterior_points = Point2f.(exterior_point3s)\n if isempty(polygon.interiors)\n return barycentric_interpolate(method, exterior_points, exterior_values, point)\n else # the poly has interiors\n interior_point3s = decompose.((Point{3, promote_type(T1, T2)},), polygon.interiors)\n interior_values = collect(Iterators.flatten((getindex.(point3s, 3) for point3s in interior_point3s)))\n interior_points = map(point3s -> Point2f.(point3s), interior_point3s)\n return barycentric_interpolate(method, exterior_points, interior_points, vcat(exterior_values, interior_values), point)\n end\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon::Polygon{3, T1}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real} = barycentric_interpolate(MeanValue(), polygon, point)","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This method is the one which supports GeoInterface.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Base.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon, values::AbstractVector{V}, point) where V\n @assert GeoInterface.trait(polygon) isa GeoInterface.PolygonTrait\n @assert GeoInterface.trait(point) isa GeoInterface.PointTrait\n passable_polygon = GeoInterface.convert(GeometryBasics, polygon)\n @assert passable_polygon isa GeometryBasics.Polygon \"The polygon was converted to a $(typeof(passable_polygon)), which is not a `GeometryBasics.Polygon`.\"\n # first_poly_point = GeoInterface.getpoint(GeoInterface.getexterior(polygon))\n passable_point = GeoInterface.convert(GeometryBasics, point)\n return barycentric_interpolate(method, passable_polygon, Point2(passable_point))\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon, values::AbstractVector{V}, point) where V = barycentric_interpolate(MeanValue(), polygon, values, point)\n\n\"\"\"\n weighted_mean(weight::Real, x1, x2)\n\nReturns the weighted mean of `x1` and `x2`, where `weight` is the weight of `x1`.\n\nSpecifically, calculates `x1 * weight + x2 * (1 - weight)`.\n\n!!! note\n The idea for this method is that you can override this for custom types, like Color types, in extension modules.\n\"\"\"\nfunction weighted_mean(weight::WT, x1, x2) where {WT <: Real}\n return muladd(x1, weight, x2 * (oneunit(WT) - weight))\nend\n\n\n\"\"\"\n MeanValue() <: AbstractBarycentricCoordinateMethod\n\nThis method calculates barycentric coordinates using the mean value method.\n\n# References\n\n\"\"\"\nstruct MeanValue <: AbstractBarycentricCoordinateMethod\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Before we go to the actual implementation, there are some quick and simple utility functions that we need to implement. These are mainly for convenience and code brevity.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"\"\"\"\n _det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}\n\nReturns the determinant of the matrix formed by `hcat`'ing two points `s1` and `s2`.\n\nSpecifically, this is:\n```julia\ns1[1] * s2[2] - s1[2] * s2[1]\n```\n\"\"\"\nfunction _det(s1::_VecTypes{2, T1}, s2::_VecTypes{2, T2}) where {T1 <: Real, T2 <: Real}\n return s1[1] * s2[2] - s1[2] * s2[1]\nend\n\n\"\"\"\n t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)\n\nReturns the \"T-value\" as described in Hormann's presentation [^HormannPresentation] on how to calculate\nthe mean-value coordinate.\n\nHere, `sᵢ` is the vector from vertex `vᵢ` to the point, and `rᵢ` is the norm (length) of `sᵢ`.\n`s` must be `Point` and `r` must be real numbers.\n\n```math\ntᵢ = \\\\frac{\\\\mathrm{det}\\\\left(sᵢ, sᵢ₊₁\\\\right)}{rᵢ * rᵢ₊₁ + sᵢ ⋅ sᵢ₊₁}\n```\n\n[^HormannPresentation]: K. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.\n```\n\n\"\"\"\nfunction t_value(sᵢ::_VecTypes{N, T1}, sᵢ₊₁::_VecTypes{N, T1}, rᵢ::T2, rᵢ₊₁::T2) where {N, T1 <: Real, T2 <: Real}\n return _det(sᵢ, sᵢ₊₁) / muladd(rᵢ, rᵢ₊₁, dot(sᵢ, sᵢ₊₁))\nend\n\n\nfunction barycentric_coordinates!(λs::Vector{<: Real}, ::MeanValue, polypoints::AbstractVector{<: Point{2, T1}}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real}\n @boundscheck @assert length(λs) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n n_points = length(polypoints)\n # Initialize counters and register variables\n # Points - these are actually vectors from point to vertices\n # polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n # radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Perform the first computation explicitly, so we can cut down on\n # a mod in the loop.\n λs[1] = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n # Loop through the rest of the vertices, compute, store in λs\n for i in 2:n_points\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, n_points)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n λs[i] = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n end\n # Normalize λs to the 1-norm (sum=1)\n λs ./= sum(λs)\n return λs\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_coordinates(::MeanValue, polypoints::NTuple{N, Point{2, T2}}, point::Point{2, T1},) where {N, T1, T2}\n ## Initialize counters and register variables\n ## Points - these are actually vectors from point to vertices\n ## polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n ## radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n λ₁ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n λs = ntuple(N) do i\n if i == 1\n return λ₁\n end\n ## Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, N)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n return (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n end\n\n ∑λ = sum(λs)\n\n return ntuple(N) do i\n λs[i] / ∑λ\n end\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This performs an inplace accumulation, using less memory and is faster. That's particularly good if you are using a polygon with a large number of points...","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_interpolate(::MeanValue, polypoints::AbstractVector{<: Point{2, T1}}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n\n n_points = length(polypoints)\n # Initialize counters and register variables\n # Points - these are actually vectors from point to vertices\n # polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n # radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Now, we set the interpolated value to the first point's value, multiplied\n # by the weight computed relative to the first point in the polygon.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n wₜₒₜ = wᵢ\n interpolated_value = values[begin] * wᵢ\n for i in 2:n_points\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, n_points)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Now, we calculate the weight:\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n # perform a weighted sum with the interpolated value:\n interpolated_value += values[i] * wᵢ\n # and add the weight to the total weight accumulator.\n wₜₒₜ += wᵢ\n end\n # Return the normalized interpolated value.\n return interpolated_value / wₜₒₜ\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"When you have holes, then you have to be careful about the order you iterate around points.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Specifically, you have to iterate around each linear ring separately and ensure there are no degenerate/repeated points at the start and end!","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_interpolate(::MeanValue, exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: AbstractVector{<: Point{N, T1}}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n # @boundscheck @assert length(values) == (length(exterior) + isempty(interiors) ? 0 : sum(length.(interiors)))\n # @boundscheck @assert length(exterior) >= 3\n\n current_index = 1\n l_exterior = length(exterior)\n\n sᵢ₋₁ = exterior[end] - point\n sᵢ = exterior[begin] - point\n sᵢ₊₁ = exterior[begin+1] - point\n rᵢ₋₁ = norm(sᵢ₋₁) # radius / Euclidean distance between points.\n rᵢ = norm(sᵢ ) # radius / Euclidean distance between points.\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Now, we set the interpolated value to the first point's value, multiplied by the weight computed relative to the first point in the polygon.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n wₜₒₜ = wᵢ\n interpolated_value = values[begin] * wᵢ\n\n for i in 2:l_exterior","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Increment counters + set variables","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = exterior[mod1(i+1, l_exterior)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Updates - first the interpolated value,","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" interpolated_value += values[current_index] * wᵢ","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"then the accumulators for total weight and current index.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" wₜₒₜ += wᵢ\n current_index += 1\n\n end\n for hole in interiors\n l_hole = length(hole)\n sᵢ₋₁ = hole[end] - point\n sᵢ = hole[begin] - point\n sᵢ₊₁ = hole[begin+1] - point\n rᵢ₋₁ = norm(sᵢ₋₁) # radius / Euclidean distance between points.\n rᵢ = norm(sᵢ ) # radius / Euclidean distance between points.\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n # Now, we set the interpolated value to the first point's value, multiplied\n # by the weight computed relative to the first point in the polygon.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n\n interpolated_value += values[current_index] * wᵢ\n\n wₜₒₜ += wᵢ\n current_index += 1\n\n for i in 2:l_hole\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = hole[mod1(i+1, l_hole)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) ## radius / Euclidean distance between points.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n interpolated_value += values[current_index] * wᵢ\n wₜₒₜ += wᵢ\n current_index += 1\n end\n end\n return interpolated_value / wₜₒₜ\n\nend\n\nstruct Wachspress <: AbstractBarycentricCoordinateMethod\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/disjoint/#Disjointness-checks","page":"Disjointness checks","title":"Disjointness checks","text":"","category":"section"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"\"\"\"\n disjoint(geom1, geom2)::Bool\n\nReturn `true` if the intersection of the two geometries is an empty set.","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"Examples","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-1, 2), (3, 2), (3, 3), (-1, 3), (-1, 2)]])\npoint = (1, 1)\nGO.disjoint(poly, point)","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"output","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"true\n```\n\"\"\"\ndisjoint(g1, g2)::Bool = disjoint(trait(g1), g1, trait(g2), g2)\ndisjoint(::FeatureTrait, g1, ::Any, g2)::Bool = disjoint(GI.geometry(g1), g2)\ndisjoint(::Any, g1, t2::FeatureTrait, g2)::Bool = disjoint(g1, geometry(g2))\ndisjoint(::PointTrait, g1, ::PointTrait, g2)::Bool = !point_equals_point(g1, g2)\ndisjoint(::PointTrait, g1, ::LineStringTrait, g2)::Bool = !point_on_line(g1, g2)\ndisjoint(::PointTrait, g1, ::PolygonTrait, g2)::Bool = !point_in_polygon(g1, g2)\ndisjoint(::LineStringTrait, g1, ::PointTrait, g2)::Bool = !point_on_line(g2, g1)\ndisjoint(::LineStringTrait, g1, ::LineStringTrait, g2)::Bool = !line_on_line(g1, g2)\ndisjoint(::LineStringTrait, g1, ::PolygonTrait, g2)::Bool = !line_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::PointTrait, g2)::Bool = !point_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::LineStringTrait, g2)::Bool = !line_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::PolygonTrait, g2)::Bool = polygon_disjoint(g2, g1)\n\nfunction polygon_disjoint(poly1, poly2)\n for point in GI.getpoint(poly1)\n point_in_polygon(point, poly2) && return false\n end\n for point in GI.getpoint(poly2)\n point_in_polygon(point, poly1) && return false\n end\n return !intersects(poly1, poly2)\nend","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/crosses/#Crossing-checks","page":"Crossing checks","title":"Crossing checks","text":"","category":"section"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"\"\"\"\n crosses(geom1, geom2)::Bool\n\nReturn `true` if the intersection results in a geometry whose dimension is one less than\nthe maximum dimension of the two source geometries and the intersection set is interior to\nboth source geometries.\n\nTODO: broken\n\n# Examples\n```julia\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\nline2 = GI.LineString([(-2, 2), (4, 2)])\n\nGO.crosses(line1, line2)","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"output","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"true\n```\n\"\"\"\ncrosses(g1, g2)::Bool = crosses(trait(g1), g1, trait(g2), g2)::Bool\ncrosses(t1::FeatureTrait, g1, t2, g2)::Bool = crosses(GI.geometry(g1), g2)\ncrosses(t1, g1, t2::FeatureTrait, g2)::Bool = crosses(g1, geometry(g2))\ncrosses(::MultiPointTrait, g1, ::LineStringTrait, g2)::Bool = multipoint_crosses_line(g1, g2)\ncrosses(::MultiPointTrait, g1, ::PolygonTrait, g2)::Bool = multipoint_crosses_poly(g1, g2)\ncrosses(::LineStringTrait, g1, ::MultiPointTrait, g2)::Bool = multipoint_crosses_lines(g2, g1)\ncrosses(::LineStringTrait, g1, ::PolygonTrait, g2)::Bool = line_crosses_poly(g1, g2)\ncrosses(::LineStringTrait, g1, ::LineStringTrait, g2)::Bool = line_crosses_line(g1, g2)\ncrosses(::PolygonTrait, g1, ::MultiPointTrait, g2)::Bool = multipoint_crosses_poly(g2, g1)\ncrosses(::PolygonTrait, g1, ::LineStringTrait, g2)::Bool = line_crosses_poly(g2, g1)\n\nfunction multipoint_crosses_line(geom1, geom2)\n int_point = false\n ext_point = false\n i = 1\n np2 = GI.npoint(geom2)\n\n while i < GI.npoint(geom1) && !int_point && !ext_point\n for j in 1:GI.npoint(geom2) - 1\n exclude_boundary = (j === 1 || j === np2 - 2) ? :none : :both\n if point_on_segment(GI.getpoint(geom1, i), (GI.getpoint(geom2, j), GI.getpoint(geom2, j + 1)); exclude_boundary)\n int_point = true\n else\n ext_point = true\n end\n end\n i += 1\n end\n\n return int_point && ext_point\nend\n\nfunction line_crosses_line(line1, line2)\n np2 = GI.npoint(line2)\n if intersects(line1, line2)\n for i in 1:GI.npoint(line1) - 1\n for j in 1:GI.npoint(line2) - 1\n exclude_boundary = (j === 1 || j === np2 - 2) ? :none : :both\n pa = GI.getpoint(line1, i)\n pb = GI.getpoint(line1, i + 1)\n p = GI.getpoint(line2, j)\n point_on_segment(p, (pa, pb); exclude_boundary) && return true\n end\n end\n end\n return false\nend\n\nfunction line_crosses_poly(line, poly)\n for l in flatten(AbstractCurveTrait, poly)\n intersects(line, l) && return true\n end\n return false\nend\n\nfunction multipoint_crosses_poly(mp, poly)\n int_point = false\n ext_point = false\n\n for p in GI.getpoint(mp)\n if point_in_polygon(p, poly)\n int_point = true\n else\n ext_point = true\n end\n int_point && ext_point && return true\n end\n return false\nend","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/signed_distance/#Signed-distance","page":"Signed distance","title":"Signed distance","text":"","category":"section"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"export signed_distance","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"TODO: clean this up. It already supports GeoInterface.","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"Base.@propagate_inbounds euclid_distance(p1, p2) = sqrt((GeoInterface.x(p2)-GeoInterface.x(p1))^2 + (GeoInterface.y(p2)-GeoInterface.y(p1))^2)\neuclid_distance(x1, y1, x2, y2) = sqrt((x2-x1)^2 + (y2-y1)^2)\n\n\n\n\" Distance from p0 to the line segment formed by p1 and p2. Implementation from Turf.jl.\"\nfunction _distance(p0, p1, p2)\n x0, y0 = GeoInterface.x(p0), GeoInterface.y(p0)\n x1, y1 = GeoInterface.x(p1), GeoInterface.y(p1)\n x2, y2 = GeoInterface.x(p2), GeoInterface.y(p2)\n\n if x1 < x2\n xfirst, yfirst = x1, y1\n xlast, ylast = x2, y2\n else\n xfirst, yfirst = x2, y2\n xlast, ylast = x1, y1\n end\n\n v = (xlast - xfirst, ylast - yfirst)\n w = (x0 - xfirst, y0 - yfirst)\n\n c1 = sum(w .* v)\n if c1 <= 0\n return euclid_distance(x0, y0, xfirst, yfirst)\n end\n\n c2 = sum(v .* v)\n\n if c2 <= c1\n return euclid_distance(x0, y0, xlast, ylast)\n end\n\n b2 = c1 / c2\n\n return euclid_distance(x0, y0, xfirst + (b2 * v[1]), yfirst + (b2 * v[2]))\nend\n\n\nfunction _distance(linestring, xy)\n mindist = typemax(Float64)\n N = GeoInterface.npoint(linestring)\n @assert N ≥ 3\n p1 = GeoInterface.getpoint(linestring, 1)\n p2 = p1\n\n for point_ind in 2:N\n p2 = GeoInterface.getpoint(linestring, point_ind)\n newdist = _distance(xy, p1, p2)\n if newdist < mindist\n mindist = newdist\n end\n p1 = p2\n end\n\n return mindist\nend\n\nfunction signed_distance(::GeoInterface.PolygonTrait, poly, x, y)\n\n xy = (x, y)\n mindist = _distance(GeoInterface.getexterior(poly), xy)\n\n @inbounds for hole in GeoInterface.gethole(poly)\n newdist = _distance(hole, xy)\n if newdist < mindist\n mindist = newdist\n end\n end\n\n if GeoInterface.contains(poly, GeoInterface.convert(Base.parentmodule(typeof(poly)), (x, y)))\n return mindist\n else\n return -mindist\n end\nend\n\nfunction signed_distance(::GeoInterface.MultiPolygonTrait, multipoly, x, y)\n distances = signed_distance.(GeoInterface.getpolygon(multipoly), x, y)\n max_val, max_ind = findmax(distances)\n return max_val\nend\n\n\n\"\"\"\n signed_distance(geom, x::Real, y::Real)::Float64\n\nCalculates the signed distance from the geometry `geom` to the point\ndefined by `(x, y)`. Points within `geom` have a negative distance,\nand points outside of `geom` have a positive distance.\n\nIf `geom` is a MultiPolygon, then this function returns the maximum distance\nto any of the polygons in `geom`.\n\"\"\"\nsigned_distance(geom, x, y) = signed_distance(GeoInterface.geomtrait(geom), geom, x, y)","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/centroid/#Centroid","page":"Centroid","title":"Centroid","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"export centroid, centroid_and_length, centroid_and_area","category":"page"},{"location":"source/methods/centroid/#What-is-the-centroid?","page":"Centroid","title":"What is the centroid?","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"The centroid is the geometric center of a line string or area(s). Note that the centroid does not need to be inside of a concave area.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Further note that by convention a line, or linear ring, is calculated by weighting the line segments by their length, while polygons and multipolygon centroids are calculated by weighting edge's by their 'area components'.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"To provide an example, consider this concave polygon in the shape of a 'C':","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\ncshape = Polygon([\n Point(0,0), Point(0,3), Point(3,3), Point(3,2), Point(1,2),\n Point(1,1), Point(3,1), Point(3,0), Point(0,0),\n])\nf, a, p = poly(cshape; axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Let's see what the centroid looks like (plotted in red):","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"cent = centroid(cshape)\nscatter!(a, GI.x(cent), GI.y(cent), color = :red)\nf","category":"page"},{"location":"source/methods/centroid/#Implementation","page":"Centroid","title":"Implementation","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Note that if you call centroid on a LineString or LinearRing, the centroidandlength function will be called due to the weighting scheme described above, while centroidandarea is called for polygons and multipolygons. However, centroidandarea can still be called on a LineString or LinearRing when they are closed, for example as the interior hole of a polygon.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"The helper functions centroidandlength and centroidandarea are made availible just in case the user also needs the area or length to decrease repeat computation.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"\"\"\"\n centroid(geom)::Tuple{T, T}\n\nReturns the centroid of a given line segment, linear ring, polygon, or\nmutlipolygon.\n\"\"\"\ncentroid(geom) = centroid(GI.trait(geom), geom)\n\n\"\"\"\n centroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::Tuple{T, T}\n\nReturns the centroid of a line string or linear ring, which is calculated by\nweighting line segments by their length by convention.\n\"\"\"\ncentroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n) = centroid_and_length(trait, geom)[1]\n\n\"\"\"\n centroid(trait, geom)::Tuple{T, T}\n\nReturns the centroid of a polygon or multipolygon, which is calculated by\nweighting edges by their `area component` by convention.\n\"\"\"\ncentroid(trait, geom) = centroid_and_area(trait, geom)[1]\n\n\"\"\"\n centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid\nfor line strings and linear rings.\n\"\"\"\ncentroid_and_length(geom) = centroid_and_length(GI.trait(geom), geom)\n\n\"\"\"\n centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given geom.\n\"\"\"\ncentroid_and_area(geom) = centroid_and_area(GI.trait(geom), geom)\n\n\"\"\"\n centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid\nfor line strings and linear rings.\n\"\"\"\nfunction centroid_and_length(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)\n T = typeof(GI.x(GI.getpoint(geom, 1)))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Initialize starting values","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid = T(0)\n ycentroid = T(0)\n length = T(0)\n point₁ = GI.getpoint(geom, 1)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over line segments of line string","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for point₂ in GI.getpoint(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Calculate length of line segment","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" length_component = sqrt(\n (GI.x(point₂) - GI.x(point₁))^2 +\n (GI.y(point₂) - GI.y(point₁))^2\n )","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the line segment length into length","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" length += length_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of line segment centroids","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += (GI.x(point₁) + GI.x(point₂)) * (length_component / 2)\n ycentroid += (GI.y(point₁) + GI.y(point₂)) * (length_component / 2)\n #centroid = centroid .+ ((point₁ .+ point₂) .* (length_component / 2))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Advance the point buffer by 1 point to move to next line segment","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" point₁ = point₂\n end\n xcentroid /= length\n ycentroid /= length\n return (xcentroid, ycentroid), length\nend\n\n\"\"\"\n centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given a line string or a linear ring.\nNote that this is only valid if the line segment or linear ring is closed.\n\"\"\"\nfunction centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)\n T = typeof(GI.x(GI.getpoint(geom, 1)))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Check that the geometry is closed","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" @assert(\n GI.getpoint(geom, 1) == GI.getpoint(geom, GI.ngeom(geom)),\n \"centroid_and_area should only be used with closed geometries\"\n )","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Initialize starting values","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid = T(0)\n ycentroid = T(0)\n area = T(0)\n point₁ = GI.getpoint(geom, 1)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over line segments of linear ring","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for point₂ in GI.getpoint(geom)\n area_component = GI.x(point₁) * GI.y(point₂) -\n GI.x(point₂) * GI.y(point₁)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area += area_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += (GI.x(point₁) + GI.x(point₂)) * area_component\n ycentroid += (GI.y(point₁) + GI.y(point₂)) * area_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Advance the point buffer by 1 point","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" point₁ = point₂\n end\n area /= 2\n xcentroid /= 6area\n ycentroid /= 6area\n return (xcentroid, ycentroid), abs(area)\nend\n\n\"\"\"\n centroid_and_area(::GI.PolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given polygon.\n\"\"\"\nfunction centroid_and_area(::GI.PolygonTrait, geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Exterior ring's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xcentroid, ycentroid), area = centroid_and_area(GI.getexterior(geom))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weight exterior centroid by area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid *= area\n ycentroid *= area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over any holes within the polygon","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for hole in GI.gethole(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Hole polygon's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xinterior, yinterior), interior_area = centroid_and_area(hole)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area -= interior_area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid -= xinterior * interior_area\n ycentroid -= yinterior * interior_area\n end\n xcentroid /= area\n ycentroid /= area\n return (xcentroid, ycentroid), area\nend\n\n\"\"\"\n centroid_and_area(::GI.MultiPolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given multipolygon.\n\"\"\"\nfunction centroid_and_area(::GI.MultiPolygonTrait, geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"First polygon's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xcentroid, ycentroid), area = centroid_and_area(GI.getpolygon(geom, 1))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weight first polygon's centroid by area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid *= area\n ycentroid *= area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over any polygons within the multipolygon","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for i in 2:GI.ngeom(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Polygon centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xpoly, ypoly), poly_area = centroid_and_area(GI.getpolygon(geom, i))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area += poly_area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += xpoly * poly_area\n ycentroid += ypoly * poly_area\n end\n xcentroid /= area\n ycentroid /= area\n return (xcentroid, ycentroid), area\nend","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"\"\"\"\n embed_extent(obj)\n\nRecursively wrap the object with a `GeoInterface.Wrappers` geometry,\ncalculating and adding an `Extents.Extent` to all objects.\n\nThis can improve performance when extents need to be checked multiple times.\n\"\"\"\nembed_extent(x; kw...) = apply(AbstractTrait, x; kw...)\n\nextent_applicator(x) = extent_applicator(trait(x), x)\nextent_applicator(::Nothing, xs::AbstractArray) = embed_extent.(xs)\nextent_applicator(::Union{AbstractCurveTrait,MultiPointTrait}, point) = point\n\nfunction extent_applicator(trait::AbstractGeometryTrait, geom)\n children_with_extents = map(GI.getgeom(geom)) do g\n embed_extent(g)\n end\n wrapper_type = GI.geointerface_geomtype(trait)\n extent = GI.extent(wrapper_type(children_with_extents))\n return wrapper_type(children_with_extents, extent)\nend\nextent_applicator(::PointTrait, point) = point\nextent_applicator(::PointTrait, point) = point","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/contains/#Containment","page":"Containment","title":"Containment","text":"","category":"section"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"export contains\n\n\"\"\"\n contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool\n\nReturn true if the second geometry is completely contained by the first geometry.\nThe interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b)\nmust not intersect the exterior of the primary (geometry a).\n`contains` returns the exact opposite result of `within`.\n\n# Examples\n\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\n\nGO.contains(line, point)","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"output","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"true\n```\n\"\"\"\ncontains(g1, g2)::Bool = within(g2, g1)","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/flip/#Coordinate-flipping","page":"Coordinate flipping","title":"Coordinate flipping","text":"","category":"section"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"This is a simple example of how to use the apply functionality in a function, by flipping the x and y coordinates of a geometry.","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"\"\"\"\n flip(obj)\n\nSwap all of the x and y coordinates in obj, otherwise\nkeeping the original structure (but not necessarily the\noriginal type).\n\"\"\"\nfunction flip(geom; kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; kw...) do p\n (GI.y(p), GI.x(p), GI.z(p))\n end\n else\n return apply(PointTrait, geom; kw...) do p\n (GI.y(p), GI.x(p))\n end\n end\nend","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/simplify/#Geometry-simplification","page":"Geometry simplification","title":"Geometry simplification","text":"","category":"section"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"This file holds implementations for the Douglas-Peucker and Visvalingam-Whyatt algorithms for simplifying geometries (specifically polygons and lines).","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"export simplify, VisvalingamWhyatt, DouglasPeucker\n\n\n\"\"\"\n abstract type SimplifyAlg\n\nAbstract type for simplification algorithms.\n\n# API\n\nFor now, the algorithm must hold the `number`, `ratio` and `tol` properties.\n\nSimplification algorithm types can hook into the interface by implementing\nthe `_simplify(trait, alg, geom)` methods for whichever traits are necessary.\n\"\"\"\nabstract type SimplifyAlg end\n\nconst SIMPLIFY_ALG_KEYWORDS = \"\"\"\n# Keywords\n- `ratio`: the fraction of points that should remain after `simplify`.\n Useful as it will generalise for large collections of objects.\n- `number`: the number of points that should remain after `simplify`.\n Less useful for large collections of mixed size objects.\n\"\"\"\n\nconst MIN_POINTS = 3\n\nfunction checkargs(number, ratio, tol)\n count(isnothing, (number, ratio, tol)) == 2 ||\n error(\"Must provide one of `number`, `ratio` or `tol` keywords\")\n if !isnothing(ratio)\n if ratio <= 0 || ratio > 1\n error(\"`ratio` must be 0 < ratio <= 1. Got $ratio\")\n end\n end\n if !isnothing(number)\n if number < MIN_POINTS\n error(\"`number` must be $MIN_POINTS or larger. Got $number\")\n end\n end\n return nothing\nend\n\n\"\"\"\n simplify(obj; kw...)\n simplify(::SimplifyAlg, obj)\n\nSimplify a geometry, feature, feature collection,\nor nested vectors or a table of these.\n\n`RadialDistance`, `DouglasPeucker`, or\n`VisvalingamWhyatt` algorithms are available,\nlisted in order of increasing quality but decreaseing performance.\n\n`PoinTrait` and `MultiPointTrait` are returned unchanged.\n\nThe default behaviour is `simplify(DouglasPeucker(; kw...), obj)`.\nPass in other `SimplifyAlg` to use other algorithms.","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"Example","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"Simplify a polygon to have six points:\n\n```jldoctest\nimport GeoInterface as GI\nimport GeometryOps as GO\n\npoly = GI.Polygon([[\n [-70.603637, -33.399918],\n [-70.614624, -33.395332],\n [-70.639343, -33.392466],\n [-70.659942, -33.394759],\n [-70.683975, -33.404504],\n [-70.697021, -33.419406],\n [-70.701141, -33.434306],\n [-70.700454, -33.446339],\n [-70.694274, -33.458369],\n [-70.682601, -33.465816],\n [-70.668869, -33.472117],\n [-70.646209, -33.473835],\n [-70.624923, -33.472117],\n [-70.609817, -33.468107],\n [-70.595397, -33.458369],\n [-70.587158, -33.442901],\n [-70.587158, -33.426283],\n [-70.590591, -33.414248],\n [-70.594711, -33.406224],\n [-70.603637, -33.399918]]])\n\nsimple = GO.simplify(poly; number=6)\nGI.npoint(simple)","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"output","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"6\n```\n\"\"\"\nsimplify(data; calc_extent=false, threaded=false, kw...) =\n _simplify(DouglasPeucker(; kw...), data; calc_extent, threaded)\nsimplify(alg::SimplifyAlg, data; kw...) = _simplify(alg, data; kw...)\n\nfunction _simplify(alg::SimplifyAlg, data; kw...)\n # Apply simplication to all curves, multipoints, and points,\n # reconstructing everything else around them.\n simplifier(geom) = _simplify(trait(geom), alg, geom)\n apply(simplifier, Union{PolygonTrait,AbstractCurveTrait,MultiPoint,PointTrait}, data; kw...)\nend\n# For Point and MultiPoint traits we do nothing\n_simplify(::PointTrait, alg, geom) = geom\n_simplify(::MultiPointTrait, alg, geom) = geom\nfunction _simplify(::PolygonTrait, alg, geom)\n # Force treating children as LinearRing\n rebuilder(g) = rebuild(g, _simplify(LinearRingTrait(), alg, g))\n lrs = map(rebuilder, GI.getgeom(geom))\n return rebuild(geom, lrs)\nend\n# For curves and rings we simplify\n_simplify(::AbstractCurveTrait, alg, geom) = rebuild(geom, simplify(alg, tuple_points(geom)))\nfunction _simplify(::LinearRingTrait, alg, geom)\n # Make a vector of points\n points = tuple_points(geom)\n\n # Simplify it once\n simple = _simplify(alg, points)\n\n return rebuild(geom, simple)\nend\n\n\"\"\"\n RadialDistance <: SimplifyAlg\n\nSimplifies geometries by removing points less than\n`tol` distance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum distance between points.\n\"\"\"\nstruct RadialDistance <: SimplifyAlg\n number::Union{Int64,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\nend\nfunction RadialDistance(; number=nothing, ratio=nothing, tol=nothing)\n checkargs(number, ratio, tol)\n return RadialDistance(number, ratio, tol)\nend\n\nsettol(alg::RadialDistance, tol) = RadialDistance(alg.number, alg.ratio, tol)\n\nfunction _simplify(alg::RadialDistance, points::Vector)\n previous = first(points)\n distances = Array{Float64}(undef, length(points))\n for i in eachindex(points)\n point = points[i]\n distances[i] = _squared_dist(point, previous)\n previous = point\n end\n # Never remove the end points\n distances[begin] = distances[end] = Inf\n # This avoids taking the square root of each distance above\n if !isnothing(alg.tol)\n alg = settol(alg, (alg.tol::Float64)^2)\n end\n return _get_points(alg, points, distances)\nend\n\nfunction _squared_dist(p1, p2)\n dx = GI.x(p1) - GI.x(p2)\n dy = GI.y(p1) - GI.y(p2)\n return dx^2 + dy^2\nend\n\n\"\"\"\n DouglasPeucker <: SimplifyAlg\n\n DouglasPeucker(; number, ratio, tol)\n\nSimplifies geometries by removing points below `tol`\ndistance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum distance a point will be from the line\n joining its neighboring points.\n\"\"\"\nstruct DouglasPeucker <: SimplifyAlg\n number::Union{Int64,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\n prefilter::Bool\nend\nfunction DouglasPeucker(; number=nothing, ratio=nothing, tol=nothing, prefilter=false)\n checkargs(number, ratio, tol)\n return DouglasPeucker(number, ratio, tol, prefilter)\nend\n\nsettol(alg::DouglasPeucker, tol) = DouglasPeucker(alg.number, alg.ratio, tol, alg.prefilter)\n\nfunction _simplify(alg::DouglasPeucker, points::Vector)\n length(points) <= MIN_POINTS && return points\n # TODO do we need this?\n # points = alg.prefilter ? simplify(RadialDistance(alg.tol), points) : points\n\n distances = _build_tolerances(_squared_segdist, points)\n return _get_points(alg, points, distances)\nend\n\nfunction _squared_segdist(l1, p, l2)\n x, y = GI.x(l1), GI.y(l1)\n dx = GI.x(l2) - x\n dy = GI.y(l2) - y\n\n if !iszero(dx) || !iszero(dy)\n t = ((GI.x(p) - x) * dx + (GI.y(p) - y) * dy) / (dx * dx + dy * dy)\n if t > 1\n x = GI.x(l2)\n y = GI.y(l2)\n elseif t > 0\n x += dx * t\n y += dy * t\n end\n end\n\n dx = GI.x(p) - x\n dy = GI.y(p) - y\n\n return dx^2 + dy^2\nend\n\n\n\"\"\"\n VisvalingamWhyatt <: SimplifyAlg\n\n VisvalingamWhyatt(; kw...)\n\nSimplifies geometries by removing points below `tol`\ndistance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum area of a triangle made with a point and\n its neighboring points.\n\"\"\"\nstruct VisvalingamWhyatt <: SimplifyAlg\n number::Union{Int,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\n prefilter::Bool\nend\nfunction VisvalingamWhyatt(; number=nothing, ratio=nothing, tol=nothing, prefilter=false)\n checkargs(number, ratio, tol)\n return VisvalingamWhyatt(number, ratio, tol, prefilter)\nend\n\nsettol(alg::VisvalingamWhyatt, tol) = VisvalingamWhyatt(alg.number, alg.ratio, tol, alg.prefilter)\n\nfunction _simplify(alg::VisvalingamWhyatt, points::Vector)\n length(points) <= MIN_POINTS && return points\n areas = _build_tolerances(_triangle_double_area, points)\n\n # This avoids diving everything by two\n if !isnothing(alg.tol)\n alg = settol(alg, (alg.tol::Float64)*2)\n end\n return _get_points(alg, points, areas)\nend\n\n# calculates the area of a triangle given its vertices\n_triangle_double_area(p1, p2, p3) =\n abs(p1[1] * (p2[2] - p3[2]) + p2[1] * (p3[2] - p1[2]) + p3[1] * (p1[2] - p2[2]))","category":"page"},{"location":"source/transformations/simplify/#Shared-utils","page":"Geometry simplification","title":"Shared utils","text":"","category":"section"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"function _build_tolerances(f, points)\n nmax = length(points)\n real_tolerances = _flat_tolerances(f, points)\n\n tolerances = copy(real_tolerances)\n i = collect(1:nmax)\n\n min_vert = argmin(tolerances)\n this_tolerance = tolerances[min_vert]\n _remove!(tolerances, min_vert)\n deleteat!(i, min_vert)\n\n while this_tolerance < Inf\n skip = false\n\n if min_vert < length(i)\n right_tolerance = f(\n points[i[min_vert - 1]],\n points[i[min_vert]],\n points[i[min_vert + 1]],\n )\n if right_tolerance <= this_tolerance\n right_tolerance = this_tolerance\n skip = min_vert == 1\n end\n\n real_tolerances[i[min_vert]] = right_tolerance\n tolerances[min_vert] = right_tolerance\n end\n\n if min_vert > 2\n left_tolerance = f(\n points[i[min_vert - 2]],\n points[i[min_vert - 1]],\n points[i[min_vert]],\n )\n if left_tolerance <= this_tolerance\n left_tolerance = this_tolerance\n skip = min_vert == 2\n end\n real_tolerances[i[min_vert - 1]] = left_tolerance\n tolerances[min_vert - 1] = left_tolerance\n end\n\n if !skip\n min_vert = argmin(tolerances)\n end\n deleteat!(i, min_vert)\n this_tolerance = tolerances[min_vert]\n _remove!(tolerances, min_vert)\n end\n\n return real_tolerances\nend\n\nfunction tuple_points(geom)\n points = Array{Tuple{Float64,Float64}}(undef, GI.ngeom(geom))\n for (i, p) in enumerate(GI.getpoint(geom))\n points[i] = (GI.x(p), GI.y(p))\n end\n return points\nend\n\nfunction _get_points(alg, points, tolerances)\n # This assumes that `alg` has the properties\n # `tol`, `number`, and `ratio` available...\n tol = alg.tol\n number = alg.number\n ratio = alg.ratio\n bit_indices = if !isnothing(tol)\n _tol_indices(alg.tol::Float64, points, tolerances)\n elseif !isnothing(number)\n _number_indices(alg.number::Int64, points, tolerances)\n else\n _ratio_indices(alg.ratio::Float64, points, tolerances)\n end\n return points[bit_indices]\nend\n\nfunction _tol_indices(tol, points, tolerances)\n tolerances .>= tol\nend\n\nfunction _number_indices(n, points, tolerances)\n tol = partialsort(tolerances, length(points) - n + 1)\n bit_indices = _tol_indices(tol, points, tolerances)\n nselected = sum(bit_indices)\n # If there are multiple values exactly at `tol` we will get\n # the wrong output length. So we need to remove some.\n while nselected > n\n min_tol = Inf\n min_i = 0\n for i in eachindex(bit_indices)\n bit_indices[i] || continue\n if tolerances[i] < min_tol\n min_tol = tolerances[i]\n min_i = i\n end\n end\n nselected -= 1\n bit_indices[min_i] = false\n end\n return bit_indices\nend\n\nfunction _ratio_indices(r, points, tolerances)\n n = max(3, round(Int, r * length(points)))\n return _number_indices(n, points, tolerances)\nend\n\nfunction _flat_tolerances(f, points)\n result = Array{Float64}(undef, length(points))\n result[1] = result[end] = Inf\n\n for i in 2:length(result) - 1\n result[i] = f(points[i-1], points[i], points[i+1])\n end\n return result\nend\n\n_remove!(s, i) = s[i:end-1] .= s[i+1:end]","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/within/#Containment/withinness","page":"Containment/withinness","title":"Containment/withinness","text":"","category":"section"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"export within\n\n\n\"\"\"\n within(geom1, geom)::Bool\n\nReturn `true` if the first geometry is completely within the second geometry.\nThe interiors of both geometries must intersect and, the interior and boundary of the primary (geometry a)\nmust not intersect the exterior of the secondary (geometry b).\n`within` returns the exact opposite result of `contains`.\n\n# Examples\n```jldoctest setup=:(using GeometryOps, GeometryBasics)\nimport GeometryOps as GO, GeoInterface as GI\n\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\nGO.within(point, line)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"output","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"true\n```\n\"\"\"","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Syntactic sugar","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(g1, g2)::Bool = within(trait(g1), g1, trait(g2), g2)::Bool\nwithin(::GI.FeatureTrait, g1, ::Any, g2)::Bool = within(GI.geometry(g1), g2)\nwithin(::Any, g1, t2::GI.FeatureTrait, g2)::Bool = within(g1, GI.geometry(g2))","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Points in geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.PointTrait, g1, ::GI.LineStringTrait, g2)::Bool = point_on_line(g1, g2; ignore_end_vertices=true)\nwithin(::GI.PointTrait, g1, ::GI.LinearRingTrait, g2)::Bool = point_on_line(g1, g2; ignore_end_vertices=true)\nwithin(::GI.PointTrait, g1, ::GI.PolygonTrait, g2)::Bool = point_in_polygon(g1, g2; ignore_boundary=true)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Lines in geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.LineStringTrait, g1, ::GI.LineStringTrait, g2)::Bool = line_on_line(g1, g2)\nwithin(::GI.LineStringTrait, g1, ::GI.LinearRingTrait, g2)::Bool = line_on_line(g1, g2)\nwithin(::GI.LineStringTrait, g1, ::GI.PolygonTrait, g2)::Bool = line_in_polygon(g1, g2)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Polygons within geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.PolygonTrait, g1, ::GI.PolygonTrait, g2)::Bool = polygon_in_polygon(g1, g2)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Everything not specified TODO: Add multipolygons","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.AbstractTrait, g1, ::GI.AbstractCurveTrait, g2)::Bool = false","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/signed_area/#Signed-area","page":"Signed area","title":"Signed area","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"export signed_area","category":"page"},{"location":"source/methods/signed_area/#What-is-signed-area?","page":"Signed area","title":"What is signed area?","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Signed area is simply the integral over the exterior path of a polygon, minus the sum of integrals over its interior holes.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"It is signed such that a clockwise path has a positive area, and a counterclockwise path has a negative area.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"To provide an example, consider this rectangle:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\n\nrect = Polygon([Point(0,0), Point(0,1), Point(1,1), Point(1,0), Point(0, 0)])\nf, a, p = poly(rect; axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is clearly a rectangle, etc. But now let's look at how the points look:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"lines!(a, rect; color = 1:length(coordinates(rect))+1)\nf","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"The points are ordered in a clockwise fashion, which means that the signed area is negative. If we reverse the order of the points, we get a postive area.","category":"page"},{"location":"source/methods/signed_area/#Implementation","page":"Signed area","title":"Implementation","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"\"\"\"\n signed_area(geom)::Real\n\nReturns the signed area of the geometry, based on winding order.\n\"\"\"\nsigned_area(x) = signed_area(GI.trait(x), x)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"TODOS here:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This could conceivably be multithreaded. How to indicate that it should be so?\nWhat to do for corner cases (nan point, etc)?","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(::Union{GI.LineStringTrait,GI.LinearRingTrait}, geom)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Basically, we integrate the area under the line string, which gives us the signed area.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" point₁ = GI.getpoint(geom, 1)\n point₂ = GI.getpoint(geom, 2)\n area = GI.x(point₁) * GI.y(point₂) - GI.y(point₁) * GI.x(point₂)\n for point in GI.getpoint(geom)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Advance the point buffers by 1 point","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" point₁ = point₂\n point₂ = point","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Accumulate the area into area","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" area += GI.x(point₁) * GI.y(point₂) - GI.y(point₁) * GI.x(point₂)\n end\n area /= 2\n return area\nend","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This subtracts the","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(::GI.PolygonTrait, geom)\n s_area = signed_area(GI.getexterior(geom))\n area = abs(s_area)\n for hole in GI.gethole(geom)\n area -= abs(signed_area(hole))\n end\n return area * sign(s_area)\nend\n\nsigned_area(::GI.MultiPolygonTrait, geom) = sum((signed_area(poly) for poly in GI.getpolygon(geom)))","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This should theoretically work for anything, but I haven't actually tested yet!","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Below is the original GeometryBasics implementation:","category":"page"},{"location":"source/methods/signed_area/#julia","page":"Signed area","title":"```julia","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(a::Point{2, T}, b::Point{2, T}, c::Point{2, T}) where T return ((b[1] - a[1]) * (c[2] - a[2]) - (c[1] - a[1]) * (b[2] - a[2])) / 2 end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(points::AbstractVector{<: Point{2, T}}) where {T} area = sum((points[i][1] * points[i+1][2] - points[i][2] * points[i+1][1] for i in 1:(length(points)-1))) / 2.0 end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signedarea(ls::GeometryBasics.LineString) # coords = GeometryBasics.decompose(Point2f, ls) return sum((p1[1] * p2[2] - p1[2] * p2[1] for (p1, p2) in ls)) / 2.0#signedarea(coords) end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signedarea(poly::GeometryBasics.Polygon{2}) sarea = signedarea(poly.exterior) area = abs(sarea) for hole in poly.interiors area -= abs(signedarea(hole)) end return area * sign(sarea) end","category":"page"},{"location":"source/methods/signed_area/#WARNING:-this-may-not-do-what-you-expect,-since-it's","page":"Signed area","title":"WARNING: this may not do what you expect, since it's","text":"","category":"section"},{"location":"source/methods/signed_area/#sensitive-to-winding-order.-Use-GeoInterface.area-instead.","page":"Signed area","title":"sensitive to winding order. Use GeoInterface.area instead.","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"signedarea(mp::MultiPolygon) = sum(signedarea.(mp.polygons)) ```","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/intersects/#Intersection-checks","page":"Intersection checks","title":"Intersection checks","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"export intersects, intersection, intersection_points","category":"page"},{"location":"source/methods/intersects/#What-is-intersects-vs-intersection-vs-intersection_points?","page":"Intersection checks","title":"What is intersects vs intersection vs intersection_points?","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"The intersects methods check whether two geometries intersect with each other. The intersection methods return the geometry intersection between the two input geometries. The intersection_points method returns a list of intersection points between two geometries.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"The intersects methods will always return a Boolean. However, note that the intersection methods will not all return the same type. For example, the intersection of two lines will be a point in most cases, unless the lines are parallel. On the other hand, the intersection of two polygons will be another polygon in most cases. Finally, the intersection_points method returns a list of tuple points.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\npoint1, point2 = Point(124.584961,-12.768946), Point(126.738281,-17.224758)\npoint3, point4 = Point(123.354492,-15.961329), Point(127.22168,-14.008696)\nline1 = Line(point1, point2)\nline2 = Line(point3, point4)\nf, a, p = lines([point1, point2])\nlines!([point3, point4])","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"We can see that they intersect, so we expect intersects to return true, and we can visualize the intersection point in red.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"int_bool = GO.intersects(line1, line2)\nprintln(int_bool)\nint_point = GO.intersection(line1, line2)\nscatter!(int_point, color = :red)\nf","category":"page"},{"location":"source/methods/intersects/#Implementation","page":"Intersection checks","title":"Implementation","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"First, we implement a wrapper method for intersects, intersection, and intersectionpoints that dispatches to the correct implementation based on the geometry trait. The two underlying helper functions that are widely used in all geometry dispatches are _lineintersects, which determines if two line segments intersect and intersectionpoint which determines the intersection point between two line segments.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"\"\"\"\n intersects(geom1, geom2)::Bool\n\nCheck if two geometries intersect, returning true if so and false otherwise.\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersects(line1, line2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"output","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"true\n```\n\"\"\"\nintersects(geom1, geom2) = intersects(\n GI.trait(geom1),\n geom1,\n GI.trait(geom2),\n geom2\n)\n\n\"\"\"\n intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool\n\nReturns true if two line segments intersect and false otherwise.\n\"\"\"\nfunction intersects(::GI.LineTrait, a, ::GI.LineTrait, b)\n a1 = _tuple_point(GI.getpoint(a, 1))\n a2 = _tuple_point(GI.getpoint(a, 2))\n b1 = _tuple_point(GI.getpoint(b, 1))\n b2 = _tuple_point(GI.getpoint(b, 2))\n meet_type = ExactPredicates.meet(a1, a2, b1, b2)\n return meet_type == 0 || meet_type == 1\nend\n\n\"\"\"\n intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool\n\nReturns true if two geometries intersect with one another and false\notherwise. For all geometries but lines, convert the geometry to a list of edges\nand cross compare the edges for intersections.\n\"\"\"\nfunction intersects(\n trait_a::GI.AbstractTrait, a_geom,\n trait_b::GI.AbstractTrait, b_geom,\n) edges_a, edges_b = map(sort! ∘ to_edges, (a_geom, b_geom))\n return _line_intersects(edges_a, edges_b) ||\n within(trait_a, a_geom, trait_b, b_geom) ||\n within(trait_b, b_geom, trait_a, a_geom)\nend\n\n\"\"\"\n _line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n )::Bool\n\nReturns true if there is at least one intersection between edges within the\ntwo lists of edges.\n\"\"\"\nfunction _line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Extents.intersects(toextent(edgesa), toextent(edgesb)) || return false","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" for edge_a in edges_a\n for edge_b in edges_b\n _line_intersects(edge_a, edge_b) && return true\n end\n end\n return false\nend\n\n\"\"\"\n _line_intersects(\n edge_a::Edge,\n edge_b::Edge,\n )::Bool\n\nReturns true if there is at least one intersection between two edges.\n\"\"\"\nfunction _line_intersects(edge_a::Edge, edge_b::Edge)\n meet_type = ExactPredicates.meet(edge_a..., edge_b...)\n return meet_type == 0 || meet_type == 1\nend\n\n\"\"\"\n intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}\n\nReturn an intersection point between two geometries. Return nothing if none are\nfound. Else, the return type depends on the input. It will be a union between:\na point, a line, a linear ring, a polygon, or a multipolygon\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersection(line1, line2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"output","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"(125.58375366067547, -14.83572303404496)\n```\n\"\"\"\nintersection(geom_a, geom_b) =\n intersection(GI.trait(geom_a), geom_a, GI.trait(geom_b), geom_b)\n\n\"\"\"\n intersection(\n ::GI.LineTrait, line_a,\n ::GI.LineTrait, line_b,\n )::Union{\n ::Tuple{::Real, ::Real},\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(::GI.LineTrait, line_a, ::GI.LineTrait, line_b)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Get start and end points for both lines","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" a1 = GI.getpoint(line_a, 1)\n a2 = GI.getpoint(line_a, 2)\n b1 = GI.getpoint(line_b, 1)\n b2 = GI.getpoint(line_b, 2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Determine the intersection point","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" point, fracs = _intersection_point((a1, a2), (b1, b2))","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Determine if intersection point is on line segments","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" if !isnothing(point) && 0 <= fracs[1] <= 1 && 0 <= fracs[2] <= 1\n return point\n end\n return nothing\nend\n\nintersection(\n trait_a::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom_a,\n trait_b::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom_b,\n) = intersection_points(trait_a, geom_a, trait_b, geom_b)\n\n\"\"\"\n intersection(\n ::GI.PolygonTrait, poly_a,\n ::GI.PolygonTrait, poly_b,\n )::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(::GI.PolygonTrait, poly_a, ::GI.PolygonTrait, poly_b)\n @assert false \"Polygon intersection isn't implemented yet.\"\n return nothing\nend\n\n\"\"\"\n intersection(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n )::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(\n trait_a::GI.AbstractTrait, geom_a,\n trait_b::GI.AbstractTrait, geom_b,\n)\n @assert(\n false,\n \"Intersection between $trait_a and $trait_b isn't implemented yet.\",\n )\n return nothing\nend\n\n\"\"\"\n intersection_points(\n geom_a,\n geom_b,\n )::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n }\n\nReturn a list of intersection points between two geometries. If no intersection\npoint was possible given geometry extents, return nothing. If none are found,\nreturn an empty list.\n\"\"\"\nintersection_points(geom_a, geom_b) =\n intersection_points(GI.trait(geom_a), geom_a, GI.trait(geom_b), geom_b)\n\n\"\"\"\n intersection_points(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n )::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n }\n\nCalculates the list of intersection points between two geometries, inlcuding\nline segments, line strings, linear rings, polygons, and multipolygons. If no\nintersection points were possible given geometry extents, return nothing. If\nnone are found, return an empty list.\n\"\"\"\nfunction intersection_points(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Check if the geometries extents even overlap","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" Extents.intersects(GI.extent(a), GI.extent(b)) || return nothing","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Create a list of edges from the two input geometries","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" edges_a, edges_b = map(sort! ∘ to_edges, (a, b))\n npoints_a, npoints_b = length(edges_a), length(edges_b)\n a_closed = npoints_a > 1 && edges_a[1][1] == edges_a[end][1]\n b_closed = npoints_b > 1 && edges_b[1][1] == edges_b[end][1]\n if npoints_a > 0 && npoints_b > 0","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Initialize an empty list of points","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" T = typeof(edges_a[1][1][1]) # x-coordinate of first point in first edge\n result = Tuple{T,T}[]","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Loop over pairs of edges and add any intersection points to results","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" for i in eachindex(edges_a)\n for j in eachindex(edges_b)\n point, fracs = _intersection_point(edges_a[i], edges_b[j])\n if !isnothing(point)\n #=\n Determine if point is on edge (all edge endpoints excluded\n except for the last edge for an open geometry)\n =#\n α, β = fracs\n on_a_edge = (!a_closed && i == npoints_a && 0 <= α <= 1) ||\n (0 <= α < 1)\n on_b_edge = (!b_closed && j == npoints_b && 0 <= β <= 1) ||\n (0 <= β < 1)\n if on_a_edge && on_b_edge\n push!(result, point)\n end\n end\n end\n end\n return result\n end\n return nothing\nend\n\n\"\"\"\n _intersection_point(\n (a1, a2)::Tuple,\n (b1, b2)::Tuple,\n )\n\nCalculates the intersection point between two lines if it exists, and as if the\nline extended to infinity, and the fractional component of each line from the\ninitial end point to the intersection point.\nInputs:\n (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line\n (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line\nOutputs:\n (x, y)::Tuple{::Real, ::Real} intersection point\n (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection\n Both are ::Nothing if point doesn't exist!\n\nCalculation derivation can be found here:\n https://stackoverflow.com/questions/563198/\n\"\"\"\nfunction _intersection_point((a1, a2)::Tuple, (b1, b2)::Tuple)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"First line runs from p to p + r","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" px, py = GI.x(a1), GI.y(a1)\n rx, ry = GI.x(a2) - px, GI.y(a2) - py","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Second line runs from q to q + s","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" qx, qy = GI.x(b1), GI.y(b1)\n sx, sy = GI.x(b2) - qx, GI.y(b2) - qy","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Intersection will be where p + tr = q + us where 0 < t, u < 1 and","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" r_cross_s = rx * sy - ry * sx\n if r_cross_s != 0\n Δqp_x = qx - px\n Δqp_y = qy - py\n t = (Δqp_x * sy - Δqp_y * sx) / r_cross_s\n u = (Δqp_x * ry - Δqp_y * rx) / r_cross_s\n x = px + t * rx\n y = py + t * ry\n return (x, y), (t, u)\n end\n return nothing, nothing\nend","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/utils/#Utility-functions","page":"Utility functions","title":"Utility functions","text":"","category":"section"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"_is3d(geom) = _is3d(GI.trait(geom), geom)\n_is3d(::GI.AbstractGeometryTrait, geom) = GI.is3d(geom)\n_is3d(::GI.FeatureTrait, feature) = _is3d(GI.geometry(feature))\n_is3d(::GI.FeatureCollectionTrait, fc) = _is3d(GI.getfeature(fc, 1))\n_is3d(::Nothing, geom) = _is3d(first(geom)) # Otherwise step into an itererable\n\n_npoint(x) = _npoint(trait(x), x)\n_npoint(::Nothing, xs::AbstractArray) = sum(_npoint, xs)\n_npoint(::GI.FeatureCollectionTrait, fc) = sum(_npoint, GI.getfeature(fc))\n_npoint(::GI.FeatureTrait, f) = _npoint(GI.geometry(f))\n_npoint(::GI.AbstractGeometryTrait, x) = GI.npoint(trait(x), x)\n\n_nedge(x) = _nedge(trait(x), x)\n_nedge(::Nothing, xs::AbstractArray) = sum(_nedge, xs)\n_nedge(::GI.FeatureCollectionTrait, fc) = sum(_nedge, GI.getfeature(fc))\n_nedge(::GI.FeatureTrait, f) = _nedge(GI.geometry(f))\nfunction _nedge(::GI.AbstractGeometryTrait, x)\n n = 0\n for g in GI.getgeom(x)\n n += _nedge(g)\n end\n return n\nend\n_nedge(::GI.AbstractCurveTrait, x) = GI.npoint(x) - 1\n_nedge(::GI.PointTrait, x) = error(\"Cant get edges from points\")\n\n\n\"\"\"\n polygon_to_line(poly::Polygon)\n\nConverts a Polygon to LineString or MultiLineString","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"Examples","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)]])\nGO.polygon_to_line(poly)","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"output","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"GeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)\n```\n\"\"\"\nfunction polygon_to_line(poly)\n @assert GI.trait(poly) isa PolygonTrait\n GI.ngeom(poly) > 1 && return GI.MultiLineString(collect(GI.getgeom(poly)))\n return GI.LineString(collect(GI.getgeom(GI.getgeom(poly, 1))))\nend\n\n\n\"\"\"\n to_edges()\n\nConvert any geometry or collection of geometries into a flat\nvector of `Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}` edges.\n\"\"\"\nfunction to_edges(x)\n edges = Vector{Edge}(undef, _nedge(x))\n _to_edges!(edges, x, 1)\n return edges\nend\n\n_to_edges!(edges::Vector, x, n) = _to_edges!(edges, trait(x), x, n)\nfunction _to_edges!(edges::Vector, ::GI.FeatureCollectionTrait, fc, n)\n for f in GI.getfeature(fc)\n n = _to_edges!(edges, f, n)\n end\nend\n_to_edges!(edges::Vector, ::GI.FeatureTrait, f, n) = _to_edges!(edges, GI.geometry(f), n)\nfunction _to_edges!(edges::Vector, ::GI.AbstractGeometryTrait, fc, n)\n for f in GI.getgeom(fc)\n n = _to_edges!(edges, f, n)\n end\nend\nfunction _to_edges!(edges::Vector, ::GI.AbstractCurveTrait, geom, n)\n p1 = GI.getpoint(geom, 1)\n p1x, p1y = GI.x(p1), GI.y(p1)\n for i in 2:GI.npoint(geom)\n p2 = GI.getpoint(geom, i)\n p2x, p2y = GI.x(p2), GI.y(p2)\n edges[n] = (p1x, p1y), (p2x, p2y)\n p1x, p1y = p2x, p2y\n n += 1\n end\n return n\nend\n\n_tuple_point(p) = GI.x(p), GI.y(p)\n\nfunction to_extent(edges::Vector{Edge})\n x, y = extrema(first, edges)\n Extents.Extent(X=x, Y=y)\nend\n\nfunction to_points(xs)\n points = Vector{TuplePoint}(undef, _npoint(x))\n _to_points!(points, x, 1)\n return points\nend\n\n_to_points!(points::Vector, x, n) = _to_points!(points, trait(x), x, n)\nfunction _to_points!(points::Vector, ::FeatureCollectionTrait, fc, n)\n for f in GI.getfeature(fc)\n n = _to_points!(points, f, n)\n end\nend\n_to_points!(points::Vector, ::FeatureTrait, f, n) = _to_points!(points, GI.geometry(f), n)\nfunction _to_points!(points::Vector, ::AbstractGeometryTrait, fc, n)\n for f in GI.getgeom(fc)\n n = _to_points!(points, f, n)\n end\nend\nfunction _to_points!(points::Vector, ::Union{AbstractCurveTrait,MultiPointTrait}, geom, n)\n p1 = GI.getpoint(geom, 1)\n p1x, p1y = GI.x(p1), GI.y(p1)\n for i in 2:GI.npoint(geom)\n p2 = GI.getpoint(geom, i)\n p2x, p2y = GI.x(p2), GI.y(p2)\n points[n] = (p1x, p1y), (p2x, p2y)\n p1 = p2\n n += 1\n end\n return n\nend","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/bools/#Boolean-conditions","page":"Boolean conditions","title":"Boolean conditions","text":"","category":"section"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"export isclockwise, isconcave\nexport point_on_line, point_in_polygon, point_in_ring\nexport line_on_line, line_in_polygon, polygon_in_polygon","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"These are all adapted from Turf.jl.","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"The may not necessarily be what want in the end but work for now!","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\"\n isclockwise(line::Union{LineString, Vector{Position}})::Bool\n\nTake a ring and return true or false whether or not the ring is clockwise or\ncounter-clockwise.\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nring = GI.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)])\nGO.isclockwise(ring)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\nisclockwise(geom)::Bool = isclockwise(GI.trait(geom), geom)\n\nfunction isclockwise(::AbstractCurveTrait, line)::Bool\n sum = 0.0\n prev = GI.getpoint(line, 1)\n for p in GI.getpoint(line)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"sum will be zero for the first point as x is subtracted from itself","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" sum += (GI.x(p) - GI.x(prev)) * (GI.y(p) + GI.y(prev))\n prev = p\n end\n\n return sum > 0.0\nend\n\n\"\"\"\n isconcave(poly::Polygon)::Bool\n\nTake a polygon and return true or false as to whether it is concave or not.\n\n# Examples\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoly = GI.Polygon([[(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]])\nGO.isconcave(poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"false\n```\n\"\"\"\nfunction isconcave(poly)::Bool\n sign = false\n\n exterior = GI.getexterior(poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME handle not closed polygons","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" GI.npoint(exterior) <= 4 && return false\n n = GI.npoint(exterior) - 1\n\n for i in 1:n\n j = ((i + 1) % n) === 0 ? 1 : (i + 1) % n\n m = ((i + 2) % n) === 0 ? 1 : (i + 2) % n\n\n pti = GI.getpoint(exterior, i)\n ptj = GI.getpoint(exterior, j)\n ptm = GI.getpoint(exterior, m)\n\n dx1 = GI.x(ptm) - GI.x(ptj)\n dy1 = GI.y(ptm) - GI.y(ptj)\n dx2 = GI.x(pti) - GI.x(ptj)\n dy2 = GI.y(pti) - GI.y(ptj)\n\n cross = (dx1 * dy2) - (dy1 * dx2)\n\n if i === 0\n sign = cross > 0\n elseif sign !== (cross > 0)\n return true\n end\n end\n\n return false\nend","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\" isparallel(line1::LineString, line2::LineString)::Bool","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Return true if each segment of line1 is parallel to the correspondent segment of line2","category":"page"},{"location":"source/methods/bools/#Examples","page":"Boolean conditions","title":"Examples","text":"","category":"section"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"import GeoInterface as GI, GeometryOps as GO\njulia> line1 = GI.LineString([(9.170356, 45.477985), (9.164434, 45.482551), (9.166644, 45.484003)])\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(9.170356, 45.477985), (9.164434, 45.482551), (9.166644, 45.484003)], nothing, nothing)\n\njulia> line2 = GI.LineString([(9.169356, 45.477985), (9.163434, 45.482551), (9.165644, 45.484003)])\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(9.169356, 45.477985), (9.163434, 45.482551), (9.165644, 45.484003)], nothing, nothing)\n\njulia>\nGO.isparallel(line1, line2)\ntrue","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\" function isparallel(line1, line2)::Bool seg1 = linesegment(line1) seg2 = linesegment(line2)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"for i in eachindex(seg1)\n coors2 = nothing\n coors1 = seg1[i]\n coors2 = seg2[i]\n _isparallel(coors1, coors2) == false && return false\nend\nreturn true","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"@inline function isparallel(p1, p2) slope1 = bearingtoazimuth(rhumbbearing(GI.x(p1), GI.x(p2))) slope2 = bearingtoazimuth(rhumb_bearing(GI.y(p1), GI.y(p2)))","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"return slope1 === slope2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\"\n point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool\n\nReturn true if a point is on a line. Accept a optional parameter to ignore the\nstart and end vertices of the linestring.\n\n# Examples\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (1, 1)\nline = GI.LineString([(0, 0), (3, 3), (4, 4)])\nGO.point_on_line(point, line)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\nfunction point_on_line(point, line; ignore_end_vertices::Bool=false)::Bool\n line_points = tuple_points(line)\n n = length(line_points)\n\n exclude_boundary = :none\n for i in 1:n - 1\n if ignore_end_vertices\n if i === 1\n exclude_boundary = :start\n elseif i === n - 2\n exclude_boundary = :end\n elseif (i === 1 && i + 1 === n - 1)\n exclude_boundary = :both\n end\n end\n if point_on_segment(point, (line_points[i], line_points[i + 1]); exclude_boundary)\n return true\n end\n end\n return false\nend\n\nfunction point_on_seg(point, start, stop)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Parse out points","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" x, y = GI.x(point), GI.y(point)\n x1, y1 = GI.x(start), GI.y(start)\n x2, y2 = GI.x(stop), GI.y(stop)\n Δxl = x2 - x1\n Δyl = y2 - y1","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Determine if point is on segment","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" cross = (x - x1) * Δyl - (y - y1) * Δxl\n if cross == 0 # point is on line extending to infinity","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"is line between endpoints","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if abs(Δxl) >= abs(Δyl) # is line between endpoints\n return Δxl > 0 ? x1 <= x <= x2 : x2 <= x <= x1\n else\n return Δyl > 0 ? y1 <= y <= y2 : y2 <= y <= y1\n end\n end\n return false\nend\n\nfunction point_on_segment(point, (start, stop); exclude_boundary::Symbol=:none)::Bool\n x, y = GI.x(point), GI.y(point)\n x1, y1 = GI.x(start), GI.y(start)\n x2, y2 = GI.x(stop), GI.y(stop)\n\n dxc = x - x1\n dyc = y - y1\n dx1 = x2 - x1\n dy1 = y2 - y1","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"TODO use better predicate for crossing here","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" cross = dxc * dy1 - dyc * dx1\n cross != 0 && return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Will constprop optimise these away?","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if exclude_boundary === :none\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 <= x && x <= x2 : x2 <= x && x <= x1\n end\n return dy1 > 0 ? y1 <= y && y <= y2 : y2 <= y && y <= y1\n elseif exclude_boundary === :start\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 < x && x <= x2 : x2 <= x && x < x1\n end\n return dy1 > 0 ? y1 < y && y <= y2 : y2 <= y && y < y1\n elseif exclude_boundary === :end\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 <= x && x < x2 : x2 < x && x <= x1\n end\n return dy1 > 0 ? y1 <= y && y < y2 : y2 < y && y <= y1\n elseif exclude_boundary === :both\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 < x && x < x2 : x2 < x && x < x1\n end\n return dy1 > 0 ? y1 < y && y < y2 : y2 < y && y < y1\n end\n return false\nend\n\n\"\"\"\n point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool\n\nTake a Point and a Polygon and determine if the point\nresides inside the polygon. The polygon can be convex or concave. The function accounts for holes.\n\n# Examples\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (-77.0, 44.0)\npoly = GI.Polygon([[(-81, 41), (-81, 47), (-72, 47), (-72, 41), (-81, 41)]])\nGO.point_in_polygon(point, poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\npoint_in_polygon(point, polygon; kw...)::Bool =\n point_in_polygon(GI.trait(point), point, GI.trait(polygon), polygon; kw...)\nfunction point_in_polygon(\n ::PointTrait, point,\n ::PolygonTrait, poly;\n ignore_boundary::Bool=false,\n check_extent::Bool=false,\n)::Bool","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Cheaply check that the point is inside the polygon extent","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if check_extent\n point_in_extent(point, GI.extent(poly)) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Then check the point is inside the exterior ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" point_in_polygon(\n point,GI.getexterior(poly);\n ignore_boundary, check_extent=false,\n ) || return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Finally make sure the point is not in any of the holes, flipping the boundary condition","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for ring in GI.gethole(poly)\n point_in_polygon(\n point, ring;\n ignore_boundary=!ignore_boundary,\n ) && return false\n end\n return true\nend\n\nfunction point_in_polygon(\n ::PointTrait, pt,\n ::Union{LineStringTrait,LinearRingTrait}, ring;\n ignore_boundary::Bool=false,\n check_extent::Bool=false,\n)::Bool\n x, y = GI.x(pt), GI.y(pt)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Cheaply check that the point is inside the ring extent","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if check_extent\n point_in_extent(point, GI.extent(ring)) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Then check the point is inside the ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" inside = false\n n = GI.npoint(ring)\n p_start = GI.getpoint(ring, 1)\n p_end = GI.getpoint(ring, n)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Handle closed vs opne rings","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if GI.x(p_start) == GI.x(p_end) && GI.y(p_start) == GI.y(p_end)\n n -= 1\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Loop over all points in the ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for i in 1:(n - 1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"First point on edge","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" p_i = GI.getpoint(ring, i)\n xi, yi = GI.x(p_i), GI.y(p_i)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Second point on edge (j = i + 1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" p_j = GI.getpoint(ring, i + 1)\n xj, yj = GI.x(p_j), GI.y(p_j)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check if point is on the ring boundary","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" on_boundary = ( # vertex to point has same slope as edge\n yi * (xj - x) + yj * (x - xi) == y * (xj - xi) &&\n (xi - x) * (xj - x) <= 0 && # x is between xi and xj\n (yi - y) * (yj - y) <= 0 # y is between yi and yj\n )\n on_boundary && return !ignore_boundary","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check if ray from point passes through edge","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" intersects = (\n (yi > y) !== (yj > y) &&\n (x < (xj - xi) * (y - yi) / (yj - yi) + xi)\n )\n if intersects\n inside = !inside\n end\n end\n return inside\nend\n\nfunction point_in_extent(p, extent::Extents.Extent)\n (x1, x2), (y1, y1) = extent.X, extent.Y\n return x1 <= GI.x(p) && y1 <= GI.y(p) && x2 >= GI.x(p) && y2 >= GI.y(p)\nend\n\nline_on_line(line1, line2) = line_on_line(trait(line1), line1, trait(line2), line2)\nfunction line_on_line(t1::GI.AbstractCurveTrait, line1, t2::AbstractCurveTrait, line2)\n for p in GI.getpoint(line1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME: all points being on the line doesn't actually mean the whole line is on the line...","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" point_on_line(p, line2) || return false\n end\n return true\nend\n\nline_in_polygon(line, poly) = line_in_polygon(trait(line), line, trait(poly), poly)\n\nfunction line_in_polygon(\n ::AbstractCurveTrait, line,\n ::Union{AbstractPolygonTrait,LinearRingTrait}, poly\n)\n Extents.intersects(GI.extent(poly), GI.extent(line)) || return false\n\n inside = false\n for i in 1:GI.npoint(line) - 1\n p = GI.getpoint(line, i)\n p2 = GI.getpoint(line, i + 1)\n point_in_polygon(p, poly) || return false\n if !inside\n inside = point_in_polygon(p, poly; ignore_boundary=true)\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME This seems like a hack, we should check for intersections rather than midpoint??","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if !inside\n mid = ((GI.x(p) + GI.x(p2)) / 2, (GI.y(p) + GI.y(p2)) / 2)\n inside = point_in_polygon(mid, poly; ignore_boundary=true)\n end\n end\n return inside\nend\n\nfunction polygon_in_polygon(poly1, poly2)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"edges1, edges2 = toedges(poly1), toedges(poly2) extent1, extent2 = toextent(edges1), toextent(edges2) Check the extents intersect","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" Extents.intersects(GI.extent(poly1), GI.extent(poly2)) || return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check all points in poly1 are in poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for point in GI.getpoint(poly1)\n point_in_polygon(point, poly2) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check the line of poly1 does not intersect the line of poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" #intersects(poly1, poly2) && return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"poly1 must be in poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" return true\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/equals/#Equals","page":"Equals","title":"Equals","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"export equals","category":"page"},{"location":"source/methods/equals/#What-is-equals?","page":"Equals","title":"What is equals?","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"The equals function checks if two geometries are equal. They are equal if they share the same set of points and edges to define the same shape.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\nl1 = GI.LineString([(0.0, 0.0), (0.0, 10.0)])\nl2 = GI.LineString([(0.0, -10.0), (0.0, 3.0)])\nf, a, p = lines(GI.getpoint(l1), color = :blue)\nscatter!(GI.getpoint(l1), color = :blue)\nlines!(GI.getpoint(l2), color = :orange)\nscatter!(GI.getpoint(l2), color = :orange)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"We can see that the two lines do not share a commen set of points and edges in the plot, so they are not equal:","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"equals(l1, l2) # returns false","category":"page"},{"location":"source/methods/equals/#Implementation","page":"Equals","title":"Implementation","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Note that while we need the same set of points and edges, they don't need to be provided in the same order for polygons. For for example, we need the same set points for two multipoints to be equal, but they don't have to be saved in the same order. The winding order also doesn't have to be the same to represent the same geometry. This requires checking every point against every other point in the two geometries we are comparing. Also, some geometries must be \"closed\" like polygons and linear rings. These will be assumed to be closed, even if they don't have a repeated last point explicity written in the coordinates. Additionally, geometries and multi-geometries can be equal if the multi-geometry only includes that single geometry.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"\"\"\"\n equals(geom1, geom2)::Bool\n\nCompare two Geometries return true if they are the same geometry.\n\n# Examples\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\n\nGO.equals(poly1, poly2)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"output","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"true\n```\n\"\"\"\nequals(geom_a, geom_b) = equals(\n GI.trait(geom_a), geom_a,\n GI.trait(geom_b), geom_b,\n)\n\n\"\"\"\n equals(::T, geom_a, ::T, geom_b)::Bool\n\nTwo geometries of the same type, which don't have a equals function to dispatch\noff of should throw an error.\n\"\"\"\nequals(::T, geom_a, ::T, geom_b) where T = error(\"Cant compare $T yet\")\n\n\"\"\"\n equals(trait_a, geom_a, trait_b, geom_b)\n\nTwo geometries which are not of the same type cannot be equal so they always\nreturn false.\n\"\"\"\nequals(trait_a, geom_a, trait_b, geom_b) = false\n\n\"\"\"\n equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool\n\nTwo points are the same if they have the same x and y (and z if 3D) coordinates.\n\"\"\"\nfunction equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)\n GI.ncoord(p1) == GI.ncoord(p2) || return false\n GI.x(p1) == GI.x(p2) || return false\n GI.y(p1) == GI.y(p2) || return false\n if GI.is3d(p1)\n GI.z(p1) == GI.z(p2) || return false\n end\n return true\nend\n\n\"\"\"\n equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single\npoint that is equivalent to the given point.\n\"\"\"\nfunction equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)\n GI.npoint(mp2) == 1 || return false\n return equals(p1, GI.getpoint(mp2, 1))\nend\n\n\"\"\"\n equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single\npoint that is equivalent to the given point.\n\"\"\"\nequals(trait1::GI.MultiPointTrait, mp1, trait2::GI.PointTrait, p2) =\n equals(trait2, p2, trait1, mp1)\n\n\"\"\"\n equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool\n\nTwo multipoints are equal if they share the same set of points.\n\"\"\"\nfunction equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)\n GI.npoint(mp1) == GI.npoint(mp2) || return false\n for p1 in GI.getpoint(mp1)\n has_match = false # if point has a matching point in other multipoint\n for p2 in GI.getpoint(mp2)\n if equals(p1, p2)\n has_match = true\n break\n end\n end\n has_match || return false # if no matching point, can't be equal\n end\n return true # all points had a match\nend\n\n\"\"\"\n _equals_curves(c1, c2, closed_type1, closed_type2)::Bool\n\nTwo curves are equal if they share the same set of point, representing the same\ngeometry. Both curves must must be composed of the same set of points, however,\nthey do not have to wind in the same direction, or start on the same point to be\nequivalent.\nInputs:\n c1 first geometry\n c2 second geometry\n closed_type1::Bool true if c1 is closed by definition (polygon, linear ring)\n closed_type2::Bool true if c2 is closed by definition (polygon, linear ring)\n\"\"\"\nfunction _equals_curves(c1, c2, closed_type1, closed_type2)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if both curves are closed or not","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 = GI.npoint(c1)\n n2 = GI.npoint(c2)\n c1_repeat_point = GI.getpoint(c1, 1) == GI.getpoint(c1, n1)\n n2 = GI.npoint(c2)\n c2_repeat_point = GI.getpoint(c2, 1) == GI.getpoint(c2, n2)\n closed1 = closed_type1 || c1_repeat_point\n closed2 = closed_type2 || c2_repeat_point\n closed1 == closed2 || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"How many points in each curve","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 -= c1_repeat_point ? 1 : 0\n n2 -= c2_repeat_point ? 1 : 0\n n1 == n2 || return false\n n1 == 0 && return true","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Find offset between curves","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" jstart = nothing\n p1 = GI.getpoint(c1, 1)\n for i in 1:n2\n if equals(p1, GI.getpoint(c2, i))\n jstart = i\n break\n end\n end","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"no point matches the first point","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" isnothing(jstart) && return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"found match for only point","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 == 1 && return true","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"if isn't closed and first or last point don't match, not same curve","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" !closed_type1 && (jstart != 1 && jstart != n1) && return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if curves are going in same direction","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" i = 2\n j = jstart + 1\n j -= j > n2 ? n2 : 0\n same_direction = equals(GI.getpoint(c1, i), GI.getpoint(c2, j))","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"if only 2 points, we have already compared both","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 == 2 && return same_direction","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check all remaining points are the same wrapping around line","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" jstep = same_direction ? 1 : -1\n for i in 2:n1\n ip = GI.getpoint(c1, i)\n j = jstart + (i - 1) * jstep\n j += (0 < j <= n2) ? 0 : (n2 * -jstep)\n jp = GI.getpoint(c2, j)\n equals(ip, jp) || return false\n end\n return true\nend\n\n\"\"\"\n equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n )::Bool\n\nTwo lines/linestrings are equal if they share the same set of points going\nalong the curve. Note that lines/linestrings aren't closed by defintion.\n\"\"\"\nequals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n) = _equals_curves(l1, l2, false, false)\n\n\"\"\"\n equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n )::Bool\n\nA line/linestring and a linear ring are equal if they share the same set of\npoints going along the curve. Note that lines aren't closed by defintion, but\nrings are, so the line must have a repeated last point to be equal\n\"\"\"\nequals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n) = _equals_curves(l1, l2, false, true)\n\n\"\"\"\n equals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n )::Bool\n\nA linear ring and a line/linestring are equal if they share the same set of\npoints going along the curve. Note that lines aren't closed by defintion, but\nrings are, so the line must have a repeated last point to be equal\n\"\"\"\nequals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n) = _equals_curves(l1, l2, true, false)\n\n\"\"\"\n equals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n )::Bool\n\nTwo linear rings are equal if they share the same set of points going along the\ncurve. Note that rings are closed by definition, so they can have, but don't\nneed, a repeated last point to be equal.\n\"\"\"\nequals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n) = _equals_curves(l1, l2, true, true)\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo polygons are equal if they share the same exterior edge and holes.\n\"\"\"\nfunction equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if exterior is equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" _equals_curves(\n GI.getexterior(geom_a), GI.getexterior(geom_b),\n true, true, # linear rings are closed by definition\n ) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if number of holes are equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" GI.nhole(geom_a) == GI.nhole(geom_b) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if holes are equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" for ihole in GI.gethole(geom_a)\n has_match = false\n for jhole in GI.gethole(geom_b)\n if _equals_curves(\n ihole, jhole,\n true, true, # linear rings are closed by definition\n )\n has_match = true\n break\n end\n end\n has_match || return false\n end\n return true\nend\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a\nsingle polygon that is equivalent to the given polygon.\n\"\"\"\nfunction equals(::GI.PolygonTrait, geom_a, ::MultiPolygonTrait, geom_b)\n GI.npolygon(geom_b) == 1 || return false\n return equals(geom_a, GI.getpolygon(geom_b, 1))\nend\n\n\"\"\"\n equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a\nsingle polygon that is equivalent to the given polygon.\n\"\"\"\nequals(trait_a::GI.MultiPolygonTrait, geom_a, trait_b::PolygonTrait, geom_b) =\n equals(trait_b, geom_b, trait_a, geom_a)\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo multipolygons are equal if they share the same set of polygons.\n\"\"\"\nfunction equals(::GI.MultiPolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if same number of polygons","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" GI.npolygon(geom_a) == GI.npolygon(geom_b) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if each polygon has a matching polygon","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" for poly_a in GI.getpolygon(geom_a)\n has_match = false\n for poly_b in GI.getpolygon(geom_b)\n if equals(poly_a, poly_b)\n has_match = true\n break\n end\n end\n has_match || return false\n end\n return true\nend","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/tuples/#Tuple-conversion","page":"Tuple conversion","title":"Tuple conversion","text":"","category":"section"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"\"\"\"\n tuples(obj)\n\nConvert all points on obj to `Tuple`s.\n\"\"\"\nfunction tuples(geom; kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; kw...) do p\n (Float64(GI.x(p)), Float64(GI.y(p)), Float64(GI.z(p)))\n end\n else\n return apply(PointTrait, geom; kw...) do p\n (Float64(GI.x(p)), Float64(GI.y(p)))\n end\n end\nend","category":"page"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"","category":"page"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"This page was generated using Literate.jl.","category":"page"},{"location":"","page":"Home","title":"Home","text":"CurrentModule = GeometryOps","category":"page"},{"location":"#GeometryOps","page":"Home","title":"GeometryOps","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"Documentation for GeometryOps.","category":"page"},{"location":"","page":"Home","title":"Home","text":"","category":"page"},{"location":"","page":"Home","title":"Home","text":"Modules = [GeometryOps]","category":"page"},{"location":"#GeometryOps.AbstractBarycentricCoordinateMethod","page":"Home","title":"GeometryOps.AbstractBarycentricCoordinateMethod","text":"abstract type AbstractBarycentricCoordinateMethod\n\nAbstract supertype for barycentric coordinate methods. The subtypes may serve as dispatch types, or may cache some information about the target polygon. \n\nAPI\n\nThe following methods must be implemented for all subtypes:\n\nbarycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})\nbarycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V\nbarycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V\n\nThe rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.DouglasPeucker","page":"Home","title":"GeometryOps.DouglasPeucker","text":"DouglasPeucker <: SimplifyAlg\n\nDouglasPeucker(; number, ratio, tol)\n\nSimplifies geometries by removing points below tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum distance a point will be from the line joining its neighboring points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.MeanValue","page":"Home","title":"GeometryOps.MeanValue","text":"MeanValue() <: AbstractBarycentricCoordinateMethod\n\nThis method calculates barycentric coordinates using the mean value method.\n\nReferences\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.RadialDistance","page":"Home","title":"GeometryOps.RadialDistance","text":"RadialDistance <: SimplifyAlg\n\nSimplifies geometries by removing points less than tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum distance between points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.SimplifyAlg","page":"Home","title":"GeometryOps.SimplifyAlg","text":"abstract type SimplifyAlg\n\nAbstract type for simplification algorithms.\n\nAPI\n\nFor now, the algorithm must hold the number, ratio and tol properties. \n\nSimplification algorithm types can hook into the interface by implementing the _simplify(trait, alg, geom) methods for whichever traits are necessary.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.VisvalingamWhyatt","page":"Home","title":"GeometryOps.VisvalingamWhyatt","text":"VisvalingamWhyatt <: SimplifyAlg\n\nVisvalingamWhyatt(; kw...)\n\nSimplifies geometries by removing points below tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum area of a triangle made with a point and its neighboring points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps._det-Union{Tuple{T2}, Tuple{T1}, Tuple{Union{Tuple{T1, T1}, StaticArraysCore.StaticArray{Tuple{2}, T1, 1}}, Union{Tuple{T2, T2}, StaticArraysCore.StaticArray{Tuple{2}, T2, 1}}}} where {T1<:Real, T2<:Real}","page":"Home","title":"GeometryOps._det","text":"_det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}\n\nReturns the determinant of the matrix formed by hcat'ing two points s1 and s2.\n\nSpecifically, this is: \n\ns1[1] * s2[2] - s1[2] * s2[1]\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._distance-Tuple{Any, Any, Any}","page":"Home","title":"GeometryOps._distance","text":"Distance from p0 to the line segment formed by p1 and p2. Implementation from Turf.jl.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._equals_curves-NTuple{4, Any}","page":"Home","title":"GeometryOps._equals_curves","text":"_equals_curves(c1, c2, closed_type1, closed_type2)::Bool\n\nTwo curves are equal if they share the same set of point, representing the same geometry. Both curves must must be composed of the same set of points, however, they do not have to wind in the same direction, or start on the same point to be equivalent. Inputs: c1 first geometry c2 second geometry closedtype1::Bool true if c1 is closed by definition (polygon, linear ring) closedtype2::Bool true if c2 is closed by definition (polygon, linear ring)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._intersection_point-Tuple{Tuple, Tuple}","page":"Home","title":"GeometryOps._intersection_point","text":"_intersection_point(\n (a1, a2)::Tuple,\n (b1, b2)::Tuple,\n)\n\nCalculates the intersection point between two lines if it exists, and as if the line extended to infinity, and the fractional component of each line from the initial end point to the intersection point. Inputs: (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line Outputs: (x, y)::Tuple{::Real, ::Real} intersection point (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection Both are ::Nothing if point doesn't exist!\n\nCalculation derivation can be found here: https://stackoverflow.com/questions/563198/\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._line_intersects-Tuple{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}, Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}","page":"Home","title":"GeometryOps._line_intersects","text":"_line_intersects(\n edge_a::Edge,\n edge_b::Edge,\n)::Bool\n\nReturns true if there is at least one intersection between two edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._line_intersects-Tuple{Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}, Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}}","page":"Home","title":"GeometryOps._line_intersects","text":"_line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n)::Bool\n\nReturns true if there is at least one intersection between edges within the two lists of edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._overlaps-Tuple{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}, Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}","page":"Home","title":"GeometryOps._overlaps","text":"_overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n)::Bool\n\nIf the edges overlap, meaning that they are colinear but each have one endpoint outside of the other edge, return true. Else false. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.apply-Union{Tuple{Target}, Tuple{Any, Type{Target}, Any}} where Target","page":"Home","title":"GeometryOps.apply","text":"apply(f, target::Type{<:AbstractTrait}, obj; crs)\n\nReconstruct a geometry or feature using the function f on the target trait.\n\nf(target_geom) => x where x also has the target trait, or an equivalent.\n\nThe result is an functionally similar geometry with values depending on f\n\nFlipped point the order in any feature or geometry, or iterables of either:\n\n```juia import GeoInterface as GI import GeometryOps as GO geom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]), GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])\n\nflipped_geom = GO.apply(GI.PointTrait, geom) do p (GI.y(p), GI.x(p)) end\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Any, Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(trait, geom)::Tuple{T, T}\n\nReturns the centroid of a polygon or multipolygon, which is calculated by weighting edges by their area component by convention.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(geom)::Tuple{T, T}\n\nReturns the centroid of a given line segment, linear ring, polygon, or mutlipolygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)::Tuple{T, T}\n\nReturns the centroid of a line string or linear ring, which is calculated by weighting line segments by their length by convention.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait}, \n geom,\n)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given geom.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(::GI.MultiPolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given multipolygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(::GI.PolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given a line string or a linear ring. Note that this is only valid if the line segment or linear ring is closed. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_length-Tuple{Any}","page":"Home","title":"GeometryOps.centroid_and_length","text":"centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_length-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid_and_length","text":"centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.contains-Tuple{Any, Any}","page":"Home","title":"GeometryOps.contains","text":"contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool\n\nReturn true if the second geometry is completely contained by the first geometry. The interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b) must not intersect the exterior of the primary (geometry a). contains returns the exact opposite result of within.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\n\nGO.contains(line, point)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.crosses-Tuple{Any, Any}","page":"Home","title":"GeometryOps.crosses","text":" crosses(geom1, geom2)::Bool\n\nReturn true if the intersection results in a geometry whose dimension is one less than the maximum dimension of the two source geometries and the intersection set is interior to both source geometries.\n\nTODO: broken\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\nline2 = GI.LineString([(-2, 2), (4, 2)])\n\nGO.crosses(line1, line2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.disjoint-Tuple{Any, Any}","page":"Home","title":"GeometryOps.disjoint","text":"disjoint(geom1, geom2)::Bool\n\nReturn true if the intersection of the two geometries is an empty set.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-1, 2), (3, 2), (3, 3), (-1, 3), (-1, 2)]])\npoint = (1, 1)\nGO.disjoint(poly, point)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-NTuple{4, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(trait_a, geom_a, trait_b, geom_b)\n\nTwo geometries which are not of the same type cannot be equal so they always return false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Any, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(geom1, geom2)::Bool\n\nCompare two Geometries return true if they are the same geometry.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\n\nGO.equals(poly1, poly2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.LinearRingTrait, Any, GeoInterface.LinearRingTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n)::Bool\n\nTwo linear rings are equal if they share the same set of points going along the curve. Note that rings are closed by definition, so they can have, but don't need, a repeated last point to be equal.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.LinearRingTrait, Any, Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n)::Bool\n\nA linear ring and a line/linestring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool\n\nTwo multipoints are equal if they share the same set of points.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.PointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo multipolygons are equal if they share the same set of polygons.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PointTrait, Any, GeoInterface.PointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool\n\nTwo points are the same if they have the same x and y (and z if 3D) coordinates.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo polygons are equal if they share the same exterior edge and holes.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any, GeoInterface.LinearRingTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n)::Bool\n\nA line/linestring and a linear ring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any, Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n)::Bool\n\nTwo lines/linestrings are equal if they share the same set of points going along the curve. Note that lines/linestrings aren't closed by defintion.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Union{Tuple{T}, Tuple{T, Any, T, Any}} where T","page":"Home","title":"GeometryOps.equals","text":"equals(::T, geom_a, ::T, geom_b)::Bool\n\nTwo geometries of the same type, which don't have a equals function to dispatch off of should throw an error.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.flatten-Union{Tuple{Target}, Tuple{Type{Target}, Any}} where Target<:GeoInterface.AbstractTrait","page":"Home","title":"GeometryOps.flatten","text":"flatten(target::Type{<:GI.AbstractTrait}, geom)\n\nLazily flatten any geometry, feature or iterator of geometries or features so that objects with the specified trait are returned by the iterator.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.flip-Tuple{Any}","page":"Home","title":"GeometryOps.flip","text":"flip(obj)\n\nSwap all of the x and y coordinates in obj, otherwise keeping the original structure (but not necessarily the original type).\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.get_contours-Tuple{AbstractMatrix}","page":"Home","title":"GeometryOps.get_contours","text":"get_contours(A::AbstractMatrix)\n\nReturns contours as vectors of CartesianIndex.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}\n\nReturn an intersection point between two geometries. Return nothing if none are found. Else, the return type depends on the input. It will be a union between: a point, a line, a linear ring, a polygon, or a multipolygon\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersection(line1, line2)\n\n# output\n(125.58375366067547, -14.83572303404496)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n)::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.LineTrait, line_a,\n ::GI.LineTrait, line_b,\n)::Union{\n ::Tuple{::Real, ::Real},\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.PolygonTrait, poly_a,\n ::GI.PolygonTrait, poly_b,\n)::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection_points-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersection_points","text":"intersection_points(\n geom_a,\n geom_b,\n)::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n}\n\nReturn a list of intersection points between two geometries. If no intersection point was possible given geometry extents, return nothing. If none are found, return an empty list.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection_points-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersection_points","text":"intersection_points(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n)::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n}\n\nCalculates the list of intersection points between two geometries, inlcuding line segments, line strings, linear rings, polygons, and multipolygons. If no intersection points were possible given geometry extents, return nothing. If none are found, return an empty list.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(geom1, geom2)::Bool\n\nCheck if two geometries intersect, returning true if so and false otherwise.\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersects(line1, line2)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool\n\nReturns true if two geometries intersect with one another and false otherwise. For all geometries but lines, convert the geometry to a list of edges and cross compare the edges for intersections.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool\n\nReturns true if two line segments intersect and false otherwise.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.isclockwise-Tuple{Any}","page":"Home","title":"GeometryOps.isclockwise","text":"isclockwise(line::Union{LineString, Vector{Position}})::Bool\n\nTake a ring and return true or false whether or not the ring is clockwise or counter-clockwise.\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nring = GI.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)])\nGO.isclockwise(ring)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.isconcave-Tuple{Any}","page":"Home","title":"GeometryOps.isconcave","text":"isconcave(poly::Polygon)::Bool\n\nTake a polygon and return true or false as to whether it is concave or not.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoly = GI.Polygon([[(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]])\nGO.isconcave(poly)\n\n# output\nfalse\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{Any, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(geom1, geom2)::Bool\n\nCompare two Geometries of the same dimension and return true if their intersection set results in a geometry different from both but of the same dimension. This means one geometry cannot be within or contain the other and they cannot be equal\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(1,1), (1,6), (6,6), (6,1), (1,1)]])\n\nGO.overlaps(poly1, poly2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool\n\nFor any non-specified pair, all have non-matching dimensions, return false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool\n\nIf the lines overlap, meaning that they are colinear but each have one endpoint outside of the other line, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n)::Bool\n\nIf the multipoints overlap, meaning some, but not all, of the points within the multipoints are shared, return true.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n)::Bool\n\nReturn true if at least one pair of polygons from multipolygons overlap. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.PolygonTrait, poly2,\n)::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n)::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n)::Bool\n\nIf the two polygons intersect with one another, but are not equal, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.Wrappers.LinearRing}, Any, Union{GeoInterface.LineStringTrait, GeoInterface.Wrappers.LinearRing}, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n)::Bool\n\nIf the curves overlap, meaning that at least one edge of each curve overlaps, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.point_in_polygon-Tuple{Any, Any}","page":"Home","title":"GeometryOps.point_in_polygon","text":"point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool\n\nTake a Point and a Polygon and determine if the point resides inside the polygon. The polygon can be convex or concave. The function accounts for holes.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (-77.0, 44.0)\npoly = GI.Polygon([[(-81, 41), (-81, 47), (-72, 47), (-72, 41), (-81, 41)]])\nGO.point_in_polygon(point, poly)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.point_on_line-Tuple{Any, Any}","page":"Home","title":"GeometryOps.point_on_line","text":"point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool\n\nReturn true if a point is on a line. Accept a optional parameter to ignore the start and end vertices of the linestring.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (1, 1)\nline = GI.LineString([(0, 0), (3, 3), (4, 4)])\nGO.point_on_line(point, line)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.polygon_to_line-Tuple{Any}","page":"Home","title":"GeometryOps.polygon_to_line","text":"polygon_to_line(poly::Polygon)\n\nConverts a Polygon to LineString or MultiLineString\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)]])\nGO.polygon_to_line(poly)\n# output\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.polygonize-Tuple{AbstractMatrix}","page":"Home","title":"GeometryOps.polygonize","text":"polygonize(A; minpoints=10)\npolygonize(xs, ys, A; minpoints=10)\n\nConvert matrix A to polygons.\n\nIf xs and ys are passed in they are used as the pixel center points.\n\nKeywords\n\nminpoints: ignore polygons with less than minpoints points. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.rebuild-Tuple{Any, Any}","page":"Home","title":"GeometryOps.rebuild","text":"rebuild(geom, child_geoms)\n\nRebuild a geometry from child geometries.\n\nBy default geometries will be rebuilt as a GeoInterface.Wrappers geometry, but rebuild can have methods added to it to dispatch on geometries from other packages and specify how to rebuild them.\n\n(Maybe it should go into GeoInterface.jl)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.reconstruct-Tuple{Any, Any}","page":"Home","title":"GeometryOps.reconstruct","text":"reconstruct(geom, components)\n\nReconstruct geom from an iterable of component objects that match its structure.\n\nAll objects in components must have the same GeoInterface.trait.\n\nUsusally used in combination with flatten.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.reproject-Tuple{Any}","page":"Home","title":"GeometryOps.reproject","text":"reproject(geometry; source_crs, target_crs, transform, always_xy, time)\nreproject(geometry, source_crs, target_crs; always_xy, time)\nreproject(geometry, transform; always_xy, time)\n\nReproject any GeoInterface.jl compatible geometry from source_crs to target_crs.\n\nThe returned object will be constructed from GeoInterface.WrapperGeometry geometries, wrapping views of a Vector{Proj.Point{D}}, where D is the dimension.\n\nArguments\n\ngeometry: Any GeoInterface.jl compatible geometries.\nsource_crs: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.\ntarget_crs: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.\n\nIf these a passed as keywords, transform will take priority. Without it target_crs is always needed, and source_crs is needed if it is not retreivable from the geometry with GeoInterface.crs(geometry).\n\nKeywords\n\n-always_xy: force x, y coordinate order, true by default. false will expect and return points in the crs coordinate order. -time: the time for the coordinates. Inf by default.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.signed_area-Tuple{Any}","page":"Home","title":"GeometryOps.signed_area","text":"signed_area(geom)::Real\n\nReturns the signed area of the geometry, based on winding order.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.signed_distance-Tuple{Any, Any, Any}","page":"Home","title":"GeometryOps.signed_distance","text":"signed_distance(geom, x::Real, y::Real)::Float64\n\nCalculates the signed distance from the geometry geom to the point defined by (x, y). Points within geom have a negative distance, and points outside of geom have a positive distance.\n\nIf geom is a MultiPolygon, then this function returns the maximum distance to any of the polygons in geom.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.simplify-Tuple{Any}","page":"Home","title":"GeometryOps.simplify","text":"simplify(obj; kw...)\nsimplify(::SimplifyAlg, obj)\n\nSimplify a geometry, feature, feature collection, or nested vectors or a table of these.\n\nRadialDistance, DouglasPeucker, or VisvalingamWhyatt algorithms are available, listed in order of increasing quality but decreaseing performance.\n\nPoinTrait and MultiPointTrait are returned unchanged.\n\nThe default behaviour is simplify(DouglasPeucker(; kw...), obj). Pass in other SimplifyAlg to use other algorithms.\n\nExample\n\nSimplify a polygon to have six points:\n\nimport GeoInterface as GI\nimport GeometryOps as GO\n\npoly = GI.Polygon([[\n [-70.603637, -33.399918],\n [-70.614624, -33.395332],\n [-70.639343, -33.392466],\n [-70.659942, -33.394759],\n [-70.683975, -33.404504],\n [-70.697021, -33.419406],\n [-70.701141, -33.434306],\n [-70.700454, -33.446339],\n [-70.694274, -33.458369],\n [-70.682601, -33.465816],\n [-70.668869, -33.472117],\n [-70.646209, -33.473835],\n [-70.624923, -33.472117],\n [-70.609817, -33.468107],\n [-70.595397, -33.458369],\n [-70.587158, -33.442901],\n [-70.587158, -33.426283],\n [-70.590591, -33.414248],\n [-70.594711, -33.406224],\n [-70.603637, -33.399918]]])\n\nsimple = GO.simplify(poly; number=6)\nGI.npoint(simple)\n\n# output\n6\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.t_value-Union{Tuple{T2}, Tuple{T1}, Tuple{N}, Tuple{Union{Tuple{Vararg{T1, N}}, StaticArraysCore.StaticArray{Tuple{N}, T1, 1}}, Union{Tuple{Vararg{T1, N}}, StaticArraysCore.StaticArray{Tuple{N}, T1, 1}}, T2, T2}} where {N, T1<:Real, T2<:Real}","page":"Home","title":"GeometryOps.t_value","text":"t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)\n\nReturns the \"T-value\" as described in Hormann's presentation [HormannPresentation] on how to calculate the mean-value coordinate. \n\nHere, sᵢ is the vector from vertex vᵢ to the point, and rᵢ is the norm (length) of sᵢ. s must be Point and r must be real numbers.\n\ntᵢ = fracmathrmdetleft(sᵢ sᵢ₁right)rᵢ * rᵢ₁ + sᵢ sᵢ₁\n\n[HormannPresentation]: K. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.\n\n```\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.to_edges-Tuple{Any}","page":"Home","title":"GeometryOps.to_edges","text":"to_edges()\n\nConvert any geometry or collection of geometries into a flat vector of Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}} edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.tuples-Tuple{Any}","page":"Home","title":"GeometryOps.tuples","text":"tuples(obj)\n\nConvert all points on obj to Tuples.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.unwrap","page":"Home","title":"GeometryOps.unwrap","text":"unwrap(target::Type{<:AbstractTrait}, obj)\nunwrap(f, target::Type{<:AbstractTrait}, obj)\n\nUnwrap the geometry to vectors, down to the target trait.\n\nIf f is passed in it will be applied to the target geometries as they are found.\n\n\n\n\n\n","category":"function"},{"location":"#GeometryOps.weighted_mean-Union{Tuple{WT}, Tuple{WT, Any, Any}} where WT<:Real","page":"Home","title":"GeometryOps.weighted_mean","text":"weighted_mean(weight::Real, x1, x2)\n\nReturns the weighted mean of x1 and x2, where weight is the weight of x1.\n\nSpecifically, calculates x1 * weight + x2 * (1 - weight).\n\nnote: Note\nThe idea for this method is that you can override this for custom types, like Color types, in extension modules.\n\n\n\n\n\n","category":"method"}] +[{"location":"source/GeometryOps/#GeometryOps.jl","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"","category":"section"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"module GeometryOps\n\nusing GeoInterface\nusing GeometryBasics\nimport Proj\nusing LinearAlgebra\nimport ExactPredicates\n\nusing GeoInterface.Extents: Extents\n\nconst GI = GeoInterface\nconst GB = GeometryBasics\n\nconst TuplePoint = Tuple{Float64,Float64}\nconst Edge = Tuple{TuplePoint,TuplePoint}\n\ninclude(\"primitives.jl\")\ninclude(\"utils.jl\")\n\ninclude(\"methods/bools.jl\")\ninclude(\"methods/signed_distance.jl\")\ninclude(\"methods/signed_area.jl\")\ninclude(\"methods/centroid.jl\")\ninclude(\"methods/intersects.jl\")\ninclude(\"methods/contains.jl\")\ninclude(\"methods/crosses.jl\")\ninclude(\"methods/disjoint.jl\")\ninclude(\"methods/overlaps.jl\")\ninclude(\"methods/within.jl\")\ninclude(\"methods/polygonize.jl\")\ninclude(\"methods/barycentric.jl\")\ninclude(\"methods/equals.jl\")\n\ninclude(\"transformations/flip.jl\")\ninclude(\"transformations/simplify.jl\")\ninclude(\"transformations/reproject.jl\")\ninclude(\"transformations/tuples.jl\")\n\nend","category":"page"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"","category":"page"},{"location":"source/GeometryOps/","page":"GeometryOps.jl","title":"GeometryOps.jl","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/primitives/#Primitive-functions","page":"Primitive functions","title":"Primitive functions","text":"","category":"section"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"This file mainly defines the apply function.","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"\"\"\"\n apply(f, target::Type{<:AbstractTrait}, obj; crs)\n\nReconstruct a geometry or feature using the function `f` on the `target` trait.\n\n`f(target_geom) => x` where `x` also has the `target` trait, or an equivalent.\n\nThe result is an functionally similar geometry with values depending on `f`","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Flipped point the order in any feature or geometry, or iterables of either:","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"```juia\nimport GeoInterface as GI\nimport GeometryOps as GO\ngeom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]),\n GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])\n\nflipped_geom = GO.apply(GI.PointTrait, geom) do p\n (GI.y(p), GI.x(p))\nend\n\"\"\"\napply(f, ::Type{Target}, geom; kw...) where Target = _apply(f, Target, geom; kw...)\n\n_apply(f, ::Type{Target}, geom; kw...) where Target =\n _apply(f, Target, GI.trait(geom), geom; kw...)\nfunction _apply(f, ::Type{Target}, ::Nothing, A::AbstractArray; threaded=false, kw...) where Target\n _maptasks(eachindex(A); threaded) do i\n _apply(f, Target, A[i]; kw...)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to _apply over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, ::Nothing, iterable; kw...) where Target =\n map(x -> _apply(f, Target, x; kw...), iterable)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, ::GI.FeatureCollectionTrait, fc;\n crs=GI.crs(fc), calc_extent=false, threaded=false\n) where Target\n features = _maptasks(1:GI.nfeature(fc); threaded) do i\n feature = GI.getfeature(fc, i)\n _apply(f, Target, feature; crs, calc_extent)::GI.Feature\n end\n if calc_extent\n extent = reduce(features; init=GI.extent(first(features))) do acc, f\n Extents.union(acc, Extents.extent(f))\n end\n return GI.FeatureCollection(features; crs, extent)\n else\n return GI.FeatureCollection(features; crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap features","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, ::GI.FeatureTrait, feature;\n crs=GI.crs(feature), calc_extent=false, threaded=false\n) where Target\n properties = GI.properties(feature)\n geometry = _apply(f, Target, GI.geometry(feature); crs, calc_extent)\n if calc_extent\n extent = GI.extent(geometry)\n return GI.Feature(geometry; properties, crs, extent)\n else\n return GI.Feature(geometry; properties, crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Reconstruct nested geometries","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _apply(f, ::Type{Target}, trait, geom;\n crs=GI.crs(geom), calc_extent=false, threaded=false\n)::(GI.geointerface_geomtype(trait)) where Target","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"TODO handle zero length...","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" geoms = _maptasks(1:GI.ngeom(geom); threaded) do i\n _apply(f, Target, GI.getgeom(geom, i); crs, calc_extent)\n end\n if calc_extent\n extent = GI.extent(first(geoms))\n for g in geoms\n extent = Extents.union(extent, GI.extent(g))\n end\n return rebuild(geom, geoms; crs, extent)\n else\n return rebuild(geom, geoms; crs)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, ::Trait, geom; crs=GI.crs(geom), kw...) where {Target,Trait<:Target} = f(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{Target}, trait::GI.PointTrait, geom; crs=nothing, kw...) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_apply(f, ::Type{GI.PointTrait}, trait::GI.PointTrait, geom; kw...) = f(geom)\n_apply(f, ::Type{GI.FeatureTrait}, ::GI.FeatureTrait, feature; kw...) = f(feature)\n_apply(f, ::Type{GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc; kw...) = f(fc)\n\n\"\"\"\n unwrap(target::Type{<:AbstractTrait}, obj)\n unwrap(f, target::Type{<:AbstractTrait}, obj)\n\nUnwrap the geometry to vectors, down to the target trait.\n\nIf `f` is passed in it will be applied to the target geometries\nas they are found.\n\"\"\"\nfunction unwrap end\nunwrap(target::Type, geom) = unwrap(identity, target, geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Add dispatch argument for trait","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, geom) = unwrap(f, target, GI.trait(geom), geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to unwrap over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, ::Nothing, iterable) =\n map(x -> unwrap(f, target, x), iterable)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Rewrap feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, ::GI.FeatureCollectionTrait, fc) =\n map(x -> unwrap(f, target, x), GI.getfeature(fc))\nunwrap(f, target::Type, ::GI.FeatureTrait, feature) = unwrap(f, target, GI.geometry(feature))\nunwrap(f, target::Type, trait, geom) = map(g -> unwrap(f, target, g), GI.getgeom(geom))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, ::Type{Target}, ::Trait, geom) where {Target,Trait<:Target} = f(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type, trait::GI.PointTrait, geom) =\n throw(ArgumentError(\"target $target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"unwrap(f, target::Type{GI.PointTrait}, trait::GI.PointTrait, geom) = f(geom)\nunwrap(f, target::Type{GI.FeatureTrait}, ::GI.FeatureTrait, feature) = f(feature)\nunwrap(f, target::Type{GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc) = f(fc)\n\n\"\"\"\n flatten(target::Type{<:GI.AbstractTrait}, geom)\n\nLazily flatten any geometry, feature or iterator of geometries or features\nso that objects with the specified trait are returned by the iterator.\n\"\"\"\nflatten(::Type{Target}, geom) where {Target<:GI.AbstractTrait} = flatten(identity, Target, geom)\nflatten(f, ::Type{Target}, geom) where {Target<:GI.AbstractTrait} = _flatten(f, Target, geom)\n\n_flatten(f, ::Type{Target}, geom) where Target = _flatten(f, Target, GI.trait(geom), geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to flatten over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, ::Nothing, iterable) where Target =\n Iterators.flatten(Iterators.map(x -> _flatten(f, Target, x), iterable))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Flatten feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _flatten(f, ::Type{Target}, ::GI.FeatureCollectionTrait, fc) where Target\n Iterators.map(GI.getfeature(fc)) do feature\n _flatten(f, Target, feature)\n end |> Iterators.flatten\nend\n_flatten(f, ::Type{Target}, ::GI.FeatureTrait, feature) where Target =\n _flatten(f, Target, GI.geometry(feature))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, ::Trait, geom) where {Target,Trait<:Target} = (f(geom),)\n_flatten(f, ::Type{Target}, trait, geom) where Target =\n Iterators.flatten(Iterators.map(g -> _flatten(f, Target, g), GI.getgeom(geom)))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{Target}, trait::GI.PointTrait, geom) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_flatten(f, ::Type{<:GI.PointTrait}, ::GI.PointTrait, geom) = (f(geom),)\n_flatten(f, ::Type{<:GI.FeatureTrait}, ::GI.FeatureTrait, feature) = (f(feature),)\n_flatten(f, ::Type{<:GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc) = (f(fc),)\n\n\n\"\"\"\n reconstruct(geom, components)\n\nReconstruct `geom` from an iterable of component objects that match its structure.\n\nAll objects in `components` must have the same `GeoInterface.trait`.\n\nUsusally used in combination with `flatten`.\n\"\"\"\nreconstruct(geom, components) = first(_reconstruct(geom, components))\n\n_reconstruct(geom, components) =\n _reconstruct(typeof(GI.trait(first(components))), geom, components, 1)\n_reconstruct(::Type{Target}, geom, components, iter) where Target =\n _reconstruct(Target, GI.trait(geom), geom, components, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Try to reconstruct over iterables","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _reconstruct(::Type{Target}, ::Nothing, iterable, components, iter) where Target\n vect = map(iterable) do x\n obj, iter = _reconstruct(Target, x, components, iter)\n obj\n end\n return vect, iter\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Reconstruct feature collections","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _reconstruct(::Type{Target}, ::GI.FeatureCollectionTrait, fc, components, iter) where Target\n features = map(GI.getfeature(fc)) do feature\n newfeature, iter = _reconstruct(Target, feature, components, iter)\n newfeature\n end\n return GI.FeatureCollection(features; crs=GI.crs(fc)), iter\nend\nfunction _reconstruct(::Type{Target}, ::GI.FeatureTrait, feature, components, iter) where Target\n geom, iter = _reconstruct(Target, GI.geometry(feature), components, iter)\n return GI.Feature(geom; properties=GI.properties(feature), crs=GI.crs(feature)), iter\nend\nfunction _reconstruct(::Type{Target}, trait, geom, components, iter) where Target\n geoms = map(GI.getgeom(geom)) do subgeom\n subgeom1, iter = _reconstruct(Target, GI.trait(subgeom), subgeom, components, iter)\n subgeom1\n end\n return rebuild(geom, geoms), iter\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Apply f to the target geometry","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{Target}, ::Trait, geom, components, iter) where {Target,Trait<:Target} =\n iterate(components, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Specific cases to avoid method ambiguity","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{<:GI.PointTrait}, ::GI.PointTrait, geom, components, iter) = iterate(components, iter)\n_reconstruct(::Type{<:GI.FeatureTrait}, ::GI.FeatureTrait, feature, components, iter) = iterate(feature, iter)\n_reconstruct(::Type{<:GI.FeatureCollectionTrait}, ::GI.FeatureCollectionTrait, fc, components, iter) = iterate(fc, iter)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Fail if we hit PointTrait without running f","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"_reconstruct(::Type{Target}, trait::GI.PointTrait, geom, components, iter) where Target =\n throw(ArgumentError(\"target $Target not found, but reached a `PointTrait` leaf\"))\n\n\nconst BasicsGeoms = Union{GB.AbstractGeometry,GB.AbstractFace,GB.AbstractPoint,GB.AbstractMesh,\n GB.AbstractPolygon,GB.LineString,GB.MultiPoint,GB.MultiLineString,GB.MultiPolygon,GB.Mesh}\n\n\"\"\"\n rebuild(geom, child_geoms)\n\nRebuild a geometry from child geometries.\n\nBy default geometries will be rebuilt as a GeoInterface.Wrappers\ngeometry, but `rebuild` can have methods added to it to dispatch\non geometries from other packages and specify how to rebuild them.\n\n(Maybe it should go into GeoInterface.jl)\n\"\"\"\nrebuild(geom, child_geoms; kw...) = rebuild(GI.trait(geom), geom, child_geoms; kw...)\nfunction rebuild(trait::GI.AbstractTrait, geom, child_geoms; crs=GI.crs(geom), extent=nothing)\n T = GI.geointerface_geomtype(trait)\n if GI.is3d(geom)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"The Boolean type parameters here indicate 3d-ness and measure coordinate presence respectively.","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" return T{true,false}(child_geoms; crs, extent)\n else\n return T{false,false}(child_geoms; crs, extent)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"So that GeometryBasics geoms rebuild as themselves","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function rebuild(trait::GI.AbstractTrait, geom::BasicsGeoms, child_geoms; crs=nothing)\n GB.geointerface_geomtype(trait)(child_geoms)\nend\nfunction rebuild(trait::GI.AbstractTrait, geom::Union{GB.LineString,GB.MultiPoint}, child_geoms; crs=nothing)\n GB.geointerface_geomtype(trait)(GI.convert.(GB.Point, child_geoms))\nend\nfunction rebuild(trait::GI.PolygonTrait, geom::GB.Polygon, child_geoms; crs=nothing)\n Polygon(child_geoms[1], child_geoms[2:end])\nend\n\nusing Base.Threads: nthreads, @threads, @spawn","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Threading utility, modified Mason Protters threading PSA run f over ntasks, where f recieves an AbstractArray/range of linear indices","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"function _maptasks(f, taskrange; threaded=false)\n if threaded\n ntasks = length(taskrange)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Customize this as needed. More tasks have more overhead, but better load balancing","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" tasks_per_thread = 2\n chunk_size = max(1, ntasks ÷ (tasks_per_thread * nthreads()))","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"partition the range into chunks","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" task_chunks = Iterators.partition(taskrange, chunk_size)","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Map over the chunks","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" tasks = map(task_chunks) do chunk","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Spawn a task to process this chunk","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" @spawn begin","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Where we map f over the chunk indices","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" map(f, chunk)\n end\n end","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"Finally we join the results into a new vector","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":" return reduce(vcat, map(fetch, tasks))\n else\n return map(f, taskrange)\n end\nend","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"","category":"page"},{"location":"source/primitives/","page":"Primitive functions","title":"Primitive functions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/polygonize/#Polygonizing-raster-data","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"export polygonize","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The methods in this file are able to convert a raster image into a set of polygons, by contour detection using a clockwise Moore neighborhood method.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The main entry point is the polygonize function.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"polygonize","category":"page"},{"location":"source/methods/polygonize/#Example","page":"Polygonizing raster data","title":"Example","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Here's a basic implementation, using the Makie.peaks() function. First, let's investigate the nature of the function:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"using Makie, GeometryOps\nn = 49\nxs, ys = LinRange(-3, 3, n), LinRange(-3, 3, n)\nzs = Makie.peaks(n)\nz_max_value = maximum(abs.(extrema(zs)))\nf, a, p = heatmap(\n xs, ys, zs;\n axis = (; aspect = DataAspect(), title = \"Exact function\")\n)\ncb = Colorbar(f[1, 2], p; label = \"Z-value\")\nf","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Now, we can use the polygonize function to convert the raster data into polygons.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"For this particular example, we chose a range of z-values between 0.8 and 3.2, which would provide two distinct polyogns with holes.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"polygons = polygonize(xs, ys, 0.8 .< zs .< 3.2)","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"This returns a list of GeometryBasics.Polygon, which can be plotted immediately, or wrapped directly in a GeometryBasics.MultiPolygon. Let's see how these look:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"f, a, p = poly(polygons; label = \"Polygonized polygons\", axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Finally, let's plot the Makie contour lines on top, to see how well the polygonization worked:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"contour!(a, zs; labels = true, levels = [0.8, 3.2], label = \"Contour lines\")\nf","category":"page"},{"location":"source/methods/polygonize/#Implementation","page":"Polygonizing raster data","title":"Implementation","text":"","category":"section"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"The implementation follows:","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"\"\"\"\n polygonize(A; minpoints=10)\n polygonize(xs, ys, A; minpoints=10)\n\nConvert matrix `A` to polygons.\n\nIf `xs` and `ys` are passed in they are used as the pixel center points.","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"Keywords","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"- `minpoints`: ignore polygons with less than `minpoints` points.\n\"\"\"\npolygonize(A::AbstractMatrix; kw...) = polygonize(axes(A)..., A; kw...)\n\nfunction polygonize(xs, ys, A::AbstractMatrix; minpoints=10)\n # This function uses a lazy map to get contours.\n contours = Iterators.map(get_contours(A)) do contour\n poly = map(contour) do xy\n x, y = Tuple(xy)\n Point2f(x + first(xs) - 1, y + first(ys) - 1)\n end\n end\n # If we filter off the minimum points, then it's a hair more efficient\n # not to convert contours with length < missingpoints to polygons.\n if minpoints > 1\n contours = Iterators.filter(contours) do contour\n length(contour) > minpoints\n end\n return map(Polygon, contours)\n else\n return map(Polygon, contours)\n end\nend\n\n# rotate direction clockwise\nrot_clockwise(dir) = (dir) % 8 + 1\n# rotate direction counterclockwise\nrot_counterclockwise(dir) = (dir + 6) % 8 + 1\n\n# move from current pixel to next in given direction\nfunction move(pixel, image, dir, dir_delta)\n newp = pixel + dir_delta[dir]\n height, width = size(image)\n if (0 < newp[1] <= height) && (0 < newp[2] <= width)\n if image[newp] != 0\n return newp\n end\n end\n return CartesianIndex(0, 0)\nend\n\n# finds direction between two given pixels\nfunction from_to(from, to, dir_delta)\n delta = to - from\n return findall(x -> x == delta, dir_delta)[1]\nend\n\nfunction detect_move(image, p0, p2, nbd, border, done, dir_delta)\n dir = from_to(p0, p2, dir_delta)\n moved = rot_clockwise(dir)\n p1 = CartesianIndex(0, 0)\n while moved != dir ## 3.1\n newp = move(p0, image, moved, dir_delta)\n if newp[1] != 0\n p1 = newp\n break\n end\n moved = rot_clockwise(moved)\n end\n\n if p1 == CartesianIndex(0, 0)\n return\n end\n\n p2 = p1 ## 3.2\n p3 = p0 ## 3.2\n done .= false\n while true\n dir = from_to(p3, p2, dir_delta)\n moved = rot_counterclockwise(dir)\n p4 = CartesianIndex(0, 0)\n done .= false\n while true ## 3.3\n p4 = move(p3, image, moved, dir_delta)\n if p4[1] != 0\n break\n end\n done[moved] = true\n moved = rot_counterclockwise(moved)\n end\n push!(border, p3) ## 3.4\n if p3[1] == size(image, 1) || done[3]\n image[p3] = -nbd\n elseif image[p3] == 1\n image[p3] = nbd\n end\n\n if (p4 == p0 && p3 == p1) ## 3.5\n break\n end\n p2 = p3\n p3 = p4\n end\nend\n\n\"\"\"\n get_contours(A::AbstractMatrix)\n\nReturns contours as vectors of `CartesianIndex`.\n\"\"\"\nfunction get_contours(image::AbstractMatrix)\n nbd = 1\n lnbd = 1\n image = Float64.(image)\n contour_list = Vector{typeof(CartesianIndex[])}()\n done = [false, false, false, false, false, false, false, false]\n\n # Clockwise Moore neighborhood.\n dir_delta = (CartesianIndex(-1, 0), CartesianIndex(-1, 1), CartesianIndex(0, 1), CartesianIndex(1, 1),\n CartesianIndex(1, 0), CartesianIndex(1, -1), CartesianIndex(0, -1), CartesianIndex(-1, -1))\n\n height, width = size(image)\n\n for i = 1:height\n lnbd = 1\n for j = 1:width\n fji = image[i, j]\n is_outer = (image[i, j] == 1 && (j == 1 || image[i, j-1] == 0)) ## 1 (a)\n is_hole = (image[i, j] >= 1 && (j == width || image[i, j+1] == 0))\n\n if is_outer || is_hole\n # 2\n border = CartesianIndex[]\n from = CartesianIndex(i, j)\n\n if is_outer\n nbd += 1\n from -= CartesianIndex(0, 1)\n\n else\n nbd += 1\n if fji > 1\n lnbd = fji\n end\n from += CartesianIndex(0, 1)\n end\n\n p0 = CartesianIndex(i, j)\n detect_move(image, p0, from, nbd, border, done, dir_delta) ## 3\n if isempty(border) ##TODO\n push!(border, p0)\n image[p0] = -nbd\n end\n push!(contour_list, border)\n end\n if fji != 0 && fji != 1\n lnbd = abs(fji)\n end\n\n end\n end\n\n return contour_list\nend","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"","category":"page"},{"location":"source/methods/polygonize/","page":"Polygonizing raster data","title":"Polygonizing raster data","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/reproject/#Geometry-reprojection","page":"Geometry reprojection","title":"Geometry reprojection","text":"","category":"section"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"export reproject","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This file is pretty simple - it simply reprojects a geometry pointwise from one CRS to another. It uses the Proj package for the transformation, but this could be moved to an extension if needed.","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This works using the apply functionality.","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"\"\"\"\n reproject(geometry; source_crs, target_crs, transform, always_xy, time)\n reproject(geometry, source_crs, target_crs; always_xy, time)\n reproject(geometry, transform; always_xy, time)\n\nReproject any GeoInterface.jl compatible `geometry` from `source_crs` to `target_crs`.\n\nThe returned object will be constructed from `GeoInterface.WrapperGeometry`\ngeometries, wrapping views of a `Vector{Proj.Point{D}}`, where `D` is the dimension.\n\n# Arguments\n\n- `geometry`: Any GeoInterface.jl compatible geometries.\n- `source_crs`: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.\n- `target_crs`: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.\n\nIf these a passed as keywords, `transform` will take priority.\nWithout it `target_crs` is always needed, and `source_crs` is\nneeded if it is not retreivable from the geometry with `GeoInterface.crs(geometry)`.\n\n# Keywords\n\n-`always_xy`: force x, y coordinate order, `true` by default.\n `false` will expect and return points in the crs coordinate order.\n-`time`: the time for the coordinates. `Inf` by default.\n\"\"\"\nfunction reproject(geom;\n source_crs=nothing, target_crs=nothing, transform=nothing, kw...\n)\n if isnothing(transform)\n if isnothing(source_crs)\n source_crs = if GI.trait(geom) isa Nothing && geom isa AbstractArray\n GeoInterface.crs(first(geom))\n else\n GeoInterface.crs(geom)\n end\n end","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"If its still nothing, error","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":" isnothing(source_crs) && throw(ArgumentError(\"geom has no crs attatched. Pass a `source_crs` keyword\"))","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"Otherwise reproject","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":" reproject(geom, source_crs, target_crs; kw...)\n else\n reproject(geom, transform; kw...)\n end\nend\nfunction reproject(geom, source_crs, target_crs;\n time=Inf,\n always_xy=true,\n transform=Proj.Transformation(Proj.CRS(source_crs), Proj.CRS(target_crs); always_xy),\n kw...\n)\n reproject(geom, transform; time, target_crs, kw...)\nend\nfunction reproject(geom, transform::Proj.Transformation; time=Inf, target_crs=nothing, kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; crs=target_crs, kw...) do p\n transform(GI.x(p), GI.y(p), GI.z(p))\n end\n else\n return apply(PointTrait, geom; crs=target_crs, kw...) do p\n transform(GI.x(p), GI.y(p))\n end\n end\nend","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"","category":"page"},{"location":"source/transformations/reproject/","page":"Geometry reprojection","title":"Geometry reprojection","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/overlaps/#Overlaps","page":"Overlaps","title":"Overlaps","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"export overlaps","category":"page"},{"location":"source/methods/overlaps/#What-is-overlaps?","page":"Overlaps","title":"What is overlaps?","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"The overlaps function checks if two geometries overlap. Two geometries can only overlap if they have the same dimension, and if they overlap, but one is not contained, within, or equal to the other.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"Note that this means it is impossible for a single point to overlap with a single point and a line only overlaps with another line if only a section of each line is colinear.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\nl1 = GI.LineString([(0.0, 0.0), (0.0, 10.0)])\nl2 = GI.LineString([(0.0, -10.0), (0.0, 3.0)])\nf, a, p = lines(GI.getpoint(l1), color = :blue)\nscatter!(GI.getpoint(l1), color = :blue)\nlines!(GI.getpoint(l2), color = :orange)\nscatter!(GI.getpoint(l2), color = :orange)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"We can see that the two lines overlap in the plot:","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"overlap(l1, l2)","category":"page"},{"location":"source/methods/overlaps/#Implementation","page":"Overlaps","title":"Implementation","text":"","category":"section"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"Note that that since only elements of the same dimension can overlap, any two geometries with traits that are of different dimensions autmoatically can return false.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"For geometries with the same trait dimension, we must make sure that they share a point, an edge, or area for points, lines, and polygons/multipolygons respectivly, without being contained.","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"\"\"\"\n overlaps(geom1, geom2)::Bool\n\nCompare two Geometries of the same dimension and return true if their\nintersection set results in a geometry different from both but of the same\ndimension. This means one geometry cannot be within or contain the other and\nthey cannot be equal\n\n# Examples\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(1,1), (1,6), (6,6), (6,1), (1,1)]])\n\nGO.overlaps(poly1, poly2)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"output","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"true\n```\n\"\"\"\noverlaps(geom1, geom2)::Bool = overlaps(\n GI.trait(geom1),\n geom1,\n GI.trait(geom2),\n geom2,\n)\n\n\"\"\"\n overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool\n\nFor any non-specified pair, all have non-matching dimensions, return false.\n\"\"\"\noverlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2) = false\n\n\"\"\"\n overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n )::Bool\n\nIf the multipoints overlap, meaning some, but not all, of the points within the\nmultipoints are shared, return true.\n\"\"\"\nfunction overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n)\n one_diff = false # assume that all the points are the same\n one_same = false # assume that all points are different\n for p1 in GI.getpoint(points1)\n match_point = false\n for p2 in GI.getpoint(points2)\n if equals(p1, p2) # Point is shared\n one_same = true\n match_point = true\n break\n end\n end\n one_diff |= !match_point # Point isn't shared\n one_same && one_diff && return true\n end\n return false\nend\n\n\"\"\"\n overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool\n\nIf the lines overlap, meaning that they are colinear but each have one endpoint\noutside of the other line, return true. Else false.\n\"\"\"\noverlaps(::GI.LineTrait, line1, ::GI.LineTrait, line) =\n _overlaps((a1, a2), (b1, b2))\n\n\"\"\"\n overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n )::Bool\n\nIf the curves overlap, meaning that at least one edge of each curve overlaps,\nreturn true. Else false.\n\"\"\"\nfunction overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n)\n edges_a, edges_b = map(sort! ∘ to_edges, (line1, line2))\n for edge_a in edges_a\n for edge_b in edges_b\n _overlaps(edge_a, edge_b) && return true\n end\n end\n return false\nend\n\n\"\"\"\n overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n )::Bool\n\nIf the two polygons intersect with one another, but are not equal, return true.\nElse false.\n\"\"\"\nfunction overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n)\n edges_a, edges_b = map(sort! ∘ to_edges, (poly_a, poly_b))\n return _line_intersects(edges_a, edges_b) &&\n !equals(trait_a, poly_a, trait_b, poly_b)\nend\n\n\"\"\"\n overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n )::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the\nmultipolygon. Else false.\n\"\"\"\nfunction overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n)\n for poly2 in GI.getgeom(polys2)\n overlaps(poly1, poly2) && return true\n end\n return false\nend\n\n\"\"\"\n overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.PolygonTrait, poly2,\n )::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the\nmultipolygon. Else false.\n\"\"\"\noverlaps(trait1::GI.MultiPolygonTrait, polys1, trait2::GI.PolygonTrait, poly2) =\n overlaps(trait2, poly2, trait1, polys1)\n\n\"\"\"\n overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n )::Bool\n\nReturn true if at least one pair of polygons from multipolygons overlap. Else\nfalse.\n\"\"\"\nfunction overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n)\n for poly1 in GI.getgeom(polys1)\n overlaps(poly1, polys2) && return true\n end\n return false\nend\n\n\"\"\"\n _overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n )::Bool\n\nIf the edges overlap, meaning that they are colinear but each have one endpoint\noutside of the other edge, return true. Else false.\n\"\"\"\nfunction _overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n)","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"meets in more than one point","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":" on_top = ExactPredicates.meet(a1, a2, b1, b2) == 0","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"one end point is outside of other segment","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":" a_fully_within = point_on_seg(a1, b1, b2) && point_on_seg(a2, b1, b2)\n b_fully_within = point_on_seg(b1, a1, a2) && point_on_seg(b2, a1, a2)\n return on_top && (!a_fully_within && !b_fully_within)\nend","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"","category":"page"},{"location":"source/methods/overlaps/","page":"Overlaps","title":"Overlaps","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/barycentric/#Barycentric-coordinates","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"export barycentric_coordinates, barycentric_coordinates!, barycentric_interpolate\nexport MeanValue","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Generalized barycentric coordinates are a generalization of barycentric coordinates, which are typically used in triangles, to arbitrary polygons.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"They provide a way to express a point within a polygon as a weighted average of the polygon's vertices.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"In the case of a triangle, barycentric coordinates are a set of three numbers (λ_1 λ_2 λ_3), each associated with a vertex of the triangle. Any point within the triangle can be expressed as a weighted average of the vertices, where the weights are the barycentric coordinates. The weights sum to 1, and each is non-negative.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"For a polygon with n vertices, generalized barycentric coordinates are a set of n numbers (λ_1 λ_2 λ_n), each associated with a vertex of the polygon. Any point within the polygon can be expressed as a weighted average of the vertices, where the weights are the generalized barycentric coordinates.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"As with the triangle case, the weights sum to 1, and each is non-negative.","category":"page"},{"location":"source/methods/barycentric/#Example","page":"Barycentric coordinates","title":"Example","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This example was taken from this page of CGAL's documentation.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"using GeometryOps, Makie\nusing GeometryOps.GeometryBasics\n# Define a polygon\npolygon_points = Point3f[\n(0.03, 0.05, 0.00), (0.07, 0.04, 0.02), (0.10, 0.04, 0.04),\n(0.14, 0.04, 0.06), (0.17, 0.07, 0.08), (0.20, 0.09, 0.10),\n(0.22, 0.11, 0.12), (0.25, 0.11, 0.14), (0.27, 0.10, 0.16),\n(0.30, 0.07, 0.18), (0.31, 0.04, 0.20), (0.34, 0.03, 0.22),\n(0.37, 0.02, 0.24), (0.40, 0.03, 0.26), (0.42, 0.04, 0.28),\n(0.44, 0.07, 0.30), (0.45, 0.10, 0.32), (0.46, 0.13, 0.34),\n(0.46, 0.19, 0.36), (0.47, 0.26, 0.38), (0.47, 0.31, 0.40),\n(0.47, 0.35, 0.42), (0.45, 0.37, 0.44), (0.41, 0.38, 0.46),\n(0.38, 0.37, 0.48), (0.35, 0.36, 0.50), (0.32, 0.35, 0.52),\n(0.30, 0.37, 0.54), (0.28, 0.39, 0.56), (0.25, 0.40, 0.58),\n(0.23, 0.39, 0.60), (0.21, 0.37, 0.62), (0.21, 0.34, 0.64),\n(0.23, 0.32, 0.66), (0.24, 0.29, 0.68), (0.27, 0.24, 0.70),\n(0.29, 0.21, 0.72), (0.29, 0.18, 0.74), (0.26, 0.16, 0.76),\n(0.24, 0.17, 0.78), (0.23, 0.19, 0.80), (0.24, 0.22, 0.82),\n(0.24, 0.25, 0.84), (0.21, 0.26, 0.86), (0.17, 0.26, 0.88),\n(0.12, 0.24, 0.90), (0.07, 0.20, 0.92), (0.03, 0.15, 0.94),\n(0.01, 0.10, 0.97), (0.02, 0.07, 1.00)]\n# Plot it!\n# First, we'll plot the polygon using Makie's rendering:\nf, a1, p1 = poly(\n polygon_points;\n color = last.(polygon_points), colormap = cgrad(:jet, 18; categorical = true),\n axis = (;\n aspect = DataAspect(), title = \"Makie mesh based polygon rendering\", subtitle = \"CairoMakie\"\n ),\n figure = (; resolution = (800, 400),)\n)\n\nMakie.update_state_before_display!(f) # We have to call this explicitly, to get the axis limits correct\n# Now that we've plotted the first polygon,\n# we can render it using barycentric coordinates.\na1_bbox = a1.finallimits[] # First we get the extent of the axis\next = GeometryOps.GI.Extent(NamedTuple{(:X, :Y)}(zip(minimum(a1_bbox), maximum(a1_bbox))))\n\na2, p2box = poly( # Now, we plot a cropping rectangle around the axis so we only show the polygon\n f[1, 2],\n GeometryOps.GeometryBasics.Polygon( # This is a rectangle with an internal hole shaped like the polygon.\n Point2f[(ext.X[1], ext.Y[1]), (ext.X[2], ext.Y[1]), (ext.X[2], ext.Y[2]), (ext.X[1], ext.Y[2]), (ext.X[1], ext.Y[1])],\n [reverse(Point2f.(polygon_points))]\n );\n color = :white, xautolimits = false, yautolimits = false,\n axis = (;\n aspect = DataAspect(), title = \"Barycentric coordinate based polygon rendering\", subtitle = \"GeometryOps\",\n limits = (ext.X, ext.Y),\n )\n)\nhidedecorations!(a1)\nhidedecorations!(a2)\ncb = Colorbar(f[2, :], p1.plots[1]; vertical = false, flipaxis = true)\n# Finally, we perform barycentric interpolation on a grid,\nxrange = LinRange(ext.X..., widths(a2.scene.px_area[])[1] * 4) # 2 rendered pixels per \"physical\" pixel\nyrange = LinRange(ext.Y..., widths(a2.scene.px_area[])[2] * 4) # 2 rendered pixels per \"physical\" pixel\n@time mean_values = barycentric_interpolate.(\n (MeanValue(),), # The barycentric coordinate algorithm (MeanValue is the only one for now)\n (Point2f.(polygon_points),), # The polygon points as `Point2f`\n (last.(polygon_points,),), # The values per polygon point - can be anything which supports addition and division\n Point2f.(xrange, yrange') # The points at which to interpolate\n)\n# and render!\nhm = heatmap!(\n a2, xrange, yrange, mean_values;\n colormap = p1.colormap, # Use the same colormap as the original polygon plot\n colorrange = p1.plots[1].colorrange[], # Access the rendered mesh plot's colorrange directly\n transformation = (; translation = Vec3f(0,0,-1)), # This gets the heatmap to render \"behind\" the previously plotted polygon\n xautolimits = false, yautolimits = false\n)\nf","category":"page"},{"location":"source/methods/barycentric/#Barycentric-coordinate-API","page":"Barycentric coordinates","title":"Barycentric-coordinate API","text":"","category":"section"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"In some cases, we actually want barycentric interpolation, and have no interest in the coordinates themselves.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"However, the coordinates can be useful for debugging, and when performing 3D rendering, multiple barycentric values (depth, uv) are needed for depth buffering.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"const _VecTypes = Union{Tuple{Vararg{T, N}}, GeometryBasics.StaticArraysCore.StaticArray{Tuple{N}, T, 1}} where {N, T}\n\n\"\"\"\n abstract type AbstractBarycentricCoordinateMethod\n\nAbstract supertype for barycentric coordinate methods.\nThe subtypes may serve as dispatch types, or may cache\nsome information about the target polygon.\n\n# API\nThe following methods must be implemented for all subtypes:\n- `barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})`\n- `barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V`\n- `barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V`\nThe rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.\n\"\"\"\nabstract type AbstractBarycentricCoordinateMethod end\n\n\nBase.@propagate_inbounds function barycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real}\n @boundscheck @assert length(λs) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n\n @error(\"Not implemented yet for method $(method).\")\nend\nBase.@propagate_inbounds barycentric_coordinates!(λs::Vector{<: Real}, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real} = barycentric_coordinates!(λs, MeanValue(), polypoints, point)\n\nBase.@propagate_inbounds function barycentric_coordinates(method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real}\n λs = zeros(promote_type(T1, T2), length(polypoints))\n barycentric_coordinates!(λs, method, polypoints, point)\n return λs\nend\nBase.@propagate_inbounds barycentric_coordinates(polypoints::AbstractVector{<: Point{N1, T1}}, point::Point{N2, T2}) where {N1, N2, T1 <: Real, T2 <: Real} = barycentric_coordinates(MeanValue(), polypoints, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polypoints::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n λs = barycentric_coordinates(method, polypoints, point)\n return sum(λs .* values)\nend\nBase.@propagate_inbounds barycentric_interpolate(polypoints::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), polypoints, values, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(exterior) + isempty(interiors) ? 0 : sum(length.(interiors))\n @boundscheck @assert length(exterior) >= 3\n λs = barycentric_coordinates(method, exterior, interiors, point)\n return sum(λs .* values)\nend\nBase.@propagate_inbounds barycentric_interpolate(exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: Point{N, T1}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), exterior, interiors, values, point)\n\nBase.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon::Polygon{2, T1}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V}\n exterior = decompose(Point{2, promote_type(T1, T2)}, polygon.exterior)\n if isempty(polygon.interiors)\n @boundscheck @assert length(values) == length(exterior)\n return barycentric_interpolate(method, exterior, values, point)\n else # the poly has interiors\n interiors = reverse.(decompose.((Point{2, promote_type(T1, T2)},), polygon.interiors))\n @boundscheck @assert length(values) == length(exterior) + sum(length.(interiors))\n return barycentric_interpolate(method, exterior, interiors, values, point)\n end\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon::Polygon{2, T1}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V} = barycentric_interpolate(MeanValue(), polygon, values, point)","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"3D polygons are considered to have their vertices in the XY plane, and the Z coordinate must represent some value. This is to say that the Z coordinate is interpreted as an M coordinate.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Base.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon::Polygon{3, T1}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real}\n exterior_point3s = decompose(Point{3, promote_type(T1, T2)}, polygon.exterior)\n exterior_values = getindex.(exterior_point3s, 3)\n exterior_points = Point2f.(exterior_point3s)\n if isempty(polygon.interiors)\n return barycentric_interpolate(method, exterior_points, exterior_values, point)\n else # the poly has interiors\n interior_point3s = decompose.((Point{3, promote_type(T1, T2)},), polygon.interiors)\n interior_values = collect(Iterators.flatten((getindex.(point3s, 3) for point3s in interior_point3s)))\n interior_points = map(point3s -> Point2f.(point3s), interior_point3s)\n return barycentric_interpolate(method, exterior_points, interior_points, vcat(exterior_values, interior_values), point)\n end\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon::Polygon{3, T1}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real} = barycentric_interpolate(MeanValue(), polygon, point)","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This method is the one which supports GeoInterface.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Base.@propagate_inbounds function barycentric_interpolate(method::AbstractBarycentricCoordinateMethod, polygon, values::AbstractVector{V}, point) where V\n @assert GeoInterface.trait(polygon) isa GeoInterface.PolygonTrait\n @assert GeoInterface.trait(point) isa GeoInterface.PointTrait\n passable_polygon = GeoInterface.convert(GeometryBasics, polygon)\n @assert passable_polygon isa GeometryBasics.Polygon \"The polygon was converted to a $(typeof(passable_polygon)), which is not a `GeometryBasics.Polygon`.\"\n # first_poly_point = GeoInterface.getpoint(GeoInterface.getexterior(polygon))\n passable_point = GeoInterface.convert(GeometryBasics, point)\n return barycentric_interpolate(method, passable_polygon, Point2(passable_point))\nend\nBase.@propagate_inbounds barycentric_interpolate(polygon, values::AbstractVector{V}, point) where V = barycentric_interpolate(MeanValue(), polygon, values, point)\n\n\"\"\"\n weighted_mean(weight::Real, x1, x2)\n\nReturns the weighted mean of `x1` and `x2`, where `weight` is the weight of `x1`.\n\nSpecifically, calculates `x1 * weight + x2 * (1 - weight)`.\n\n!!! note\n The idea for this method is that you can override this for custom types, like Color types, in extension modules.\n\"\"\"\nfunction weighted_mean(weight::WT, x1, x2) where {WT <: Real}\n return muladd(x1, weight, x2 * (oneunit(WT) - weight))\nend\n\n\n\"\"\"\n MeanValue() <: AbstractBarycentricCoordinateMethod\n\nThis method calculates barycentric coordinates using the mean value method.\n\n# References\n\n\"\"\"\nstruct MeanValue <: AbstractBarycentricCoordinateMethod\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Before we go to the actual implementation, there are some quick and simple utility functions that we need to implement. These are mainly for convenience and code brevity.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"\"\"\"\n _det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}\n\nReturns the determinant of the matrix formed by `hcat`'ing two points `s1` and `s2`.\n\nSpecifically, this is:\n```julia\ns1[1] * s2[2] - s1[2] * s2[1]\n```\n\"\"\"\nfunction _det(s1::_VecTypes{2, T1}, s2::_VecTypes{2, T2}) where {T1 <: Real, T2 <: Real}\n return s1[1] * s2[2] - s1[2] * s2[1]\nend\n\n\"\"\"\n t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)\n\nReturns the \"T-value\" as described in Hormann's presentation [^HormannPresentation] on how to calculate\nthe mean-value coordinate.\n\nHere, `sᵢ` is the vector from vertex `vᵢ` to the point, and `rᵢ` is the norm (length) of `sᵢ`.\n`s` must be `Point` and `r` must be real numbers.\n\n```math\ntᵢ = \\\\frac{\\\\mathrm{det}\\\\left(sᵢ, sᵢ₊₁\\\\right)}{rᵢ * rᵢ₊₁ + sᵢ ⋅ sᵢ₊₁}\n```\n\n[^HormannPresentation]: K. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.\n```\n\n\"\"\"\nfunction t_value(sᵢ::_VecTypes{N, T1}, sᵢ₊₁::_VecTypes{N, T1}, rᵢ::T2, rᵢ₊₁::T2) where {N, T1 <: Real, T2 <: Real}\n return _det(sᵢ, sᵢ₊₁) / muladd(rᵢ, rᵢ₊₁, dot(sᵢ, sᵢ₊₁))\nend\n\n\nfunction barycentric_coordinates!(λs::Vector{<: Real}, ::MeanValue, polypoints::AbstractVector{<: Point{2, T1}}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real}\n @boundscheck @assert length(λs) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n n_points = length(polypoints)\n # Initialize counters and register variables\n # Points - these are actually vectors from point to vertices\n # polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n # radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Perform the first computation explicitly, so we can cut down on\n # a mod in the loop.\n λs[1] = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n # Loop through the rest of the vertices, compute, store in λs\n for i in 2:n_points\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, n_points)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n λs[i] = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n end\n # Normalize λs to the 1-norm (sum=1)\n λs ./= sum(λs)\n return λs\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_coordinates(::MeanValue, polypoints::NTuple{N, Point{2, T2}}, point::Point{2, T1},) where {N, T1, T2}\n ## Initialize counters and register variables\n ## Points - these are actually vectors from point to vertices\n ## polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n ## radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n λ₁ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n λs = ntuple(N) do i\n if i == 1\n return λ₁\n end\n ## Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, N)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n return (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n end\n\n ∑λ = sum(λs)\n\n return ntuple(N) do i\n λs[i] / ∑λ\n end\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This performs an inplace accumulation, using less memory and is faster. That's particularly good if you are using a polygon with a large number of points...","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_interpolate(::MeanValue, polypoints::AbstractVector{<: Point{2, T1}}, values::AbstractVector{V}, point::Point{2, T2}) where {T1 <: Real, T2 <: Real, V}\n @boundscheck @assert length(values) == length(polypoints)\n @boundscheck @assert length(polypoints) >= 3\n\n n_points = length(polypoints)\n # Initialize counters and register variables\n # Points - these are actually vectors from point to vertices\n # polypoints[i-1], polypoints[i], polypoints[i+1]\n sᵢ₋₁ = polypoints[end] - point\n sᵢ = polypoints[begin] - point\n sᵢ₊₁ = polypoints[begin+1] - point\n # radius / Euclidean distance between points.\n rᵢ₋₁ = norm(sᵢ₋₁)\n rᵢ = norm(sᵢ )\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Now, we set the interpolated value to the first point's value, multiplied\n # by the weight computed relative to the first point in the polygon.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n wₜₒₜ = wᵢ\n interpolated_value = values[begin] * wᵢ\n for i in 2:n_points\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = polypoints[mod1(i+1, n_points)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁)\n # Now, we calculate the weight:\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n # perform a weighted sum with the interpolated value:\n interpolated_value += values[i] * wᵢ\n # and add the weight to the total weight accumulator.\n wₜₒₜ += wᵢ\n end\n # Return the normalized interpolated value.\n return interpolated_value / wₜₒₜ\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"When you have holes, then you have to be careful about the order you iterate around points.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Specifically, you have to iterate around each linear ring separately and ensure there are no degenerate/repeated points at the start and end!","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"function barycentric_interpolate(::MeanValue, exterior::AbstractVector{<: Point{N, T1}}, interiors::AbstractVector{<: AbstractVector{<: Point{N, T1}}}, values::AbstractVector{V}, point::Point{N, T2}) where {N, T1 <: Real, T2 <: Real, V}\n # @boundscheck @assert length(values) == (length(exterior) + isempty(interiors) ? 0 : sum(length.(interiors)))\n # @boundscheck @assert length(exterior) >= 3\n\n current_index = 1\n l_exterior = length(exterior)\n\n sᵢ₋₁ = exterior[end] - point\n sᵢ = exterior[begin] - point\n sᵢ₊₁ = exterior[begin+1] - point\n rᵢ₋₁ = norm(sᵢ₋₁) # radius / Euclidean distance between points.\n rᵢ = norm(sᵢ ) # radius / Euclidean distance between points.\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Now, we set the interpolated value to the first point's value, multiplied by the weight computed relative to the first point in the polygon.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n wₜₒₜ = wᵢ\n interpolated_value = values[begin] * wᵢ\n\n for i in 2:l_exterior","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Increment counters + set variables","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = exterior[mod1(i+1, l_exterior)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"Updates - first the interpolated value,","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" interpolated_value += values[current_index] * wᵢ","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"then the accumulators for total weight and current index.","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":" wₜₒₜ += wᵢ\n current_index += 1\n\n end\n for hole in interiors\n l_hole = length(hole)\n sᵢ₋₁ = hole[end] - point\n sᵢ = hole[begin] - point\n sᵢ₊₁ = hole[begin+1] - point\n rᵢ₋₁ = norm(sᵢ₋₁) # radius / Euclidean distance between points.\n rᵢ = norm(sᵢ ) # radius / Euclidean distance between points.\n rᵢ₊₁ = norm(sᵢ₊₁) # radius / Euclidean distance between points.\n # Now, we set the interpolated value to the first point's value, multiplied\n # by the weight computed relative to the first point in the polygon.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n\n interpolated_value += values[current_index] * wᵢ\n\n wₜₒₜ += wᵢ\n current_index += 1\n\n for i in 2:l_hole\n # Increment counters + set variables\n sᵢ₋₁ = sᵢ\n sᵢ = sᵢ₊₁\n sᵢ₊₁ = hole[mod1(i+1, l_hole)] - point\n rᵢ₋₁ = rᵢ\n rᵢ = rᵢ₊₁\n rᵢ₊₁ = norm(sᵢ₊₁) ## radius / Euclidean distance between points.\n wᵢ = (t_value(sᵢ₋₁, sᵢ, rᵢ₋₁, rᵢ) + t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)) / rᵢ\n interpolated_value += values[current_index] * wᵢ\n wₜₒₜ += wᵢ\n current_index += 1\n end\n end\n return interpolated_value / wₜₒₜ\n\nend\n\nstruct Wachspress <: AbstractBarycentricCoordinateMethod\nend","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"","category":"page"},{"location":"source/methods/barycentric/","page":"Barycentric coordinates","title":"Barycentric coordinates","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/disjoint/#Disjointness-checks","page":"Disjointness checks","title":"Disjointness checks","text":"","category":"section"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"\"\"\"\n disjoint(geom1, geom2)::Bool\n\nReturn `true` if the intersection of the two geometries is an empty set.","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"Examples","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-1, 2), (3, 2), (3, 3), (-1, 3), (-1, 2)]])\npoint = (1, 1)\nGO.disjoint(poly, point)","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"output","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"true\n```\n\"\"\"\ndisjoint(g1, g2)::Bool = disjoint(trait(g1), g1, trait(g2), g2)\ndisjoint(::FeatureTrait, g1, ::Any, g2)::Bool = disjoint(GI.geometry(g1), g2)\ndisjoint(::Any, g1, t2::FeatureTrait, g2)::Bool = disjoint(g1, geometry(g2))\ndisjoint(::PointTrait, g1, ::PointTrait, g2)::Bool = !point_equals_point(g1, g2)\ndisjoint(::PointTrait, g1, ::LineStringTrait, g2)::Bool = !point_on_line(g1, g2)\ndisjoint(::PointTrait, g1, ::PolygonTrait, g2)::Bool = !point_in_polygon(g1, g2)\ndisjoint(::LineStringTrait, g1, ::PointTrait, g2)::Bool = !point_on_line(g2, g1)\ndisjoint(::LineStringTrait, g1, ::LineStringTrait, g2)::Bool = !line_on_line(g1, g2)\ndisjoint(::LineStringTrait, g1, ::PolygonTrait, g2)::Bool = !line_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::PointTrait, g2)::Bool = !point_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::LineStringTrait, g2)::Bool = !line_in_polygon(g2, g1)\ndisjoint(::PolygonTrait, g1, ::PolygonTrait, g2)::Bool = polygon_disjoint(g2, g1)\n\nfunction polygon_disjoint(poly1, poly2)\n for point in GI.getpoint(poly1)\n point_in_polygon(point, poly2) && return false\n end\n for point in GI.getpoint(poly2)\n point_in_polygon(point, poly1) && return false\n end\n return !intersects(poly1, poly2)\nend","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"","category":"page"},{"location":"source/methods/disjoint/","page":"Disjointness checks","title":"Disjointness checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/crosses/#Crossing-checks","page":"Crossing checks","title":"Crossing checks","text":"","category":"section"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"\"\"\"\n crosses(geom1, geom2)::Bool\n\nReturn `true` if the intersection results in a geometry whose dimension is one less than\nthe maximum dimension of the two source geometries and the intersection set is interior to\nboth source geometries.\n\nTODO: broken\n\n# Examples\n```julia\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\nline2 = GI.LineString([(-2, 2), (4, 2)])\n\nGO.crosses(line1, line2)","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"output","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"true\n```\n\"\"\"\ncrosses(g1, g2)::Bool = crosses(trait(g1), g1, trait(g2), g2)::Bool\ncrosses(t1::FeatureTrait, g1, t2, g2)::Bool = crosses(GI.geometry(g1), g2)\ncrosses(t1, g1, t2::FeatureTrait, g2)::Bool = crosses(g1, geometry(g2))\ncrosses(::MultiPointTrait, g1, ::LineStringTrait, g2)::Bool = multipoint_crosses_line(g1, g2)\ncrosses(::MultiPointTrait, g1, ::PolygonTrait, g2)::Bool = multipoint_crosses_poly(g1, g2)\ncrosses(::LineStringTrait, g1, ::MultiPointTrait, g2)::Bool = multipoint_crosses_lines(g2, g1)\ncrosses(::LineStringTrait, g1, ::PolygonTrait, g2)::Bool = line_crosses_poly(g1, g2)\ncrosses(::LineStringTrait, g1, ::LineStringTrait, g2)::Bool = line_crosses_line(g1, g2)\ncrosses(::PolygonTrait, g1, ::MultiPointTrait, g2)::Bool = multipoint_crosses_poly(g2, g1)\ncrosses(::PolygonTrait, g1, ::LineStringTrait, g2)::Bool = line_crosses_poly(g2, g1)\n\nfunction multipoint_crosses_line(geom1, geom2)\n int_point = false\n ext_point = false\n i = 1\n np2 = GI.npoint(geom2)\n\n while i < GI.npoint(geom1) && !int_point && !ext_point\n for j in 1:GI.npoint(geom2) - 1\n exclude_boundary = (j === 1 || j === np2 - 2) ? :none : :both\n if point_on_segment(GI.getpoint(geom1, i), (GI.getpoint(geom2, j), GI.getpoint(geom2, j + 1)); exclude_boundary)\n int_point = true\n else\n ext_point = true\n end\n end\n i += 1\n end\n\n return int_point && ext_point\nend\n\nfunction line_crosses_line(line1, line2)\n np2 = GI.npoint(line2)\n if intersects(line1, line2)\n for i in 1:GI.npoint(line1) - 1\n for j in 1:GI.npoint(line2) - 1\n exclude_boundary = (j === 1 || j === np2 - 2) ? :none : :both\n pa = GI.getpoint(line1, i)\n pb = GI.getpoint(line1, i + 1)\n p = GI.getpoint(line2, j)\n point_on_segment(p, (pa, pb); exclude_boundary) && return true\n end\n end\n end\n return false\nend\n\nfunction line_crosses_poly(line, poly)\n for l in flatten(AbstractCurveTrait, poly)\n intersects(line, l) && return true\n end\n return false\nend\n\nfunction multipoint_crosses_poly(mp, poly)\n int_point = false\n ext_point = false\n\n for p in GI.getpoint(mp)\n if point_in_polygon(p, poly)\n int_point = true\n else\n ext_point = true\n end\n int_point && ext_point && return true\n end\n return false\nend","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"","category":"page"},{"location":"source/methods/crosses/","page":"Crossing checks","title":"Crossing checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/signed_distance/#Signed-distance","page":"Signed distance","title":"Signed distance","text":"","category":"section"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"export signed_distance","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"TODO: clean this up. It already supports GeoInterface.","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"Base.@propagate_inbounds euclid_distance(p1, p2) = sqrt((GeoInterface.x(p2)-GeoInterface.x(p1))^2 + (GeoInterface.y(p2)-GeoInterface.y(p1))^2)\neuclid_distance(x1, y1, x2, y2) = sqrt((x2-x1)^2 + (y2-y1)^2)\n\n\n\n\" Distance from p0 to the line segment formed by p1 and p2. Implementation from Turf.jl.\"\nfunction _distance(p0, p1, p2)\n x0, y0 = GeoInterface.x(p0), GeoInterface.y(p0)\n x1, y1 = GeoInterface.x(p1), GeoInterface.y(p1)\n x2, y2 = GeoInterface.x(p2), GeoInterface.y(p2)\n\n if x1 < x2\n xfirst, yfirst = x1, y1\n xlast, ylast = x2, y2\n else\n xfirst, yfirst = x2, y2\n xlast, ylast = x1, y1\n end\n\n v = (xlast - xfirst, ylast - yfirst)\n w = (x0 - xfirst, y0 - yfirst)\n\n c1 = sum(w .* v)\n if c1 <= 0\n return euclid_distance(x0, y0, xfirst, yfirst)\n end\n\n c2 = sum(v .* v)\n\n if c2 <= c1\n return euclid_distance(x0, y0, xlast, ylast)\n end\n\n b2 = c1 / c2\n\n return euclid_distance(x0, y0, xfirst + (b2 * v[1]), yfirst + (b2 * v[2]))\nend\n\n\nfunction _distance(linestring, xy)\n mindist = typemax(Float64)\n N = GeoInterface.npoint(linestring)\n @assert N ≥ 3\n p1 = GeoInterface.getpoint(linestring, 1)\n p2 = p1\n\n for point_ind in 2:N\n p2 = GeoInterface.getpoint(linestring, point_ind)\n newdist = _distance(xy, p1, p2)\n if newdist < mindist\n mindist = newdist\n end\n p1 = p2\n end\n\n return mindist\nend\n\nfunction signed_distance(::GeoInterface.PolygonTrait, poly, x, y)\n\n xy = (x, y)\n mindist = _distance(GeoInterface.getexterior(poly), xy)\n\n @inbounds for hole in GeoInterface.gethole(poly)\n newdist = _distance(hole, xy)\n if newdist < mindist\n mindist = newdist\n end\n end\n\n if GeoInterface.contains(poly, GeoInterface.convert(Base.parentmodule(typeof(poly)), (x, y)))\n return mindist\n else\n return -mindist\n end\nend\n\nfunction signed_distance(::GeoInterface.MultiPolygonTrait, multipoly, x, y)\n distances = signed_distance.(GeoInterface.getpolygon(multipoly), x, y)\n max_val, max_ind = findmax(distances)\n return max_val\nend\n\n\n\"\"\"\n signed_distance(geom, x::Real, y::Real)::Float64\n\nCalculates the signed distance from the geometry `geom` to the point\ndefined by `(x, y)`. Points within `geom` have a negative distance,\nand points outside of `geom` have a positive distance.\n\nIf `geom` is a MultiPolygon, then this function returns the maximum distance\nto any of the polygons in `geom`.\n\"\"\"\nsigned_distance(geom, x, y) = signed_distance(GeoInterface.geomtrait(geom), geom, x, y)","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"","category":"page"},{"location":"source/methods/signed_distance/","page":"Signed distance","title":"Signed distance","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/centroid/#Centroid","page":"Centroid","title":"Centroid","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"export centroid, centroid_and_length, centroid_and_area","category":"page"},{"location":"source/methods/centroid/#What-is-the-centroid?","page":"Centroid","title":"What is the centroid?","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"The centroid is the geometric center of a line string or area(s). Note that the centroid does not need to be inside of a concave area.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Further note that by convention a line, or linear ring, is calculated by weighting the line segments by their length, while polygons and multipolygon centroids are calculated by weighting edge's by their 'area components'.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"To provide an example, consider this concave polygon in the shape of a 'C':","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\ncshape = Polygon([\n Point(0,0), Point(0,3), Point(3,3), Point(3,2), Point(1,2),\n Point(1,1), Point(3,1), Point(3,0), Point(0,0),\n])\nf, a, p = poly(cshape; axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Let's see what the centroid looks like (plotted in red):","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"cent = centroid(cshape)\nscatter!(a, GI.x(cent), GI.y(cent), color = :red)\nf","category":"page"},{"location":"source/methods/centroid/#Implementation","page":"Centroid","title":"Implementation","text":"","category":"section"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Note that if you call centroid on a LineString or LinearRing, the centroidandlength function will be called due to the weighting scheme described above, while centroidandarea is called for polygons and multipolygons. However, centroidandarea can still be called on a LineString or LinearRing when they are closed, for example as the interior hole of a polygon.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"The helper functions centroidandlength and centroidandarea are made availible just in case the user also needs the area or length to decrease repeat computation.","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"\"\"\"\n centroid(geom)::Tuple{T, T}\n\nReturns the centroid of a given line segment, linear ring, polygon, or\nmutlipolygon.\n\"\"\"\ncentroid(geom) = centroid(GI.trait(geom), geom)\n\n\"\"\"\n centroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::Tuple{T, T}\n\nReturns the centroid of a line string or linear ring, which is calculated by\nweighting line segments by their length by convention.\n\"\"\"\ncentroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n) = centroid_and_length(trait, geom)[1]\n\n\"\"\"\n centroid(trait, geom)::Tuple{T, T}\n\nReturns the centroid of a polygon or multipolygon, which is calculated by\nweighting edges by their `area component` by convention.\n\"\"\"\ncentroid(trait, geom) = centroid_and_area(trait, geom)[1]\n\n\"\"\"\n centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid\nfor line strings and linear rings.\n\"\"\"\ncentroid_and_length(geom) = centroid_and_length(GI.trait(geom), geom)\n\n\"\"\"\n centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given geom.\n\"\"\"\ncentroid_and_area(geom) = centroid_and_area(GI.trait(geom), geom)\n\n\"\"\"\n centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid\nfor line strings and linear rings.\n\"\"\"\nfunction centroid_and_length(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)\n T = typeof(GI.x(GI.getpoint(geom, 1)))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Initialize starting values","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid = T(0)\n ycentroid = T(0)\n length = T(0)\n point₁ = GI.getpoint(geom, 1)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over line segments of line string","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for point₂ in GI.getpoint(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Calculate length of line segment","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" length_component = sqrt(\n (GI.x(point₂) - GI.x(point₁))^2 +\n (GI.y(point₂) - GI.y(point₁))^2\n )","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the line segment length into length","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" length += length_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of line segment centroids","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += (GI.x(point₁) + GI.x(point₂)) * (length_component / 2)\n ycentroid += (GI.y(point₁) + GI.y(point₂)) * (length_component / 2)\n #centroid = centroid .+ ((point₁ .+ point₂) .* (length_component / 2))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Advance the point buffer by 1 point to move to next line segment","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" point₁ = point₂\n end\n xcentroid /= length\n ycentroid /= length\n return (xcentroid, ycentroid), length\nend\n\n\"\"\"\n centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n )::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given a line string or a linear ring.\nNote that this is only valid if the line segment or linear ring is closed.\n\"\"\"\nfunction centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)\n T = typeof(GI.x(GI.getpoint(geom, 1)))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Check that the geometry is closed","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" @assert(\n GI.getpoint(geom, 1) == GI.getpoint(geom, GI.ngeom(geom)),\n \"centroid_and_area should only be used with closed geometries\"\n )","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Initialize starting values","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid = T(0)\n ycentroid = T(0)\n area = T(0)\n point₁ = GI.getpoint(geom, 1)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over line segments of linear ring","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for point₂ in GI.getpoint(geom)\n area_component = GI.x(point₁) * GI.y(point₂) -\n GI.x(point₂) * GI.y(point₁)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area += area_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += (GI.x(point₁) + GI.x(point₂)) * area_component\n ycentroid += (GI.y(point₁) + GI.y(point₂)) * area_component","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Advance the point buffer by 1 point","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" point₁ = point₂\n end\n area /= 2\n xcentroid /= 6area\n ycentroid /= 6area\n return (xcentroid, ycentroid), abs(area)\nend\n\n\"\"\"\n centroid_and_area(::GI.PolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given polygon.\n\"\"\"\nfunction centroid_and_area(::GI.PolygonTrait, geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Exterior ring's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xcentroid, ycentroid), area = centroid_and_area(GI.getexterior(geom))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weight exterior centroid by area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid *= area\n ycentroid *= area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over any holes within the polygon","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for hole in GI.gethole(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Hole polygon's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xinterior, yinterior), interior_area = centroid_and_area(hole)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area -= interior_area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid -= xinterior * interior_area\n ycentroid -= yinterior * interior_area\n end\n xcentroid /= area\n ycentroid /= area\n return (xcentroid, ycentroid), area\nend\n\n\"\"\"\n centroid_and_area(::GI.MultiPolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given multipolygon.\n\"\"\"\nfunction centroid_and_area(::GI.MultiPolygonTrait, geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"First polygon's centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xcentroid, ycentroid), area = centroid_and_area(GI.getpolygon(geom, 1))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weight first polygon's centroid by area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid *= area\n ycentroid *= area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Loop over any polygons within the multipolygon","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" for i in 2:GI.ngeom(geom)","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Polygon centroid and area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" (xpoly, ypoly), poly_area = centroid_and_area(GI.getpolygon(geom, i))","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Accumulate the area component into area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" area += poly_area","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"Weighted average of centroid components","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":" xcentroid += xpoly * poly_area\n ycentroid += ypoly * poly_area\n end\n xcentroid /= area\n ycentroid /= area\n return (xcentroid, ycentroid), area\nend","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"","category":"page"},{"location":"source/methods/centroid/","page":"Centroid","title":"Centroid","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"\"\"\"\n embed_extent(obj)\n\nRecursively wrap the object with a `GeoInterface.Wrappers` geometry,\ncalculating and adding an `Extents.Extent` to all objects.\n\nThis can improve performance when extents need to be checked multiple times.\n\"\"\"\nembed_extent(x; kw...) = apply(AbstractTrait, x; kw...)\n\nextent_applicator(x) = extent_applicator(trait(x), x)\nextent_applicator(::Nothing, xs::AbstractArray) = embed_extent.(xs)\nextent_applicator(::Union{AbstractCurveTrait,MultiPointTrait}, point) = point\n\nfunction extent_applicator(trait::AbstractGeometryTrait, geom)\n children_with_extents = map(GI.getgeom(geom)) do g\n embed_extent(g)\n end\n wrapper_type = GI.geointerface_geomtype(trait)\n extent = GI.extent(wrapper_type(children_with_extents))\n return wrapper_type(children_with_extents, extent)\nend\nextent_applicator(::PointTrait, point) = point\nextent_applicator(::PointTrait, point) = point","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"","category":"page"},{"location":"source/transformations/extent/","page":"-","title":"-","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/contains/#Containment","page":"Containment","title":"Containment","text":"","category":"section"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"export contains\n\n\"\"\"\n contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool\n\nReturn true if the second geometry is completely contained by the first geometry.\nThe interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b)\nmust not intersect the exterior of the primary (geometry a).\n`contains` returns the exact opposite result of `within`.\n\n# Examples\n\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\n\nGO.contains(line, point)","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"output","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"true\n```\n\"\"\"\ncontains(g1, g2)::Bool = within(g2, g1)","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"","category":"page"},{"location":"source/methods/contains/","page":"Containment","title":"Containment","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/flip/#Coordinate-flipping","page":"Coordinate flipping","title":"Coordinate flipping","text":"","category":"section"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"This is a simple example of how to use the apply functionality in a function, by flipping the x and y coordinates of a geometry.","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"\"\"\"\n flip(obj)\n\nSwap all of the x and y coordinates in obj, otherwise\nkeeping the original structure (but not necessarily the\noriginal type).\n\"\"\"\nfunction flip(geom; kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; kw...) do p\n (GI.y(p), GI.x(p), GI.z(p))\n end\n else\n return apply(PointTrait, geom; kw...) do p\n (GI.y(p), GI.x(p))\n end\n end\nend","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"","category":"page"},{"location":"source/transformations/flip/","page":"Coordinate flipping","title":"Coordinate flipping","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/simplify/#Geometry-simplification","page":"Geometry simplification","title":"Geometry simplification","text":"","category":"section"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"This file holds implementations for the Douglas-Peucker and Visvalingam-Whyatt algorithms for simplifying geometries (specifically polygons and lines).","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"export simplify, VisvalingamWhyatt, DouglasPeucker, RadialDistance\n\n\n\"\"\"\n abstract type SimplifyAlg\n\nAbstract type for simplification algorithms.\n\n# API\n\nFor now, the algorithm must hold the `number`, `ratio` and `tol` properties.\n\nSimplification algorithm types can hook into the interface by implementing\nthe `_simplify(trait, alg, geom)` methods for whichever traits are necessary.\n\"\"\"\nabstract type SimplifyAlg end\n\nconst SIMPLIFY_ALG_KEYWORDS = \"\"\"\n# Keywords\n- `ratio`: the fraction of points that should remain after `simplify`.\n Useful as it will generalise for large collections of objects.\n- `number`: the number of points that should remain after `simplify`.\n Less useful for large collections of mixed size objects.\n\"\"\"\n\nconst MIN_POINTS = 3\n\nfunction checkargs(number, ratio, tol)\n count(isnothing, (number, ratio, tol)) == 2 ||\n error(\"Must provide one of `number`, `ratio` or `tol` keywords\")\n if !isnothing(ratio)\n if ratio <= 0 || ratio > 1\n error(\"`ratio` must be 0 < ratio <= 1. Got $ratio\")\n end\n end\n if !isnothing(number)\n if number < MIN_POINTS\n error(\"`number` must be $MIN_POINTS or larger. Got $number\")\n end\n end\n return nothing\nend\n\n\"\"\"\n simplify(obj; kw...)\n simplify(::SimplifyAlg, obj)\n\nSimplify a geometry, feature, feature collection,\nor nested vectors or a table of these.\n\n`RadialDistance`, `DouglasPeucker`, or\n`VisvalingamWhyatt` algorithms are available,\nlisted in order of increasing quality but decreaseing performance.\n\n`PoinTrait` and `MultiPointTrait` are returned unchanged.\n\nThe default behaviour is `simplify(DouglasPeucker(; kw...), obj)`.\nPass in other `SimplifyAlg` to use other algorithms.","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"Example","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"Simplify a polygon to have six points:\n\n```jldoctest\nimport GeoInterface as GI\nimport GeometryOps as GO\n\npoly = GI.Polygon([[\n [-70.603637, -33.399918],\n [-70.614624, -33.395332],\n [-70.639343, -33.392466],\n [-70.659942, -33.394759],\n [-70.683975, -33.404504],\n [-70.697021, -33.419406],\n [-70.701141, -33.434306],\n [-70.700454, -33.446339],\n [-70.694274, -33.458369],\n [-70.682601, -33.465816],\n [-70.668869, -33.472117],\n [-70.646209, -33.473835],\n [-70.624923, -33.472117],\n [-70.609817, -33.468107],\n [-70.595397, -33.458369],\n [-70.587158, -33.442901],\n [-70.587158, -33.426283],\n [-70.590591, -33.414248],\n [-70.594711, -33.406224],\n [-70.603637, -33.399918]]])\n\nsimple = GO.simplify(poly; number=6)\nGI.npoint(simple)","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"output","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"6\n```\n\"\"\"\nsimplify(data; calc_extent=false, threaded=false, kw...) =\n _simplify(DouglasPeucker(; kw...), data; calc_extent, threaded)\nsimplify(alg::SimplifyAlg, data; kw...) = _simplify(alg, data; kw...)\n\nfunction _simplify(alg::SimplifyAlg, data; kw...)\n # Apply simplication to all curves, multipoints, and points,\n # reconstructing everything else around them.\n simplifier(geom) = _simplify(trait(geom), alg, geom)\n apply(simplifier, Union{PolygonTrait,AbstractCurveTrait,MultiPoint,PointTrait}, data; kw...)\nend\n# For Point and MultiPoint traits we do nothing\n_simplify(::PointTrait, alg, geom) = geom\n_simplify(::MultiPointTrait, alg, geom) = geom\nfunction _simplify(::PolygonTrait, alg, geom)\n # Force treating children as LinearRing\n rebuilder(g) = rebuild(g, _simplify(LinearRingTrait(), alg, g))\n lrs = map(rebuilder, GI.getgeom(geom))\n return rebuild(geom, lrs)\nend\n# For curves and rings we simplify\n_simplify(::AbstractCurveTrait, alg, geom) = rebuild(geom, simplify(alg, tuple_points(geom)))\nfunction _simplify(::LinearRingTrait, alg, geom)\n # Make a vector of points\n points = tuple_points(geom)\n\n # Simplify it once\n simple = _simplify(alg, points)\n\n return rebuild(geom, simple)\nend\n\n\"\"\"\n RadialDistance <: SimplifyAlg\n\nSimplifies geometries by removing points less than\n`tol` distance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum distance between points.\n\"\"\"\nstruct RadialDistance <: SimplifyAlg\n number::Union{Int64,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\nend\nfunction RadialDistance(; number=nothing, ratio=nothing, tol=nothing)\n checkargs(number, ratio, tol)\n return RadialDistance(number, ratio, tol)\nend\n\nsettol(alg::RadialDistance, tol) = RadialDistance(alg.number, alg.ratio, tol)\n\nfunction _simplify(alg::RadialDistance, points::Vector)\n previous = first(points)\n distances = Array{Float64}(undef, length(points))\n for i in eachindex(points)\n point = points[i]\n distances[i] = _squared_dist(point, previous)\n previous = point\n end\n # Never remove the end points\n distances[begin] = distances[end] = Inf\n # This avoids taking the square root of each distance above\n if !isnothing(alg.tol)\n alg = settol(alg, (alg.tol::Float64)^2)\n end\n return _get_points(alg, points, distances)\nend\n\nfunction _squared_dist(p1, p2)\n dx = GI.x(p1) - GI.x(p2)\n dy = GI.y(p1) - GI.y(p2)\n return dx^2 + dy^2\nend\n\n\"\"\"\n DouglasPeucker <: SimplifyAlg\n\n DouglasPeucker(; number, ratio, tol)\n\nSimplifies geometries by removing points below `tol`\ndistance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum distance a point will be from the line\n joining its neighboring points.\n\"\"\"\nstruct DouglasPeucker <: SimplifyAlg\n number::Union{Int64,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\n prefilter::Bool\nend\nfunction DouglasPeucker(; number=nothing, ratio=nothing, tol=nothing, prefilter=false)\n checkargs(number, ratio, tol)\n return DouglasPeucker(number, ratio, tol, prefilter)\nend\n\nsettol(alg::DouglasPeucker, tol) = DouglasPeucker(alg.number, alg.ratio, tol, alg.prefilter)\n\nfunction _simplify(alg::DouglasPeucker, points::Vector)\n length(points) <= MIN_POINTS && return points\n # TODO do we need this?\n # points = alg.prefilter ? simplify(RadialDistance(alg.tol), points) : points\n\n distances = _build_tolerances(_squared_segdist, points)\n return _get_points(alg, points, distances)\nend\n\nfunction _squared_segdist(l1, p, l2)\n x, y = GI.x(l1), GI.y(l1)\n dx = GI.x(l2) - x\n dy = GI.y(l2) - y\n\n if !iszero(dx) || !iszero(dy)\n t = ((GI.x(p) - x) * dx + (GI.y(p) - y) * dy) / (dx * dx + dy * dy)\n if t > 1\n x = GI.x(l2)\n y = GI.y(l2)\n elseif t > 0\n x += dx * t\n y += dy * t\n end\n end\n\n dx = GI.x(p) - x\n dy = GI.y(p) - y\n\n return dx^2 + dy^2\nend\n\n\n\"\"\"\n VisvalingamWhyatt <: SimplifyAlg\n\n VisvalingamWhyatt(; kw...)\n\nSimplifies geometries by removing points below `tol`\ndistance from the line between its neighboring points.\n\n$SIMPLIFY_ALG_KEYWORDS\n- `tol`: the minimum area of a triangle made with a point and\n its neighboring points.\n\"\"\"\nstruct VisvalingamWhyatt <: SimplifyAlg\n number::Union{Int,Nothing}\n ratio::Union{Float64,Nothing}\n tol::Union{Float64,Nothing}\n prefilter::Bool\nend\nfunction VisvalingamWhyatt(; number=nothing, ratio=nothing, tol=nothing, prefilter=false)\n checkargs(number, ratio, tol)\n return VisvalingamWhyatt(number, ratio, tol, prefilter)\nend\n\nsettol(alg::VisvalingamWhyatt, tol) = VisvalingamWhyatt(alg.number, alg.ratio, tol, alg.prefilter)\n\nfunction _simplify(alg::VisvalingamWhyatt, points::Vector)\n length(points) <= MIN_POINTS && return points\n areas = _build_tolerances(_triangle_double_area, points)\n\n # This avoids diving everything by two\n if !isnothing(alg.tol)\n alg = settol(alg, (alg.tol::Float64)*2)\n end\n return _get_points(alg, points, areas)\nend\n\n# calculates the area of a triangle given its vertices\n_triangle_double_area(p1, p2, p3) =\n abs(p1[1] * (p2[2] - p3[2]) + p2[1] * (p3[2] - p1[2]) + p3[1] * (p1[2] - p2[2]))","category":"page"},{"location":"source/transformations/simplify/#Shared-utils","page":"Geometry simplification","title":"Shared utils","text":"","category":"section"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"function _build_tolerances(f, points)\n nmax = length(points)\n real_tolerances = _flat_tolerances(f, points)\n\n tolerances = copy(real_tolerances)\n i = collect(1:nmax)\n\n min_vert = argmin(tolerances)\n this_tolerance = tolerances[min_vert]\n _remove!(tolerances, min_vert)\n deleteat!(i, min_vert)\n\n while this_tolerance < Inf\n skip = false\n\n if min_vert < length(i)\n right_tolerance = f(\n points[i[min_vert - 1]],\n points[i[min_vert]],\n points[i[min_vert + 1]],\n )\n if right_tolerance <= this_tolerance\n right_tolerance = this_tolerance\n skip = min_vert == 1\n end\n\n real_tolerances[i[min_vert]] = right_tolerance\n tolerances[min_vert] = right_tolerance\n end\n\n if min_vert > 2\n left_tolerance = f(\n points[i[min_vert - 2]],\n points[i[min_vert - 1]],\n points[i[min_vert]],\n )\n if left_tolerance <= this_tolerance\n left_tolerance = this_tolerance\n skip = min_vert == 2\n end\n real_tolerances[i[min_vert - 1]] = left_tolerance\n tolerances[min_vert - 1] = left_tolerance\n end\n\n if !skip\n min_vert = argmin(tolerances)\n end\n deleteat!(i, min_vert)\n this_tolerance = tolerances[min_vert]\n _remove!(tolerances, min_vert)\n end\n\n return real_tolerances\nend\n\nfunction tuple_points(geom)\n points = Array{Tuple{Float64,Float64}}(undef, GI.ngeom(geom))\n for (i, p) in enumerate(GI.getpoint(geom))\n points[i] = (GI.x(p), GI.y(p))\n end\n return points\nend\n\nfunction _get_points(alg, points, tolerances)\n # This assumes that `alg` has the properties\n # `tol`, `number`, and `ratio` available...\n tol = alg.tol\n number = alg.number\n ratio = alg.ratio\n bit_indices = if !isnothing(tol)\n _tol_indices(alg.tol::Float64, points, tolerances)\n elseif !isnothing(number)\n _number_indices(alg.number::Int64, points, tolerances)\n else\n _ratio_indices(alg.ratio::Float64, points, tolerances)\n end\n return points[bit_indices]\nend\n\nfunction _tol_indices(tol, points, tolerances)\n tolerances .>= tol\nend\n\nfunction _number_indices(n, points, tolerances)\n tol = partialsort(tolerances, length(points) - n + 1)\n bit_indices = _tol_indices(tol, points, tolerances)\n nselected = sum(bit_indices)\n # If there are multiple values exactly at `tol` we will get\n # the wrong output length. So we need to remove some.\n while nselected > n\n min_tol = Inf\n min_i = 0\n for i in eachindex(bit_indices)\n bit_indices[i] || continue\n if tolerances[i] < min_tol\n min_tol = tolerances[i]\n min_i = i\n end\n end\n nselected -= 1\n bit_indices[min_i] = false\n end\n return bit_indices\nend\n\nfunction _ratio_indices(r, points, tolerances)\n n = max(3, round(Int, r * length(points)))\n return _number_indices(n, points, tolerances)\nend\n\nfunction _flat_tolerances(f, points)\n result = Array{Float64}(undef, length(points))\n result[1] = result[end] = Inf\n\n for i in 2:length(result) - 1\n result[i] = f(points[i-1], points[i], points[i+1])\n end\n return result\nend\n\n_remove!(s, i) = s[i:end-1] .= s[i+1:end]","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"","category":"page"},{"location":"source/transformations/simplify/","page":"Geometry simplification","title":"Geometry simplification","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/within/#Containment/withinness","page":"Containment/withinness","title":"Containment/withinness","text":"","category":"section"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"export within\n\n\n\"\"\"\n within(geom1, geom)::Bool\n\nReturn `true` if the first geometry is completely within the second geometry.\nThe interiors of both geometries must intersect and, the interior and boundary of the primary (geometry a)\nmust not intersect the exterior of the secondary (geometry b).\n`within` returns the exact opposite result of `contains`.\n\n# Examples\n```jldoctest setup=:(using GeometryOps, GeometryBasics)\nimport GeometryOps as GO, GeoInterface as GI\n\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\nGO.within(point, line)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"output","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"true\n```\n\"\"\"","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Syntactic sugar","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(g1, g2)::Bool = within(trait(g1), g1, trait(g2), g2)::Bool\nwithin(::GI.FeatureTrait, g1, ::Any, g2)::Bool = within(GI.geometry(g1), g2)\nwithin(::Any, g1, t2::GI.FeatureTrait, g2)::Bool = within(g1, GI.geometry(g2))","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Points in geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.PointTrait, g1, ::GI.LineStringTrait, g2)::Bool = point_on_line(g1, g2; ignore_end_vertices=true)\nwithin(::GI.PointTrait, g1, ::GI.LinearRingTrait, g2)::Bool = point_on_line(g1, g2; ignore_end_vertices=true)\nwithin(::GI.PointTrait, g1, ::GI.PolygonTrait, g2)::Bool = point_in_polygon(g1, g2; ignore_boundary=true)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Lines in geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.LineStringTrait, g1, ::GI.LineStringTrait, g2)::Bool = line_on_line(g1, g2)\nwithin(::GI.LineStringTrait, g1, ::GI.LinearRingTrait, g2)::Bool = line_on_line(g1, g2)\nwithin(::GI.LineStringTrait, g1, ::GI.PolygonTrait, g2)::Bool = line_in_polygon(g1, g2)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Polygons within geometries","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.PolygonTrait, g1, ::GI.PolygonTrait, g2)::Bool = polygon_in_polygon(g1, g2)","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"Everything not specified TODO: Add multipolygons","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"within(::GI.AbstractTrait, g1, ::GI.AbstractCurveTrait, g2)::Bool = false","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"","category":"page"},{"location":"source/methods/within/","page":"Containment/withinness","title":"Containment/withinness","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/signed_area/#Signed-area","page":"Signed area","title":"Signed area","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"export signed_area","category":"page"},{"location":"source/methods/signed_area/#What-is-signed-area?","page":"Signed area","title":"What is signed area?","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Signed area is simply the integral over the exterior path of a polygon, minus the sum of integrals over its interior holes.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"It is signed such that a clockwise path has a positive area, and a counterclockwise path has a negative area.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"To provide an example, consider this rectangle:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\n\nrect = Polygon([Point(0,0), Point(0,1), Point(1,1), Point(1,0), Point(0, 0)])\nf, a, p = poly(rect; axis = (; aspect = DataAspect()))","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is clearly a rectangle, etc. But now let's look at how the points look:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"lines!(a, rect; color = 1:length(coordinates(rect))+1)\nf","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"The points are ordered in a clockwise fashion, which means that the signed area is negative. If we reverse the order of the points, we get a postive area.","category":"page"},{"location":"source/methods/signed_area/#Implementation","page":"Signed area","title":"Implementation","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"\"\"\"\n signed_area(geom)::Real\n\nReturns the signed area of the geometry, based on winding order.\n\"\"\"\nsigned_area(x) = signed_area(GI.trait(x), x)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"TODOS here:","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This could conceivably be multithreaded. How to indicate that it should be so?\nWhat to do for corner cases (nan point, etc)?","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(::Union{GI.LineStringTrait,GI.LinearRingTrait}, geom)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Basically, we integrate the area under the line string, which gives us the signed area.","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" point₁ = GI.getpoint(geom, 1)\n point₂ = GI.getpoint(geom, 2)\n area = GI.x(point₁) * GI.y(point₂) - GI.y(point₁) * GI.x(point₂)\n for point in GI.getpoint(geom)","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Advance the point buffers by 1 point","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" point₁ = point₂\n point₂ = point","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Accumulate the area into area","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":" area += GI.x(point₁) * GI.y(point₂) - GI.y(point₁) * GI.x(point₂)\n end\n area /= 2\n return area\nend","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This subtracts the","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(::GI.PolygonTrait, geom)\n s_area = signed_area(GI.getexterior(geom))\n area = abs(s_area)\n for hole in GI.gethole(geom)\n area -= abs(signed_area(hole))\n end\n return area * sign(s_area)\nend\n\nsigned_area(::GI.MultiPolygonTrait, geom) = sum((signed_area(poly) for poly in GI.getpolygon(geom)))","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This should theoretically work for anything, but I haven't actually tested yet!","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"Below is the original GeometryBasics implementation:","category":"page"},{"location":"source/methods/signed_area/#julia","page":"Signed area","title":"```julia","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(a::Point{2, T}, b::Point{2, T}, c::Point{2, T}) where T return ((b[1] - a[1]) * (c[2] - a[2]) - (c[1] - a[1]) * (b[2] - a[2])) / 2 end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signed_area(points::AbstractVector{<: Point{2, T}}) where {T} area = sum((points[i][1] * points[i+1][2] - points[i][2] * points[i+1][1] for i in 1:(length(points)-1))) / 2.0 end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signedarea(ls::GeometryBasics.LineString) # coords = GeometryBasics.decompose(Point2f, ls) return sum((p1[1] * p2[2] - p1[2] * p2[1] for (p1, p2) in ls)) / 2.0#signedarea(coords) end","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"function signedarea(poly::GeometryBasics.Polygon{2}) sarea = signedarea(poly.exterior) area = abs(sarea) for hole in poly.interiors area -= abs(signedarea(hole)) end return area * sign(sarea) end","category":"page"},{"location":"source/methods/signed_area/#WARNING:-this-may-not-do-what-you-expect,-since-it's","page":"Signed area","title":"WARNING: this may not do what you expect, since it's","text":"","category":"section"},{"location":"source/methods/signed_area/#sensitive-to-winding-order.-Use-GeoInterface.area-instead.","page":"Signed area","title":"sensitive to winding order. Use GeoInterface.area instead.","text":"","category":"section"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"signedarea(mp::MultiPolygon) = sum(signedarea.(mp.polygons)) ```","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"","category":"page"},{"location":"source/methods/signed_area/","page":"Signed area","title":"Signed area","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/intersects/#Intersection-checks","page":"Intersection checks","title":"Intersection checks","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"export intersects, intersection, intersection_points","category":"page"},{"location":"source/methods/intersects/#What-is-intersects-vs-intersection-vs-intersection_points?","page":"Intersection checks","title":"What is intersects vs intersection vs intersection_points?","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"The intersects methods check whether two geometries intersect with each other. The intersection methods return the geometry intersection between the two input geometries. The intersection_points method returns a list of intersection points between two geometries.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"The intersects methods will always return a Boolean. However, note that the intersection methods will not all return the same type. For example, the intersection of two lines will be a point in most cases, unless the lines are parallel. On the other hand, the intersection of two polygons will be another polygon in most cases. Finally, the intersection_points method returns a list of tuple points.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\npoint1, point2 = Point(124.584961,-12.768946), Point(126.738281,-17.224758)\npoint3, point4 = Point(123.354492,-15.961329), Point(127.22168,-14.008696)\nline1 = Line(point1, point2)\nline2 = Line(point3, point4)\nf, a, p = lines([point1, point2])\nlines!([point3, point4])","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"We can see that they intersect, so we expect intersects to return true, and we can visualize the intersection point in red.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"int_bool = GO.intersects(line1, line2)\nprintln(int_bool)\nint_point = GO.intersection(line1, line2)\nscatter!(int_point, color = :red)\nf","category":"page"},{"location":"source/methods/intersects/#Implementation","page":"Intersection checks","title":"Implementation","text":"","category":"section"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"First, we implement a wrapper method for intersects, intersection, and intersectionpoints that dispatches to the correct implementation based on the geometry trait. The two underlying helper functions that are widely used in all geometry dispatches are _lineintersects, which determines if two line segments intersect and intersectionpoint which determines the intersection point between two line segments.","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"\"\"\"\n intersects(geom1, geom2)::Bool\n\nCheck if two geometries intersect, returning true if so and false otherwise.\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersects(line1, line2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"output","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"true\n```\n\"\"\"\nintersects(geom1, geom2) = intersects(\n GI.trait(geom1),\n geom1,\n GI.trait(geom2),\n geom2\n)\n\n\"\"\"\n intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool\n\nReturns true if two line segments intersect and false otherwise.\n\"\"\"\nfunction intersects(::GI.LineTrait, a, ::GI.LineTrait, b)\n a1 = _tuple_point(GI.getpoint(a, 1))\n a2 = _tuple_point(GI.getpoint(a, 2))\n b1 = _tuple_point(GI.getpoint(b, 1))\n b2 = _tuple_point(GI.getpoint(b, 2))\n meet_type = ExactPredicates.meet(a1, a2, b1, b2)\n return meet_type == 0 || meet_type == 1\nend\n\n\"\"\"\n intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool\n\nReturns true if two geometries intersect with one another and false\notherwise. For all geometries but lines, convert the geometry to a list of edges\nand cross compare the edges for intersections.\n\"\"\"\nfunction intersects(\n trait_a::GI.AbstractTrait, a_geom,\n trait_b::GI.AbstractTrait, b_geom,\n) edges_a, edges_b = map(sort! ∘ to_edges, (a_geom, b_geom))\n return _line_intersects(edges_a, edges_b) ||\n within(trait_a, a_geom, trait_b, b_geom) ||\n within(trait_b, b_geom, trait_a, a_geom)\nend\n\n\"\"\"\n _line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n )::Bool\n\nReturns true if there is at least one intersection between edges within the\ntwo lists of edges.\n\"\"\"\nfunction _line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Extents.intersects(toextent(edgesa), toextent(edgesb)) || return false","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" for edge_a in edges_a\n for edge_b in edges_b\n _line_intersects(edge_a, edge_b) && return true\n end\n end\n return false\nend\n\n\"\"\"\n _line_intersects(\n edge_a::Edge,\n edge_b::Edge,\n )::Bool\n\nReturns true if there is at least one intersection between two edges.\n\"\"\"\nfunction _line_intersects(edge_a::Edge, edge_b::Edge)\n meet_type = ExactPredicates.meet(edge_a..., edge_b...)\n return meet_type == 0 || meet_type == 1\nend\n\n\"\"\"\n intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}\n\nReturn an intersection point between two geometries. Return nothing if none are\nfound. Else, the return type depends on the input. It will be a union between:\na point, a line, a linear ring, a polygon, or a multipolygon\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersection(line1, line2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"output","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"(125.58375366067547, -14.83572303404496)\n```\n\"\"\"\nintersection(geom_a, geom_b) =\n intersection(GI.trait(geom_a), geom_a, GI.trait(geom_b), geom_b)\n\n\"\"\"\n intersection(\n ::GI.LineTrait, line_a,\n ::GI.LineTrait, line_b,\n )::Union{\n ::Tuple{::Real, ::Real},\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(::GI.LineTrait, line_a, ::GI.LineTrait, line_b)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Get start and end points for both lines","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" a1 = GI.getpoint(line_a, 1)\n a2 = GI.getpoint(line_a, 2)\n b1 = GI.getpoint(line_b, 1)\n b2 = GI.getpoint(line_b, 2)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Determine the intersection point","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" point, fracs = _intersection_point((a1, a2), (b1, b2))","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Determine if intersection point is on line segments","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" if !isnothing(point) && 0 <= fracs[1] <= 1 && 0 <= fracs[2] <= 1\n return point\n end\n return nothing\nend\n\nintersection(\n trait_a::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom_a,\n trait_b::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom_b,\n) = intersection_points(trait_a, geom_a, trait_b, geom_b)\n\n\"\"\"\n intersection(\n ::GI.PolygonTrait, poly_a,\n ::GI.PolygonTrait, poly_b,\n )::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(::GI.PolygonTrait, poly_a, ::GI.PolygonTrait, poly_b)\n @assert false \"Polygon intersection isn't implemented yet.\"\n return nothing\nend\n\n\"\"\"\n intersection(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n )::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n }\n\nCalculates the intersection between two line segments. Return nothing if\nthere isn't one.\n\"\"\"\nfunction intersection(\n trait_a::GI.AbstractTrait, geom_a,\n trait_b::GI.AbstractTrait, geom_b,\n)\n @assert(\n false,\n \"Intersection between $trait_a and $trait_b isn't implemented yet.\",\n )\n return nothing\nend\n\n\"\"\"\n intersection_points(\n geom_a,\n geom_b,\n )::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n }\n\nReturn a list of intersection points between two geometries. If no intersection\npoint was possible given geometry extents, return nothing. If none are found,\nreturn an empty list.\n\"\"\"\nintersection_points(geom_a, geom_b) =\n intersection_points(GI.trait(geom_a), geom_a, GI.trait(geom_b), geom_b)\n\n\"\"\"\n intersection_points(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n )::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n }\n\nCalculates the list of intersection points between two geometries, inlcuding\nline segments, line strings, linear rings, polygons, and multipolygons. If no\nintersection points were possible given geometry extents, return nothing. If\nnone are found, return an empty list.\n\"\"\"\nfunction intersection_points(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Check if the geometries extents even overlap","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" Extents.intersects(GI.extent(a), GI.extent(b)) || return nothing","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Create a list of edges from the two input geometries","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" edges_a, edges_b = map(sort! ∘ to_edges, (a, b))\n npoints_a, npoints_b = length(edges_a), length(edges_b)\n a_closed = npoints_a > 1 && edges_a[1][1] == edges_a[end][1]\n b_closed = npoints_b > 1 && edges_b[1][1] == edges_b[end][1]\n if npoints_a > 0 && npoints_b > 0","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Initialize an empty list of points","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" T = typeof(edges_a[1][1][1]) # x-coordinate of first point in first edge\n result = Tuple{T,T}[]","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Loop over pairs of edges and add any intersection points to results","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" for i in eachindex(edges_a)\n for j in eachindex(edges_b)\n point, fracs = _intersection_point(edges_a[i], edges_b[j])\n if !isnothing(point)\n #=\n Determine if point is on edge (all edge endpoints excluded\n except for the last edge for an open geometry)\n =#\n α, β = fracs\n on_a_edge = (!a_closed && i == npoints_a && 0 <= α <= 1) ||\n (0 <= α < 1)\n on_b_edge = (!b_closed && j == npoints_b && 0 <= β <= 1) ||\n (0 <= β < 1)\n if on_a_edge && on_b_edge\n push!(result, point)\n end\n end\n end\n end\n return result\n end\n return nothing\nend\n\n\"\"\"\n _intersection_point(\n (a1, a2)::Tuple,\n (b1, b2)::Tuple,\n )\n\nCalculates the intersection point between two lines if it exists, and as if the\nline extended to infinity, and the fractional component of each line from the\ninitial end point to the intersection point.\nInputs:\n (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line\n (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line\nOutputs:\n (x, y)::Tuple{::Real, ::Real} intersection point\n (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection\n Both are ::Nothing if point doesn't exist!\n\nCalculation derivation can be found here:\n https://stackoverflow.com/questions/563198/\n\"\"\"\nfunction _intersection_point((a1, a2)::Tuple, (b1, b2)::Tuple)","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"First line runs from p to p + r","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" px, py = GI.x(a1), GI.y(a1)\n rx, ry = GI.x(a2) - px, GI.y(a2) - py","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Second line runs from q to q + s","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" qx, qy = GI.x(b1), GI.y(b1)\n sx, sy = GI.x(b2) - qx, GI.y(b2) - qy","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"Intersection will be where p + tr = q + us where 0 < t, u < 1 and","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":" r_cross_s = rx * sy - ry * sx\n if r_cross_s != 0\n Δqp_x = qx - px\n Δqp_y = qy - py\n t = (Δqp_x * sy - Δqp_y * sx) / r_cross_s\n u = (Δqp_x * ry - Δqp_y * rx) / r_cross_s\n x = px + t * rx\n y = py + t * ry\n return (x, y), (t, u)\n end\n return nothing, nothing\nend","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"","category":"page"},{"location":"source/methods/intersects/","page":"Intersection checks","title":"Intersection checks","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/utils/#Utility-functions","page":"Utility functions","title":"Utility functions","text":"","category":"section"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"_is3d(geom) = _is3d(GI.trait(geom), geom)\n_is3d(::GI.AbstractGeometryTrait, geom) = GI.is3d(geom)\n_is3d(::GI.FeatureTrait, feature) = _is3d(GI.geometry(feature))\n_is3d(::GI.FeatureCollectionTrait, fc) = _is3d(GI.getfeature(fc, 1))\n_is3d(::Nothing, geom) = _is3d(first(geom)) # Otherwise step into an itererable\n\n_npoint(x) = _npoint(trait(x), x)\n_npoint(::Nothing, xs::AbstractArray) = sum(_npoint, xs)\n_npoint(::GI.FeatureCollectionTrait, fc) = sum(_npoint, GI.getfeature(fc))\n_npoint(::GI.FeatureTrait, f) = _npoint(GI.geometry(f))\n_npoint(::GI.AbstractGeometryTrait, x) = GI.npoint(trait(x), x)\n\n_nedge(x) = _nedge(trait(x), x)\n_nedge(::Nothing, xs::AbstractArray) = sum(_nedge, xs)\n_nedge(::GI.FeatureCollectionTrait, fc) = sum(_nedge, GI.getfeature(fc))\n_nedge(::GI.FeatureTrait, f) = _nedge(GI.geometry(f))\nfunction _nedge(::GI.AbstractGeometryTrait, x)\n n = 0\n for g in GI.getgeom(x)\n n += _nedge(g)\n end\n return n\nend\n_nedge(::GI.AbstractCurveTrait, x) = GI.npoint(x) - 1\n_nedge(::GI.PointTrait, x) = error(\"Cant get edges from points\")\n\n\n\"\"\"\n polygon_to_line(poly::Polygon)\n\nConverts a Polygon to LineString or MultiLineString","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"Examples","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)]])\nGO.polygon_to_line(poly)","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"output","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"GeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)\n```\n\"\"\"\nfunction polygon_to_line(poly)\n @assert GI.trait(poly) isa PolygonTrait\n GI.ngeom(poly) > 1 && return GI.MultiLineString(collect(GI.getgeom(poly)))\n return GI.LineString(collect(GI.getgeom(GI.getgeom(poly, 1))))\nend\n\n\n\"\"\"\n to_edges()\n\nConvert any geometry or collection of geometries into a flat\nvector of `Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}}` edges.\n\"\"\"\nfunction to_edges(x)\n edges = Vector{Edge}(undef, _nedge(x))\n _to_edges!(edges, x, 1)\n return edges\nend\n\n_to_edges!(edges::Vector, x, n) = _to_edges!(edges, trait(x), x, n)\nfunction _to_edges!(edges::Vector, ::GI.FeatureCollectionTrait, fc, n)\n for f in GI.getfeature(fc)\n n = _to_edges!(edges, f, n)\n end\nend\n_to_edges!(edges::Vector, ::GI.FeatureTrait, f, n) = _to_edges!(edges, GI.geometry(f), n)\nfunction _to_edges!(edges::Vector, ::GI.AbstractGeometryTrait, fc, n)\n for f in GI.getgeom(fc)\n n = _to_edges!(edges, f, n)\n end\nend\nfunction _to_edges!(edges::Vector, ::GI.AbstractCurveTrait, geom, n)\n p1 = GI.getpoint(geom, 1)\n p1x, p1y = GI.x(p1), GI.y(p1)\n for i in 2:GI.npoint(geom)\n p2 = GI.getpoint(geom, i)\n p2x, p2y = GI.x(p2), GI.y(p2)\n edges[n] = (p1x, p1y), (p2x, p2y)\n p1x, p1y = p2x, p2y\n n += 1\n end\n return n\nend\n\n_tuple_point(p) = GI.x(p), GI.y(p)\n\nfunction to_extent(edges::Vector{Edge})\n x, y = extrema(first, edges)\n Extents.Extent(X=x, Y=y)\nend\n\nfunction to_points(xs)\n points = Vector{TuplePoint}(undef, _npoint(x))\n _to_points!(points, x, 1)\n return points\nend\n\n_to_points!(points::Vector, x, n) = _to_points!(points, trait(x), x, n)\nfunction _to_points!(points::Vector, ::FeatureCollectionTrait, fc, n)\n for f in GI.getfeature(fc)\n n = _to_points!(points, f, n)\n end\nend\n_to_points!(points::Vector, ::FeatureTrait, f, n) = _to_points!(points, GI.geometry(f), n)\nfunction _to_points!(points::Vector, ::AbstractGeometryTrait, fc, n)\n for f in GI.getgeom(fc)\n n = _to_points!(points, f, n)\n end\nend\nfunction _to_points!(points::Vector, ::Union{AbstractCurveTrait,MultiPointTrait}, geom, n)\n p1 = GI.getpoint(geom, 1)\n p1x, p1y = GI.x(p1), GI.y(p1)\n for i in 2:GI.npoint(geom)\n p2 = GI.getpoint(geom, i)\n p2x, p2y = GI.x(p2), GI.y(p2)\n points[n] = (p1x, p1y), (p2x, p2y)\n p1 = p2\n n += 1\n end\n return n\nend","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"","category":"page"},{"location":"source/utils/","page":"Utility functions","title":"Utility functions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/bools/#Boolean-conditions","page":"Boolean conditions","title":"Boolean conditions","text":"","category":"section"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"export isclockwise, isconcave\nexport point_on_line, point_in_polygon, point_in_ring\nexport line_on_line, line_in_polygon, polygon_in_polygon","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"These are all adapted from Turf.jl.","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"The may not necessarily be what want in the end but work for now!","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\"\n isclockwise(line::Union{LineString, Vector{Position}})::Bool\n\nTake a ring and return true or false whether or not the ring is clockwise or\ncounter-clockwise.\n\n# Example\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\nring = GI.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)])\nGO.isclockwise(ring)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\nisclockwise(geom)::Bool = isclockwise(GI.trait(geom), geom)\n\nfunction isclockwise(::AbstractCurveTrait, line)::Bool\n sum = 0.0\n prev = GI.getpoint(line, 1)\n for p in GI.getpoint(line)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"sum will be zero for the first point as x is subtracted from itself","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" sum += (GI.x(p) - GI.x(prev)) * (GI.y(p) + GI.y(prev))\n prev = p\n end\n\n return sum > 0.0\nend\n\n\"\"\"\n isconcave(poly::Polygon)::Bool\n\nTake a polygon and return true or false as to whether it is concave or not.\n\n# Examples\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoly = GI.Polygon([[(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]])\nGO.isconcave(poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"false\n```\n\"\"\"\nfunction isconcave(poly)::Bool\n sign = false\n\n exterior = GI.getexterior(poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME handle not closed polygons","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" GI.npoint(exterior) <= 4 && return false\n n = GI.npoint(exterior) - 1\n\n for i in 1:n\n j = ((i + 1) % n) === 0 ? 1 : (i + 1) % n\n m = ((i + 2) % n) === 0 ? 1 : (i + 2) % n\n\n pti = GI.getpoint(exterior, i)\n ptj = GI.getpoint(exterior, j)\n ptm = GI.getpoint(exterior, m)\n\n dx1 = GI.x(ptm) - GI.x(ptj)\n dy1 = GI.y(ptm) - GI.y(ptj)\n dx2 = GI.x(pti) - GI.x(ptj)\n dy2 = GI.y(pti) - GI.y(ptj)\n\n cross = (dx1 * dy2) - (dy1 * dx2)\n\n if i === 0\n sign = cross > 0\n elseif sign !== (cross > 0)\n return true\n end\n end\n\n return false\nend","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\" isparallel(line1::LineString, line2::LineString)::Bool","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Return true if each segment of line1 is parallel to the correspondent segment of line2","category":"page"},{"location":"source/methods/bools/#Examples","page":"Boolean conditions","title":"Examples","text":"","category":"section"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"import GeoInterface as GI, GeometryOps as GO\njulia> line1 = GI.LineString([(9.170356, 45.477985), (9.164434, 45.482551), (9.166644, 45.484003)])\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(9.170356, 45.477985), (9.164434, 45.482551), (9.166644, 45.484003)], nothing, nothing)\n\njulia> line2 = GI.LineString([(9.169356, 45.477985), (9.163434, 45.482551), (9.165644, 45.484003)])\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(9.169356, 45.477985), (9.163434, 45.482551), (9.165644, 45.484003)], nothing, nothing)\n\njulia>\nGO.isparallel(line1, line2)\ntrue","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\" function isparallel(line1, line2)::Bool seg1 = linesegment(line1) seg2 = linesegment(line2)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"for i in eachindex(seg1)\n coors2 = nothing\n coors1 = seg1[i]\n coors2 = seg2[i]\n _isparallel(coors1, coors2) == false && return false\nend\nreturn true","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"@inline function isparallel(p1, p2) slope1 = bearingtoazimuth(rhumbbearing(GI.x(p1), GI.x(p2))) slope2 = bearingtoazimuth(rhumb_bearing(GI.y(p1), GI.y(p2)))","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"return slope1 === slope2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"\"\"\"\n point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool\n\nReturn true if a point is on a line. Accept a optional parameter to ignore the\nstart and end vertices of the linestring.\n\n# Examples\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (1, 1)\nline = GI.LineString([(0, 0), (3, 3), (4, 4)])\nGO.point_on_line(point, line)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\nfunction point_on_line(point, line; ignore_end_vertices::Bool=false)::Bool\n line_points = tuple_points(line)\n n = length(line_points)\n\n exclude_boundary = :none\n for i in 1:n - 1\n if ignore_end_vertices\n if i === 1\n exclude_boundary = :start\n elseif i === n - 2\n exclude_boundary = :end\n elseif (i === 1 && i + 1 === n - 1)\n exclude_boundary = :both\n end\n end\n if point_on_segment(point, (line_points[i], line_points[i + 1]); exclude_boundary)\n return true\n end\n end\n return false\nend\n\nfunction point_on_seg(point, start, stop)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Parse out points","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" x, y = GI.x(point), GI.y(point)\n x1, y1 = GI.x(start), GI.y(start)\n x2, y2 = GI.x(stop), GI.y(stop)\n Δxl = x2 - x1\n Δyl = y2 - y1","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Determine if point is on segment","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" cross = (x - x1) * Δyl - (y - y1) * Δxl\n if cross == 0 # point is on line extending to infinity","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"is line between endpoints","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if abs(Δxl) >= abs(Δyl) # is line between endpoints\n return Δxl > 0 ? x1 <= x <= x2 : x2 <= x <= x1\n else\n return Δyl > 0 ? y1 <= y <= y2 : y2 <= y <= y1\n end\n end\n return false\nend\n\nfunction point_on_segment(point, (start, stop); exclude_boundary::Symbol=:none)::Bool\n x, y = GI.x(point), GI.y(point)\n x1, y1 = GI.x(start), GI.y(start)\n x2, y2 = GI.x(stop), GI.y(stop)\n\n dxc = x - x1\n dyc = y - y1\n dx1 = x2 - x1\n dy1 = y2 - y1","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"TODO use better predicate for crossing here","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" cross = dxc * dy1 - dyc * dx1\n cross != 0 && return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Will constprop optimise these away?","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if exclude_boundary === :none\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 <= x && x <= x2 : x2 <= x && x <= x1\n end\n return dy1 > 0 ? y1 <= y && y <= y2 : y2 <= y && y <= y1\n elseif exclude_boundary === :start\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 < x && x <= x2 : x2 <= x && x < x1\n end\n return dy1 > 0 ? y1 < y && y <= y2 : y2 <= y && y < y1\n elseif exclude_boundary === :end\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 <= x && x < x2 : x2 < x && x <= x1\n end\n return dy1 > 0 ? y1 <= y && y < y2 : y2 < y && y <= y1\n elseif exclude_boundary === :both\n if abs(dx1) >= abs(dy1)\n return dx1 > 0 ? x1 < x && x < x2 : x2 < x && x < x1\n end\n return dy1 > 0 ? y1 < y && y < y2 : y2 < y && y < y1\n end\n return false\nend\n\n\"\"\"\n point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool\n\nTake a Point and a Polygon and determine if the point\nresides inside the polygon. The polygon can be convex or concave. The function accounts for holes.\n\n# Examples\n\n```jldoctest\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (-77.0, 44.0)\npoly = GI.Polygon([[(-81, 41), (-81, 47), (-72, 47), (-72, 41), (-81, 41)]])\nGO.point_in_polygon(point, poly)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"output","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"true\n```\n\"\"\"\npoint_in_polygon(point, polygon; kw...)::Bool =\n point_in_polygon(GI.trait(point), point, GI.trait(polygon), polygon; kw...)\nfunction point_in_polygon(\n ::PointTrait, point,\n ::PolygonTrait, poly;\n ignore_boundary::Bool=false,\n check_extent::Bool=false,\n)::Bool","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Cheaply check that the point is inside the polygon extent","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if check_extent\n point_in_extent(point, GI.extent(poly)) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Then check the point is inside the exterior ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" point_in_polygon(\n point,GI.getexterior(poly);\n ignore_boundary, check_extent=false,\n ) || return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Finally make sure the point is not in any of the holes, flipping the boundary condition","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for ring in GI.gethole(poly)\n point_in_polygon(\n point, ring;\n ignore_boundary=!ignore_boundary,\n ) && return false\n end\n return true\nend\n\nfunction point_in_polygon(\n ::PointTrait, pt,\n ::Union{LineStringTrait,LinearRingTrait}, ring;\n ignore_boundary::Bool=false,\n check_extent::Bool=false,\n)::Bool\n x, y = GI.x(pt), GI.y(pt)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Cheaply check that the point is inside the ring extent","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if check_extent\n point_in_extent(point, GI.extent(ring)) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Then check the point is inside the ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" inside = false\n n = GI.npoint(ring)\n p_start = GI.getpoint(ring, 1)\n p_end = GI.getpoint(ring, n)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Handle closed vs opne rings","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if GI.x(p_start) == GI.x(p_end) && GI.y(p_start) == GI.y(p_end)\n n -= 1\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Loop over all points in the ring","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for i in 1:(n - 1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"First point on edge","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" p_i = GI.getpoint(ring, i)\n xi, yi = GI.x(p_i), GI.y(p_i)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Second point on edge (j = i + 1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" p_j = GI.getpoint(ring, i + 1)\n xj, yj = GI.x(p_j), GI.y(p_j)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check if point is on the ring boundary","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" on_boundary = ( # vertex to point has same slope as edge\n yi * (xj - x) + yj * (x - xi) == y * (xj - xi) &&\n (xi - x) * (xj - x) <= 0 && # x is between xi and xj\n (yi - y) * (yj - y) <= 0 # y is between yi and yj\n )\n on_boundary && return !ignore_boundary","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check if ray from point passes through edge","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" intersects = (\n (yi > y) !== (yj > y) &&\n (x < (xj - xi) * (y - yi) / (yj - yi) + xi)\n )\n if intersects\n inside = !inside\n end\n end\n return inside\nend\n\nfunction point_in_extent(p, extent::Extents.Extent)\n (x1, x2), (y1, y1) = extent.X, extent.Y\n return x1 <= GI.x(p) && y1 <= GI.y(p) && x2 >= GI.x(p) && y2 >= GI.y(p)\nend\n\nline_on_line(line1, line2) = line_on_line(trait(line1), line1, trait(line2), line2)\nfunction line_on_line(t1::GI.AbstractCurveTrait, line1, t2::AbstractCurveTrait, line2)\n for p in GI.getpoint(line1)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME: all points being on the line doesn't actually mean the whole line is on the line...","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" point_on_line(p, line2) || return false\n end\n return true\nend\n\nline_in_polygon(line, poly) = line_in_polygon(trait(line), line, trait(poly), poly)\n\nfunction line_in_polygon(\n ::AbstractCurveTrait, line,\n ::Union{AbstractPolygonTrait,LinearRingTrait}, poly\n)\n Extents.intersects(GI.extent(poly), GI.extent(line)) || return false\n\n inside = false\n for i in 1:GI.npoint(line) - 1\n p = GI.getpoint(line, i)\n p2 = GI.getpoint(line, i + 1)\n point_in_polygon(p, poly) || return false\n if !inside\n inside = point_in_polygon(p, poly; ignore_boundary=true)\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"FIXME This seems like a hack, we should check for intersections rather than midpoint??","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" if !inside\n mid = ((GI.x(p) + GI.x(p2)) / 2, (GI.y(p) + GI.y(p2)) / 2)\n inside = point_in_polygon(mid, poly; ignore_boundary=true)\n end\n end\n return inside\nend\n\nfunction polygon_in_polygon(poly1, poly2)","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"edges1, edges2 = toedges(poly1), toedges(poly2) extent1, extent2 = toextent(edges1), toextent(edges2) Check the extents intersect","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" Extents.intersects(GI.extent(poly1), GI.extent(poly2)) || return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check all points in poly1 are in poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" for point in GI.getpoint(poly1)\n point_in_polygon(point, poly2) || return false\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"Check the line of poly1 does not intersect the line of poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" #intersects(poly1, poly2) && return false","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"poly1 must be in poly2","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":" return true\n end","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"","category":"page"},{"location":"source/methods/bools/","page":"Boolean conditions","title":"Boolean conditions","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/methods/equals/#Equals","page":"Equals","title":"Equals","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"export equals","category":"page"},{"location":"source/methods/equals/#What-is-equals?","page":"Equals","title":"What is equals?","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"The equals function checks if two geometries are equal. They are equal if they share the same set of points and edges to define the same shape.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"To provide an example, consider these two lines:","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"using GeometryOps\nusing GeometryOps.GeometryBasics\nusing Makie\nusing CairoMakie\n\nl1 = GI.LineString([(0.0, 0.0), (0.0, 10.0)])\nl2 = GI.LineString([(0.0, -10.0), (0.0, 3.0)])\nf, a, p = lines(GI.getpoint(l1), color = :blue)\nscatter!(GI.getpoint(l1), color = :blue)\nlines!(GI.getpoint(l2), color = :orange)\nscatter!(GI.getpoint(l2), color = :orange)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"We can see that the two lines do not share a commen set of points and edges in the plot, so they are not equal:","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"equals(l1, l2) # returns false","category":"page"},{"location":"source/methods/equals/#Implementation","page":"Equals","title":"Implementation","text":"","category":"section"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"This is the GeoInterface-compatible implementation.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"First, we implement a wrapper method that dispatches to the correct implementation based on the geometry trait. This is also used in the implementation, since it's a lot less work!","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Note that while we need the same set of points and edges, they don't need to be provided in the same order for polygons. For for example, we need the same set points for two multipoints to be equal, but they don't have to be saved in the same order. The winding order also doesn't have to be the same to represent the same geometry. This requires checking every point against every other point in the two geometries we are comparing. Also, some geometries must be \"closed\" like polygons and linear rings. These will be assumed to be closed, even if they don't have a repeated last point explicity written in the coordinates. Additionally, geometries and multi-geometries can be equal if the multi-geometry only includes that single geometry.","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"\"\"\"\n equals(geom1, geom2)::Bool\n\nCompare two Geometries return true if they are the same geometry.\n\n# Examples\n```jldoctest\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\n\nGO.equals(poly1, poly2)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"output","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"true\n```\n\"\"\"\nequals(geom_a, geom_b) = equals(\n GI.trait(geom_a), geom_a,\n GI.trait(geom_b), geom_b,\n)\n\n\"\"\"\n equals(::T, geom_a, ::T, geom_b)::Bool\n\nTwo geometries of the same type, which don't have a equals function to dispatch\noff of should throw an error.\n\"\"\"\nequals(::T, geom_a, ::T, geom_b) where T = error(\"Cant compare $T yet\")\n\n\"\"\"\n equals(trait_a, geom_a, trait_b, geom_b)\n\nTwo geometries which are not of the same type cannot be equal so they always\nreturn false.\n\"\"\"\nequals(trait_a, geom_a, trait_b, geom_b) = false\n\n\"\"\"\n equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool\n\nTwo points are the same if they have the same x and y (and z if 3D) coordinates.\n\"\"\"\nfunction equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)\n GI.ncoord(p1) == GI.ncoord(p2) || return false\n GI.x(p1) == GI.x(p2) || return false\n GI.y(p1) == GI.y(p2) || return false\n if GI.is3d(p1)\n GI.z(p1) == GI.z(p2) || return false\n end\n return true\nend\n\n\"\"\"\n equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single\npoint that is equivalent to the given point.\n\"\"\"\nfunction equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)\n GI.npoint(mp2) == 1 || return false\n return equals(p1, GI.getpoint(mp2, 1))\nend\n\n\"\"\"\n equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single\npoint that is equivalent to the given point.\n\"\"\"\nequals(trait1::GI.MultiPointTrait, mp1, trait2::GI.PointTrait, p2) =\n equals(trait2, p2, trait1, mp1)\n\n\"\"\"\n equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool\n\nTwo multipoints are equal if they share the same set of points.\n\"\"\"\nfunction equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)\n GI.npoint(mp1) == GI.npoint(mp2) || return false\n for p1 in GI.getpoint(mp1)\n has_match = false # if point has a matching point in other multipoint\n for p2 in GI.getpoint(mp2)\n if equals(p1, p2)\n has_match = true\n break\n end\n end\n has_match || return false # if no matching point, can't be equal\n end\n return true # all points had a match\nend\n\n\"\"\"\n _equals_curves(c1, c2, closed_type1, closed_type2)::Bool\n\nTwo curves are equal if they share the same set of point, representing the same\ngeometry. Both curves must must be composed of the same set of points, however,\nthey do not have to wind in the same direction, or start on the same point to be\nequivalent.\nInputs:\n c1 first geometry\n c2 second geometry\n closed_type1::Bool true if c1 is closed by definition (polygon, linear ring)\n closed_type2::Bool true if c2 is closed by definition (polygon, linear ring)\n\"\"\"\nfunction _equals_curves(c1, c2, closed_type1, closed_type2)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if both curves are closed or not","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 = GI.npoint(c1)\n n2 = GI.npoint(c2)\n c1_repeat_point = GI.getpoint(c1, 1) == GI.getpoint(c1, n1)\n n2 = GI.npoint(c2)\n c2_repeat_point = GI.getpoint(c2, 1) == GI.getpoint(c2, n2)\n closed1 = closed_type1 || c1_repeat_point\n closed2 = closed_type2 || c2_repeat_point\n closed1 == closed2 || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"How many points in each curve","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 -= c1_repeat_point ? 1 : 0\n n2 -= c2_repeat_point ? 1 : 0\n n1 == n2 || return false\n n1 == 0 && return true","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Find offset between curves","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" jstart = nothing\n p1 = GI.getpoint(c1, 1)\n for i in 1:n2\n if equals(p1, GI.getpoint(c2, i))\n jstart = i\n break\n end\n end","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"no point matches the first point","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" isnothing(jstart) && return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"found match for only point","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 == 1 && return true","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"if isn't closed and first or last point don't match, not same curve","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" !closed_type1 && (jstart != 1 && jstart != n1) && return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if curves are going in same direction","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" i = 2\n j = jstart + 1\n j -= j > n2 ? n2 : 0\n same_direction = equals(GI.getpoint(c1, i), GI.getpoint(c2, j))","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"if only 2 points, we have already compared both","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" n1 == 2 && return same_direction","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check all remaining points are the same wrapping around line","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" jstep = same_direction ? 1 : -1\n for i in 2:n1\n ip = GI.getpoint(c1, i)\n j = jstart + (i - 1) * jstep\n j += (0 < j <= n2) ? 0 : (n2 * -jstep)\n jp = GI.getpoint(c2, j)\n equals(ip, jp) || return false\n end\n return true\nend\n\n\"\"\"\n equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n )::Bool\n\nTwo lines/linestrings are equal if they share the same set of points going\nalong the curve. Note that lines/linestrings aren't closed by defintion.\n\"\"\"\nequals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n) = _equals_curves(l1, l2, false, false)\n\n\"\"\"\n equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n )::Bool\n\nA line/linestring and a linear ring are equal if they share the same set of\npoints going along the curve. Note that lines aren't closed by defintion, but\nrings are, so the line must have a repeated last point to be equal\n\"\"\"\nequals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n) = _equals_curves(l1, l2, false, true)\n\n\"\"\"\n equals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n )::Bool\n\nA linear ring and a line/linestring are equal if they share the same set of\npoints going along the curve. Note that lines aren't closed by defintion, but\nrings are, so the line must have a repeated last point to be equal\n\"\"\"\nequals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n) = _equals_curves(l1, l2, true, false)\n\n\"\"\"\n equals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n )::Bool\n\nTwo linear rings are equal if they share the same set of points going along the\ncurve. Note that rings are closed by definition, so they can have, but don't\nneed, a repeated last point to be equal.\n\"\"\"\nequals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n) = _equals_curves(l1, l2, true, true)\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo polygons are equal if they share the same exterior edge and holes.\n\"\"\"\nfunction equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if exterior is equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" _equals_curves(\n GI.getexterior(geom_a), GI.getexterior(geom_b),\n true, true, # linear rings are closed by definition\n ) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if number of holes are equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" GI.nhole(geom_a) == GI.nhole(geom_b) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if holes are equal","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" for ihole in GI.gethole(geom_a)\n has_match = false\n for jhole in GI.gethole(geom_b)\n if _equals_curves(\n ihole, jhole,\n true, true, # linear rings are closed by definition\n )\n has_match = true\n break\n end\n end\n has_match || return false\n end\n return true\nend\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a\nsingle polygon that is equivalent to the given polygon.\n\"\"\"\nfunction equals(::GI.PolygonTrait, geom_a, ::MultiPolygonTrait, geom_b)\n GI.npolygon(geom_b) == 1 || return false\n return equals(geom_a, GI.getpolygon(geom_b, 1))\nend\n\n\"\"\"\n equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a\nsingle polygon that is equivalent to the given polygon.\n\"\"\"\nequals(trait_a::GI.MultiPolygonTrait, geom_a, trait_b::PolygonTrait, geom_b) =\n equals(trait_b, geom_b, trait_a, geom_a)\n\n\"\"\"\n equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo multipolygons are equal if they share the same set of polygons.\n\"\"\"\nfunction equals(::GI.MultiPolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if same number of polygons","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" GI.npolygon(geom_a) == GI.npolygon(geom_b) || return false","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"Check if each polygon has a matching polygon","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":" for poly_a in GI.getpolygon(geom_a)\n has_match = false\n for poly_b in GI.getpolygon(geom_b)\n if equals(poly_a, poly_b)\n has_match = true\n break\n end\n end\n has_match || return false\n end\n return true\nend","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"","category":"page"},{"location":"source/methods/equals/","page":"Equals","title":"Equals","text":"This page was generated using Literate.jl.","category":"page"},{"location":"source/transformations/tuples/#Tuple-conversion","page":"Tuple conversion","title":"Tuple conversion","text":"","category":"section"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"\"\"\"\n tuples(obj)\n\nConvert all points on obj to `Tuple`s.\n\"\"\"\nfunction tuples(geom; kw...)\n if _is3d(geom)\n return apply(PointTrait, geom; kw...) do p\n (Float64(GI.x(p)), Float64(GI.y(p)), Float64(GI.z(p)))\n end\n else\n return apply(PointTrait, geom; kw...) do p\n (Float64(GI.x(p)), Float64(GI.y(p)))\n end\n end\nend","category":"page"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"","category":"page"},{"location":"source/transformations/tuples/","page":"Tuple conversion","title":"Tuple conversion","text":"This page was generated using Literate.jl.","category":"page"},{"location":"","page":"Home","title":"Home","text":"CurrentModule = GeometryOps","category":"page"},{"location":"#GeometryOps","page":"Home","title":"GeometryOps","text":"","category":"section"},{"location":"","page":"Home","title":"Home","text":"Documentation for GeometryOps.","category":"page"},{"location":"","page":"Home","title":"Home","text":"","category":"page"},{"location":"","page":"Home","title":"Home","text":"Modules = [GeometryOps]","category":"page"},{"location":"#GeometryOps.AbstractBarycentricCoordinateMethod","page":"Home","title":"GeometryOps.AbstractBarycentricCoordinateMethod","text":"abstract type AbstractBarycentricCoordinateMethod\n\nAbstract supertype for barycentric coordinate methods. The subtypes may serve as dispatch types, or may cache some information about the target polygon. \n\nAPI\n\nThe following methods must be implemented for all subtypes:\n\nbarycentric_coordinates!(λs::Vector{<: Real}, method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, point::Point{2, T2})\nbarycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, values::Vector{V}, point::Point{2, T2})::V\nbarycentric_interpolate(method::AbstractBarycentricCoordinateMethod, exterior::Vector{<: Point{2, T1}}, interiors::Vector{<: Vector{<: Point{2, T1}}} values::Vector{V}, point::Point{2, T2})::V\n\nThe rest of the methods will be implemented in terms of these, and have efficient dispatches for broadcasting.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.DouglasPeucker","page":"Home","title":"GeometryOps.DouglasPeucker","text":"DouglasPeucker <: SimplifyAlg\n\nDouglasPeucker(; number, ratio, tol)\n\nSimplifies geometries by removing points below tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum distance a point will be from the line joining its neighboring points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.MeanValue","page":"Home","title":"GeometryOps.MeanValue","text":"MeanValue() <: AbstractBarycentricCoordinateMethod\n\nThis method calculates barycentric coordinates using the mean value method.\n\nReferences\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.RadialDistance","page":"Home","title":"GeometryOps.RadialDistance","text":"RadialDistance <: SimplifyAlg\n\nSimplifies geometries by removing points less than tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum distance between points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.SimplifyAlg","page":"Home","title":"GeometryOps.SimplifyAlg","text":"abstract type SimplifyAlg\n\nAbstract type for simplification algorithms.\n\nAPI\n\nFor now, the algorithm must hold the number, ratio and tol properties. \n\nSimplification algorithm types can hook into the interface by implementing the _simplify(trait, alg, geom) methods for whichever traits are necessary.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps.VisvalingamWhyatt","page":"Home","title":"GeometryOps.VisvalingamWhyatt","text":"VisvalingamWhyatt <: SimplifyAlg\n\nVisvalingamWhyatt(; kw...)\n\nSimplifies geometries by removing points below tol distance from the line between its neighboring points.\n\nKeywords\n\nratio: the fraction of points that should remain after simplify. Useful as it will generalise for large collections of objects.\nnumber: the number of points that should remain after simplify. Less useful for large collections of mixed size objects.\ntol: the minimum area of a triangle made with a point and its neighboring points.\n\n\n\n\n\n","category":"type"},{"location":"#GeometryOps._det-Union{Tuple{T2}, Tuple{T1}, Tuple{Union{Tuple{T1, T1}, StaticArraysCore.StaticArray{Tuple{2}, T1, 1}}, Union{Tuple{T2, T2}, StaticArraysCore.StaticArray{Tuple{2}, T2, 1}}}} where {T1<:Real, T2<:Real}","page":"Home","title":"GeometryOps._det","text":"_det(s1::Point2{T1}, s2::Point2{T2}) where {T1 <: Real, T2 <: Real}\n\nReturns the determinant of the matrix formed by hcat'ing two points s1 and s2.\n\nSpecifically, this is: \n\ns1[1] * s2[2] - s1[2] * s2[1]\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._distance-Tuple{Any, Any, Any}","page":"Home","title":"GeometryOps._distance","text":"Distance from p0 to the line segment formed by p1 and p2. Implementation from Turf.jl.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._equals_curves-NTuple{4, Any}","page":"Home","title":"GeometryOps._equals_curves","text":"_equals_curves(c1, c2, closed_type1, closed_type2)::Bool\n\nTwo curves are equal if they share the same set of point, representing the same geometry. Both curves must must be composed of the same set of points, however, they do not have to wind in the same direction, or start on the same point to be equivalent. Inputs: c1 first geometry c2 second geometry closedtype1::Bool true if c1 is closed by definition (polygon, linear ring) closedtype2::Bool true if c2 is closed by definition (polygon, linear ring)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._intersection_point-Tuple{Tuple, Tuple}","page":"Home","title":"GeometryOps._intersection_point","text":"_intersection_point(\n (a1, a2)::Tuple,\n (b1, b2)::Tuple,\n)\n\nCalculates the intersection point between two lines if it exists, and as if the line extended to infinity, and the fractional component of each line from the initial end point to the intersection point. Inputs: (a1, a2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} first line (b1, b2)::Tuple{Tuple{::Real, ::Real}, Tuple{::Real, ::Real}} second line Outputs: (x, y)::Tuple{::Real, ::Real} intersection point (t, u)::Tuple{::Real, ::Real} fractional length of lines to intersection Both are ::Nothing if point doesn't exist!\n\nCalculation derivation can be found here: https://stackoverflow.com/questions/563198/\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._line_intersects-Tuple{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}, Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}","page":"Home","title":"GeometryOps._line_intersects","text":"_line_intersects(\n edge_a::Edge,\n edge_b::Edge,\n)::Bool\n\nReturns true if there is at least one intersection between two edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._line_intersects-Tuple{Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}, Vector{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}}","page":"Home","title":"GeometryOps._line_intersects","text":"_line_intersects(\n edges_a::Vector{Edge},\n edges_b::Vector{Edge}\n)::Bool\n\nReturns true if there is at least one intersection between edges within the two lists of edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps._overlaps-Tuple{Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}, Tuple{Tuple{Float64, Float64}, Tuple{Float64, Float64}}}","page":"Home","title":"GeometryOps._overlaps","text":"_overlaps(\n (a1, a2)::Edge,\n (b1, b2)::Edge\n)::Bool\n\nIf the edges overlap, meaning that they are colinear but each have one endpoint outside of the other edge, return true. Else false. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.apply-Union{Tuple{Target}, Tuple{Any, Type{Target}, Any}} where Target","page":"Home","title":"GeometryOps.apply","text":"apply(f, target::Type{<:AbstractTrait}, obj; crs)\n\nReconstruct a geometry or feature using the function f on the target trait.\n\nf(target_geom) => x where x also has the target trait, or an equivalent.\n\nThe result is an functionally similar geometry with values depending on f\n\nFlipped point the order in any feature or geometry, or iterables of either:\n\n```juia import GeoInterface as GI import GeometryOps as GO geom = GI.Polygon([GI.LinearRing([(1, 2), (3, 4), (5, 6), (1, 2)]), GI.LinearRing([(3, 4), (5, 6), (6, 7), (3, 4)])])\n\nflipped_geom = GO.apply(GI.PointTrait, geom) do p (GI.y(p), GI.x(p)) end\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Any, Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(trait, geom)::Tuple{T, T}\n\nReturns the centroid of a polygon or multipolygon, which is calculated by weighting edges by their area component by convention.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(geom)::Tuple{T, T}\n\nReturns the centroid of a given line segment, linear ring, polygon, or mutlipolygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid","text":"centroid(\n trait::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)::Tuple{T, T}\n\nReturns the centroid of a line string or linear ring, which is calculated by weighting line segments by their length by convention.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait}, \n geom,\n)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given geom.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(::GI.MultiPolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given multipolygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(::GI.PolygonTrait, geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_area-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid_and_area","text":"centroid_and_area(\n ::Union{GI.LineStringTrait, GI.LinearRingTrait},\n geom,\n)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and area of a given a line string or a linear ring. Note that this is only valid if the line segment or linear ring is closed. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_length-Tuple{Any}","page":"Home","title":"GeometryOps.centroid_and_length","text":"centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.centroid_and_length-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LinearRingTrait}, Any}","page":"Home","title":"GeometryOps.centroid_and_length","text":"centroid_and_length(geom)::(::Tuple{T, T}, ::Real)\n\nReturns the centroid and length of a given line/ring. Note this is only valid for line strings and linear rings.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.contains-Tuple{Any, Any}","page":"Home","title":"GeometryOps.contains","text":"contains(ft1::AbstractGeometry, ft2::AbstractGeometry)::Bool\n\nReturn true if the second geometry is completely contained by the first geometry. The interiors of both geometries must intersect and, the interior and boundary of the secondary (geometry b) must not intersect the exterior of the primary (geometry a). contains returns the exact opposite result of within.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\nline = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\npoint = (1, 2)\n\nGO.contains(line, point)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.crosses-Tuple{Any, Any}","page":"Home","title":"GeometryOps.crosses","text":" crosses(geom1, geom2)::Bool\n\nReturn true if the intersection results in a geometry whose dimension is one less than the maximum dimension of the two source geometries and the intersection set is interior to both source geometries.\n\nTODO: broken\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.LineString([(1, 1), (1, 2), (1, 3), (1, 4)])\nline2 = GI.LineString([(-2, 2), (4, 2)])\n\nGO.crosses(line1, line2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.disjoint-Tuple{Any, Any}","page":"Home","title":"GeometryOps.disjoint","text":"disjoint(geom1, geom2)::Bool\n\nReturn true if the intersection of the two geometries is an empty set.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-1, 2), (3, 2), (3, 3), (-1, 3), (-1, 2)]])\npoint = (1, 1)\nGO.disjoint(poly, point)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-NTuple{4, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(trait_a, geom_a, trait_b, geom_b)\n\nTwo geometries which are not of the same type cannot be equal so they always return false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Any, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(geom1, geom2)::Bool\n\nCompare two Geometries return true if they are the same geometry.\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\n\nGO.equals(poly1, poly2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.LinearRingTrait, Any, GeoInterface.LinearRingTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::GI.LinearRingTrait, l1,\n ::GI.LinearRingTrait, l2,\n)::Bool\n\nTwo linear rings are equal if they share the same set of points going along the curve. Note that rings are closed by definition, so they can have, but don't need, a repeated last point to be equal.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.LinearRingTrait, Any, Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::GI.LinearRingTrait, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n)::Bool\n\nA linear ring and a line/linestring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPointTrait, mp1, ::GI.MultiPointTrait, mp2)::Bool\n\nTwo multipoints are equal if they share the same set of points.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.PointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPointTrait, mp1, ::GI.PointTrait, p2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo multipolygons are equal if they share the same set of polygons.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.MultiPolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PointTrait, p1, ::GI.MultiPointTrait, mp2)::Bool\n\nA point and a multipoint are equal if the multipoint is composed of a single point that is equivalent to the given point.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PointTrait, Any, GeoInterface.PointTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PointTrait, p1, ::GI.PointTrait, p2)::Bool\n\nTwo points are the same if they have the same x and y (and z if 3D) coordinates.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.MultiPolygonTrait, geom_b)::Bool\n\nA polygon and a multipolygon are equal if the multipolygon is composed of a single polygon that is equivalent to the given polygon.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(::GI.PolygonTrait, geom_a, ::GI.PolygonTrait, geom_b)::Bool\n\nTwo polygons are equal if they share the same exterior edge and holes.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any, GeoInterface.LinearRingTrait, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::GI.LinearRingTrait, l2,\n)::Bool\n\nA line/linestring and a linear ring are equal if they share the same set of points going along the curve. Note that lines aren't closed by defintion, but rings are, so the line must have a repeated last point to be equal\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any, Union{GeoInterface.LineStringTrait, GeoInterface.LineTrait}, Any}","page":"Home","title":"GeometryOps.equals","text":"equals(\n ::Union{GI.LineTrait, GI.LineStringTrait}, l1,\n ::Union{GI.LineTrait, GI.LineStringTrait}, l2,\n)::Bool\n\nTwo lines/linestrings are equal if they share the same set of points going along the curve. Note that lines/linestrings aren't closed by defintion.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.equals-Union{Tuple{T}, Tuple{T, Any, T, Any}} where T","page":"Home","title":"GeometryOps.equals","text":"equals(::T, geom_a, ::T, geom_b)::Bool\n\nTwo geometries of the same type, which don't have a equals function to dispatch off of should throw an error.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.flatten-Union{Tuple{Target}, Tuple{Type{Target}, Any}} where Target<:GeoInterface.AbstractTrait","page":"Home","title":"GeometryOps.flatten","text":"flatten(target::Type{<:GI.AbstractTrait}, geom)\n\nLazily flatten any geometry, feature or iterator of geometries or features so that objects with the specified trait are returned by the iterator.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.flip-Tuple{Any}","page":"Home","title":"GeometryOps.flip","text":"flip(obj)\n\nSwap all of the x and y coordinates in obj, otherwise keeping the original structure (but not necessarily the original type).\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.get_contours-Tuple{AbstractMatrix}","page":"Home","title":"GeometryOps.get_contours","text":"get_contours(A::AbstractMatrix)\n\nReturns contours as vectors of CartesianIndex.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(geom_a, geom_b)::Union{Tuple{::Real, ::Real}, ::Nothing}\n\nReturn an intersection point between two geometries. Return nothing if none are found. Else, the return type depends on the input. It will be a union between: a point, a line, a linear ring, a polygon, or a multipolygon\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersection(line1, line2)\n\n# output\n(125.58375366067547, -14.83572303404496)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n)::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.LineTrait, line_a,\n ::GI.LineTrait, line_b,\n)::Union{\n ::Tuple{::Real, ::Real},\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.intersection","text":"intersection(\n ::GI.PolygonTrait, poly_a,\n ::GI.PolygonTrait, poly_b,\n)::Union{\n ::Vector{Vector{Tuple{::Real, ::Real}}}, # is this a good return type?\n ::Nothing\n}\n\nCalculates the intersection between two line segments. Return nothing if there isn't one.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection_points-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersection_points","text":"intersection_points(\n geom_a,\n geom_b,\n)::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n}\n\nReturn a list of intersection points between two geometries. If no intersection point was possible given geometry extents, return nothing. If none are found, return an empty list.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersection_points-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersection_points","text":"intersection_points(\n ::GI.AbstractTrait, geom_a,\n ::GI.AbstractTrait, geom_b,\n)::Union{\n ::Vector{::Tuple{::Real, ::Real}},\n ::Nothing,\n}\n\nCalculates the list of intersection points between two geometries, inlcuding line segments, line strings, linear rings, polygons, and multipolygons. If no intersection points were possible given geometry extents, return nothing. If none are found, return an empty list.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{Any, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(geom1, geom2)::Bool\n\nCheck if two geometries intersect, returning true if so and false otherwise.\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nline1 = GI.Line([(124.584961,-12.768946), (126.738281,-17.224758)])\nline2 = GI.Line([(123.354492,-15.961329), (127.22168,-14.008696)])\nGO.intersects(line1, line2)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(::GI.AbstractTrait, a, ::GI.AbstractTrait, b)::Bool\n\nReturns true if two geometries intersect with one another and false otherwise. For all geometries but lines, convert the geometry to a list of edges and cross compare the edges for intersections.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.intersects-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.intersects","text":"intersects(::GI.LineTrait, a, ::GI.LineTrait, b)::Bool\n\nReturns true if two line segments intersect and false otherwise.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.isclockwise-Tuple{Any}","page":"Home","title":"GeometryOps.isclockwise","text":"isclockwise(line::Union{LineString, Vector{Position}})::Bool\n\nTake a ring and return true or false whether or not the ring is clockwise or counter-clockwise.\n\nExample\n\nimport GeoInterface as GI, GeometryOps as GO\n\nring = GI.LinearRing([(0, 0), (1, 1), (1, 0), (0, 0)])\nGO.isclockwise(ring)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.isconcave-Tuple{Any}","page":"Home","title":"GeometryOps.isconcave","text":"isconcave(poly::Polygon)::Bool\n\nTake a polygon and return true or false as to whether it is concave or not.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoly = GI.Polygon([[(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]])\nGO.isconcave(poly)\n\n# output\nfalse\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{Any, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(geom1, geom2)::Bool\n\nCompare two Geometries of the same dimension and return true if their intersection set results in a geometry different from both but of the same dimension. This means one geometry cannot be within or contain the other and they cannot be equal\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\npoly1 = GI.Polygon([[(0,0), (0,5), (5,5), (5,0), (0,0)]])\npoly2 = GI.Polygon([[(1,1), (1,6), (6,6), (6,1), (1,1)]])\n\nGO.overlaps(poly1, poly2)\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.AbstractTrait, Any, GeoInterface.AbstractTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(::GI.AbstractTrait, geom1, ::GI.AbstractTrait, geom2)::Bool\n\nFor any non-specified pair, all have non-matching dimensions, return false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.LineTrait, Any, GeoInterface.LineTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(::GI.LineTrait, line1, ::GI.LineTrait, line)::Bool\n\nIf the lines overlap, meaning that they are colinear but each have one endpoint outside of the other line, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPointTrait, Any, GeoInterface.MultiPointTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPointTrait, points1,\n ::GI.MultiPointTrait, points2,\n)::Bool\n\nIf the multipoints overlap, meaning some, but not all, of the points within the multipoints are shared, return true.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.MultiPolygonTrait, polys2,\n)::Bool\n\nReturn true if at least one pair of polygons from multipolygons overlap. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.MultiPolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.MultiPolygonTrait, polys1,\n ::GI.PolygonTrait, poly2,\n)::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.MultiPolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::GI.PolygonTrait, poly1,\n ::GI.MultiPolygonTrait, polys2,\n)::Bool\n\nReturn true if polygon overlaps with at least one of the polygons within the multipolygon. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{GeoInterface.PolygonTrait, Any, GeoInterface.PolygonTrait, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n trait_a::GI.PolygonTrait, poly_a,\n trait_b::GI.PolygonTrait, poly_b,\n)::Bool\n\nIf the two polygons intersect with one another, but are not equal, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.overlaps-Tuple{Union{GeoInterface.LineStringTrait, GeoInterface.Wrappers.LinearRing}, Any, Union{GeoInterface.LineStringTrait, GeoInterface.Wrappers.LinearRing}, Any}","page":"Home","title":"GeometryOps.overlaps","text":"overlaps(\n ::Union{GI.LineStringTrait, GI.LinearRing}, line1,\n ::Union{GI.LineStringTrait, GI.LinearRing}, line2,\n)::Bool\n\nIf the curves overlap, meaning that at least one edge of each curve overlaps, return true. Else false.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.point_in_polygon-Tuple{Any, Any}","page":"Home","title":"GeometryOps.point_in_polygon","text":"point_in_polygon(point::Point, polygon::Union{Polygon, MultiPolygon}, ignore_boundary::Bool=false)::Bool\n\nTake a Point and a Polygon and determine if the point resides inside the polygon. The polygon can be convex or concave. The function accounts for holes.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (-77.0, 44.0)\npoly = GI.Polygon([[(-81, 41), (-81, 47), (-72, 47), (-72, 41), (-81, 41)]])\nGO.point_in_polygon(point, poly)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.point_on_line-Tuple{Any, Any}","page":"Home","title":"GeometryOps.point_on_line","text":"point_on_line(point::Point, line::LineString; ignore_end_vertices::Bool=false)::Bool\n\nReturn true if a point is on a line. Accept a optional parameter to ignore the start and end vertices of the linestring.\n\nExamples\n\nimport GeoInterface as GI, GeometryOps as GO\n\npoint = (1, 1)\nline = GI.LineString([(0, 0), (3, 3), (4, 4)])\nGO.point_on_line(point, line)\n\n# output\ntrue\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.polygon_to_line-Tuple{Any}","page":"Home","title":"GeometryOps.polygon_to_line","text":"polygon_to_line(poly::Polygon)\n\nConverts a Polygon to LineString or MultiLineString\n\nExamples\n\nimport GeometryOps as GO, GeoInterface as GI\n\npoly = GI.Polygon([[(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)]])\nGO.polygon_to_line(poly)\n# output\nGeoInterface.Wrappers.LineString{false, false, Vector{Tuple{Float64, Float64}}, Nothing, Nothing}([(-2.275543, 53.464547), (-2.275543, 53.489271), (-2.215118, 53.489271), (-2.215118, 53.464547), (-2.275543, 53.464547)], nothing, nothing)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.polygonize-Tuple{AbstractMatrix}","page":"Home","title":"GeometryOps.polygonize","text":"polygonize(A; minpoints=10)\npolygonize(xs, ys, A; minpoints=10)\n\nConvert matrix A to polygons.\n\nIf xs and ys are passed in they are used as the pixel center points.\n\nKeywords\n\nminpoints: ignore polygons with less than minpoints points. \n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.rebuild-Tuple{Any, Any}","page":"Home","title":"GeometryOps.rebuild","text":"rebuild(geom, child_geoms)\n\nRebuild a geometry from child geometries.\n\nBy default geometries will be rebuilt as a GeoInterface.Wrappers geometry, but rebuild can have methods added to it to dispatch on geometries from other packages and specify how to rebuild them.\n\n(Maybe it should go into GeoInterface.jl)\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.reconstruct-Tuple{Any, Any}","page":"Home","title":"GeometryOps.reconstruct","text":"reconstruct(geom, components)\n\nReconstruct geom from an iterable of component objects that match its structure.\n\nAll objects in components must have the same GeoInterface.trait.\n\nUsusally used in combination with flatten.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.reproject-Tuple{Any}","page":"Home","title":"GeometryOps.reproject","text":"reproject(geometry; source_crs, target_crs, transform, always_xy, time)\nreproject(geometry, source_crs, target_crs; always_xy, time)\nreproject(geometry, transform; always_xy, time)\n\nReproject any GeoInterface.jl compatible geometry from source_crs to target_crs.\n\nThe returned object will be constructed from GeoInterface.WrapperGeometry geometries, wrapping views of a Vector{Proj.Point{D}}, where D is the dimension.\n\nArguments\n\ngeometry: Any GeoInterface.jl compatible geometries.\nsource_crs: the source coordinate referece system, as a GeoFormatTypes.jl object or a string.\ntarget_crs: the target coordinate referece system, as a GeoFormatTypes.jl object or a string.\n\nIf these a passed as keywords, transform will take priority. Without it target_crs is always needed, and source_crs is needed if it is not retreivable from the geometry with GeoInterface.crs(geometry).\n\nKeywords\n\n-always_xy: force x, y coordinate order, true by default. false will expect and return points in the crs coordinate order. -time: the time for the coordinates. Inf by default.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.signed_area-Tuple{Any}","page":"Home","title":"GeometryOps.signed_area","text":"signed_area(geom)::Real\n\nReturns the signed area of the geometry, based on winding order.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.signed_distance-Tuple{Any, Any, Any}","page":"Home","title":"GeometryOps.signed_distance","text":"signed_distance(geom, x::Real, y::Real)::Float64\n\nCalculates the signed distance from the geometry geom to the point defined by (x, y). Points within geom have a negative distance, and points outside of geom have a positive distance.\n\nIf geom is a MultiPolygon, then this function returns the maximum distance to any of the polygons in geom.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.simplify-Tuple{Any}","page":"Home","title":"GeometryOps.simplify","text":"simplify(obj; kw...)\nsimplify(::SimplifyAlg, obj)\n\nSimplify a geometry, feature, feature collection, or nested vectors or a table of these.\n\nRadialDistance, DouglasPeucker, or VisvalingamWhyatt algorithms are available, listed in order of increasing quality but decreaseing performance.\n\nPoinTrait and MultiPointTrait are returned unchanged.\n\nThe default behaviour is simplify(DouglasPeucker(; kw...), obj). Pass in other SimplifyAlg to use other algorithms.\n\nExample\n\nSimplify a polygon to have six points:\n\nimport GeoInterface as GI\nimport GeometryOps as GO\n\npoly = GI.Polygon([[\n [-70.603637, -33.399918],\n [-70.614624, -33.395332],\n [-70.639343, -33.392466],\n [-70.659942, -33.394759],\n [-70.683975, -33.404504],\n [-70.697021, -33.419406],\n [-70.701141, -33.434306],\n [-70.700454, -33.446339],\n [-70.694274, -33.458369],\n [-70.682601, -33.465816],\n [-70.668869, -33.472117],\n [-70.646209, -33.473835],\n [-70.624923, -33.472117],\n [-70.609817, -33.468107],\n [-70.595397, -33.458369],\n [-70.587158, -33.442901],\n [-70.587158, -33.426283],\n [-70.590591, -33.414248],\n [-70.594711, -33.406224],\n [-70.603637, -33.399918]]])\n\nsimple = GO.simplify(poly; number=6)\nGI.npoint(simple)\n\n# output\n6\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.t_value-Union{Tuple{T2}, Tuple{T1}, Tuple{N}, Tuple{Union{Tuple{Vararg{T1, N}}, StaticArraysCore.StaticArray{Tuple{N}, T1, 1}}, Union{Tuple{Vararg{T1, N}}, StaticArraysCore.StaticArray{Tuple{N}, T1, 1}}, T2, T2}} where {N, T1<:Real, T2<:Real}","page":"Home","title":"GeometryOps.t_value","text":"t_value(sᵢ, sᵢ₊₁, rᵢ, rᵢ₊₁)\n\nReturns the \"T-value\" as described in Hormann's presentation [HormannPresentation] on how to calculate the mean-value coordinate. \n\nHere, sᵢ is the vector from vertex vᵢ to the point, and rᵢ is the norm (length) of sᵢ. s must be Point and r must be real numbers.\n\ntᵢ = fracmathrmdetleft(sᵢ sᵢ₁right)rᵢ * rᵢ₁ + sᵢ sᵢ₁\n\n[HormannPresentation]: K. Hormann and N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. Taylor & Fancis, CRC Press, 2017.\n\n```\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.to_edges-Tuple{Any}","page":"Home","title":"GeometryOps.to_edges","text":"to_edges()\n\nConvert any geometry or collection of geometries into a flat vector of Tuple{Tuple{Float64,Float64},Tuple{Float64,Float64}} edges.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.tuples-Tuple{Any}","page":"Home","title":"GeometryOps.tuples","text":"tuples(obj)\n\nConvert all points on obj to Tuples.\n\n\n\n\n\n","category":"method"},{"location":"#GeometryOps.unwrap","page":"Home","title":"GeometryOps.unwrap","text":"unwrap(target::Type{<:AbstractTrait}, obj)\nunwrap(f, target::Type{<:AbstractTrait}, obj)\n\nUnwrap the geometry to vectors, down to the target trait.\n\nIf f is passed in it will be applied to the target geometries as they are found.\n\n\n\n\n\n","category":"function"},{"location":"#GeometryOps.weighted_mean-Union{Tuple{WT}, Tuple{WT, Any, Any}} where WT<:Real","page":"Home","title":"GeometryOps.weighted_mean","text":"weighted_mean(weight::Real, x1, x2)\n\nReturns the weighted mean of x1 and x2, where weight is the weight of x1.\n\nSpecifically, calculates x1 * weight + x2 * (1 - weight).\n\nnote: Note\nThe idea for this method is that you can override this for custom types, like Color types, in extension modules.\n\n\n\n\n\n","category":"method"}] } diff --git a/dev/source/GeometryOps/index.html b/dev/source/GeometryOps/index.html index 2bf91b3e2..f418d6c2c 100644 --- a/dev/source/GeometryOps/index.html +++ b/dev/source/GeometryOps/index.html @@ -37,4 +37,4 @@ include("transformations/reproject.jl") include("transformations/tuples.jl") -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/barycentric/index.html b/dev/source/methods/barycentric/index.html index 3bc63fd71..612315bf5 100644 --- a/dev/source/methods/barycentric/index.html +++ b/dev/source/methods/barycentric/index.html @@ -376,4 +376,4 @@ end struct Wachspress <: AbstractBarycentricCoordinateMethod -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/bools/index.html b/dev/source/methods/bools/index.html index c16a347ee..990059c1d 100644 --- a/dev/source/methods/bools/index.html +++ b/dev/source/methods/bools/index.html @@ -276,4 +276,4 @@ function polygon_in_polygon(poly1, poly2)

      edges1, edges2 = toedges(poly1), toedges(poly2) extent1, extent2 = toextent(edges1), toextent(edges2) Check the extents intersect

          Extents.intersects(GI.extent(poly1), GI.extent(poly2)) || return false

      Check all points in poly1 are in poly2

          for point in GI.getpoint(poly1)
               point_in_polygon(point, poly2) || return false
           end

      Check the line of poly1 does not intersect the line of poly2

          #intersects(poly1, poly2) && return false

      poly1 must be in poly2

          return true
      - end

      This page was generated using Literate.jl.

      + end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/centroid/index.html b/dev/source/methods/centroid/index.html index a84dfca03..2836a90e6 100644 --- a/dev/source/methods/centroid/index.html +++ b/dev/source/methods/centroid/index.html @@ -139,4 +139,4 @@ xcentroid /= area ycentroid /= area return (xcentroid, ycentroid), area -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/contains/index.html b/dev/source/methods/contains/index.html index 0f994a346..76980308c 100644 --- a/dev/source/methods/contains/index.html +++ b/dev/source/methods/contains/index.html @@ -19,4 +19,4 @@ GO.contains(line, point)

      output

      true
       ```
       """
      -contains(g1, g2)::Bool = within(g2, g1)

      This page was generated using Literate.jl.

      +contains(g1, g2)::Bool = within(g2, g1)

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/crosses/index.html b/dev/source/methods/crosses/index.html index 153fe2a65..0c1a5ef76 100644 --- a/dev/source/methods/crosses/index.html +++ b/dev/source/methods/crosses/index.html @@ -86,4 +86,4 @@ int_point && ext_point && return true end return false -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/disjoint/index.html b/dev/source/methods/disjoint/index.html index 1dd70926c..450c1356f 100644 --- a/dev/source/methods/disjoint/index.html +++ b/dev/source/methods/disjoint/index.html @@ -31,4 +31,4 @@ point_in_polygon(point, poly1) && return false end return !intersects(poly1, poly2) -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/equals/index.html b/dev/source/methods/equals/index.html index 41fdf2279..547235df5 100644 --- a/dev/source/methods/equals/index.html +++ b/dev/source/methods/equals/index.html @@ -262,4 +262,4 @@ has_match || return false end return true -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/intersects/index.html b/dev/source/methods/intersects/index.html index 75299d101..18d2a6935 100644 --- a/dev/source/methods/intersects/index.html +++ b/dev/source/methods/intersects/index.html @@ -277,4 +277,4 @@ return (x, y), (t, u) end return nothing, nothing -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/overlaps/index.html b/dev/source/methods/overlaps/index.html index 15ecd7301..12ce467e1 100644 --- a/dev/source/methods/overlaps/index.html +++ b/dev/source/methods/overlaps/index.html @@ -184,4 +184,4 @@ )

      meets in more than one point

          on_top = ExactPredicates.meet(a1, a2, b1, b2) == 0

      one end point is outside of other segment

          a_fully_within = point_on_seg(a1, b1, b2) && point_on_seg(a2, b1, b2)
           b_fully_within = point_on_seg(b1, a1, a2) && point_on_seg(b2, a1, a2)
           return on_top && (!a_fully_within && !b_fully_within)
      -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/polygonize/index.html b/dev/source/methods/polygonize/index.html index ddf851b32..0c91c4560 100644 --- a/dev/source/methods/polygonize/index.html +++ b/dev/source/methods/polygonize/index.html @@ -174,4 +174,4 @@ end return contour_list -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/signed_area/index.html b/dev/source/methods/signed_area/index.html index 643f140cb..430d68c1b 100644 --- a/dev/source/methods/signed_area/index.html +++ b/dev/source/methods/signed_area/index.html @@ -27,4 +27,4 @@ return area * sign(s_area) end -signed_area(::GI.MultiPolygonTrait, geom) = sum((signed_area(poly) for poly in GI.getpolygon(geom)))

      This should theoretically work for anything, but I haven't actually tested yet!

      Below is the original GeometryBasics implementation:

      ```julia

      function signed_area(a::Point{2, T}, b::Point{2, T}, c::Point{2, T}) where T return ((b[1] - a[1]) * (c[2] - a[2]) - (c[1] - a[1]) * (b[2] - a[2])) / 2 end

      function signed_area(points::AbstractVector{<: Point{2, T}}) where {T} area = sum((points[i][1] * points[i+1][2] - points[i][2] * points[i+1][1] for i in 1:(length(points)-1))) / 2.0 end

      function signedarea(ls::GeometryBasics.LineString) # coords = GeometryBasics.decompose(Point2f, ls) return sum((p1[1] * p2[2] - p1[2] * p2[1] for (p1, p2) in ls)) / 2.0#signedarea(coords) end

      function signedarea(poly::GeometryBasics.Polygon{2}) sarea = signedarea(poly.exterior) area = abs(sarea) for hole in poly.interiors area -= abs(signedarea(hole)) end return area * sign(sarea) end

      WARNING: this may not do what you expect, since it's

      sensitive to winding order. Use GeoInterface.area instead.

      signedarea(mp::MultiPolygon) = sum(signedarea.(mp.polygons)) ```


      This page was generated using Literate.jl.

      +signed_area(::GI.MultiPolygonTrait, geom) = sum((signed_area(poly) for poly in GI.getpolygon(geom)))

      This should theoretically work for anything, but I haven't actually tested yet!

      Below is the original GeometryBasics implementation:

      ```julia

      function signed_area(a::Point{2, T}, b::Point{2, T}, c::Point{2, T}) where T return ((b[1] - a[1]) * (c[2] - a[2]) - (c[1] - a[1]) * (b[2] - a[2])) / 2 end

      function signed_area(points::AbstractVector{<: Point{2, T}}) where {T} area = sum((points[i][1] * points[i+1][2] - points[i][2] * points[i+1][1] for i in 1:(length(points)-1))) / 2.0 end

      function signedarea(ls::GeometryBasics.LineString) # coords = GeometryBasics.decompose(Point2f, ls) return sum((p1[1] * p2[2] - p1[2] * p2[1] for (p1, p2) in ls)) / 2.0#signedarea(coords) end

      function signedarea(poly::GeometryBasics.Polygon{2}) sarea = signedarea(poly.exterior) area = abs(sarea) for hole in poly.interiors area -= abs(signedarea(hole)) end return area * sign(sarea) end

      WARNING: this may not do what you expect, since it's

      sensitive to winding order. Use GeoInterface.area instead.

      signedarea(mp::MultiPolygon) = sum(signedarea.(mp.polygons)) ```


      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/signed_distance/index.html b/dev/source/methods/signed_distance/index.html index 93ca4ba5d..180a5d38b 100644 --- a/dev/source/methods/signed_distance/index.html +++ b/dev/source/methods/signed_distance/index.html @@ -93,4 +93,4 @@ If `geom` is a MultiPolygon, then this function returns the maximum distance to any of the polygons in `geom`. """ -signed_distance(geom, x, y) = signed_distance(GeoInterface.geomtrait(geom), geom, x, y)

      This page was generated using Literate.jl.

      +signed_distance(geom, x, y) = signed_distance(GeoInterface.geomtrait(geom), geom, x, y)

      This page was generated using Literate.jl.

      diff --git a/dev/source/methods/within/index.html b/dev/source/methods/within/index.html index 86aaebcd6..d1900b75a 100644 --- a/dev/source/methods/within/index.html +++ b/dev/source/methods/within/index.html @@ -24,4 +24,4 @@ within(::GI.PointTrait, g1, ::GI.LinearRingTrait, g2)::Bool = point_on_line(g1, g2; ignore_end_vertices=true) within(::GI.PointTrait, g1, ::GI.PolygonTrait, g2)::Bool = point_in_polygon(g1, g2; ignore_boundary=true)

      Lines in geometries

      within(::GI.LineStringTrait, g1, ::GI.LineStringTrait, g2)::Bool = line_on_line(g1, g2)
       within(::GI.LineStringTrait, g1, ::GI.LinearRingTrait, g2)::Bool = line_on_line(g1, g2)
      -within(::GI.LineStringTrait, g1, ::GI.PolygonTrait, g2)::Bool = line_in_polygon(g1, g2)

      Polygons within geometries

      within(::GI.PolygonTrait, g1, ::GI.PolygonTrait, g2)::Bool = polygon_in_polygon(g1, g2)

      Everything not specified TODO: Add multipolygons

      within(::GI.AbstractTrait, g1, ::GI.AbstractCurveTrait, g2)::Bool = false

      This page was generated using Literate.jl.

      +within(::GI.LineStringTrait, g1, ::GI.PolygonTrait, g2)::Bool = line_in_polygon(g1, g2)

      Polygons within geometries

      within(::GI.PolygonTrait, g1, ::GI.PolygonTrait, g2)::Bool = polygon_in_polygon(g1, g2)

      Everything not specified TODO: Add multipolygons

      within(::GI.AbstractTrait, g1, ::GI.AbstractCurveTrait, g2)::Bool = false

      This page was generated using Literate.jl.

      diff --git a/dev/source/primitives/index.html b/dev/source/primitives/index.html index 86012a0bd..88f3cf5fc 100644 --- a/dev/source/primitives/index.html +++ b/dev/source/primitives/index.html @@ -197,4 +197,4 @@ else return map(f, taskrange) end -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/transformations/extent/index.html b/dev/source/transformations/extent/index.html index 9004980a3..127b81219 100644 --- a/dev/source/transformations/extent/index.html +++ b/dev/source/transformations/extent/index.html @@ -22,4 +22,4 @@ return wrapper_type(children_with_extents, extent) end extent_applicator(::PointTrait, point) = point -extent_applicator(::PointTrait, point) = point

      This page was generated using Literate.jl.

      +extent_applicator(::PointTrait, point) = point

      This page was generated using Literate.jl.

      diff --git a/dev/source/transformations/flip/index.html b/dev/source/transformations/flip/index.html index 81f591a1e..833f07671 100644 --- a/dev/source/transformations/flip/index.html +++ b/dev/source/transformations/flip/index.html @@ -16,4 +16,4 @@ (GI.y(p), GI.x(p)) end end -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/transformations/reproject/index.html b/dev/source/transformations/reproject/index.html index 6dd9847b2..cf11583a6 100644 --- a/dev/source/transformations/reproject/index.html +++ b/dev/source/transformations/reproject/index.html @@ -58,4 +58,4 @@ transform(GI.x(p), GI.y(p)) end end -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/transformations/simplify/index.html b/dev/source/transformations/simplify/index.html index c67bd05ca..1f3c3d610 100644 --- a/dev/source/transformations/simplify/index.html +++ b/dev/source/transformations/simplify/index.html @@ -1,5 +1,5 @@ -Geometry simplification · GeometryOps.jl

      Geometry simplification

      This file holds implementations for the Douglas-Peucker and Visvalingam-Whyatt algorithms for simplifying geometries (specifically polygons and lines).

      export simplify, VisvalingamWhyatt, DouglasPeucker
      +Geometry simplification · GeometryOps.jl

      Geometry simplification

      This file holds implementations for the Douglas-Peucker and Visvalingam-Whyatt algorithms for simplifying geometries (specifically polygons and lines).

      export simplify, VisvalingamWhyatt, DouglasPeucker, RadialDistance
       
       
       """
      @@ -378,4 +378,4 @@
           return result
       end
       
      -_remove!(s, i) = s[i:end-1] .= s[i+1:end]

      This page was generated using Literate.jl.

      +_remove!(s, i) = s[i:end-1] .= s[i+1:end]

      This page was generated using Literate.jl.

      diff --git a/dev/source/transformations/tuples/index.html b/dev/source/transformations/tuples/index.html index af6eff2c1..f626dab98 100644 --- a/dev/source/transformations/tuples/index.html +++ b/dev/source/transformations/tuples/index.html @@ -14,4 +14,4 @@ (Float64(GI.x(p)), Float64(GI.y(p))) end end -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.

      diff --git a/dev/source/utils/index.html b/dev/source/utils/index.html index 30b17b160..f4120aa00 100644 --- a/dev/source/utils/index.html +++ b/dev/source/utils/index.html @@ -116,4 +116,4 @@ n += 1 end return n -end

      This page was generated using Literate.jl.

      +end

      This page was generated using Literate.jl.