-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_script_itk_ct.jl
126 lines (93 loc) · 4.94 KB
/
test_script_itk_ct.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#NOTE: this scripts works in the presence of the mainImage concept in MedEye3d
#I use Simple ITK as most robust
using MedEye3d, Conda, PyCall, Pkg
using Statistics
Conda.pip_interop(true)
Conda.pip("install", "SimpleITK")
Conda.pip("install", "h5py")
sitk = pyimport("SimpleITK")
np = pyimport("numpy")
import MedEye3d
import MedEye3d.ForDisplayStructs
import MedEye3d.ForDisplayStructs.TextureSpec
using ColorTypes
import MedEye3d.SegmentationDisplay
import MedEye3d.DataStructs.ThreeDimRawDat
import MedEye3d.DataStructs.DataToScrollDims
import MedEye3d.DataStructs.FullScrollableDat
import MedEye3d.ForDisplayStructs.KeyboardStruct
import MedEye3d.ForDisplayStructs.MouseStruct
import MedEye3d.OpenGLDisplayUtils
import MedEye3d.DisplayWords.textLinesFromStrings
import MedEye3d.StructsManag.getThreeDims
function getImageFromDirectory(dirString, isMHD::Bool, isDicomList::Bool)
#simpleITK object used to read from disk
reader = sitk.ImageSeriesReader()
if (isDicomList)# data in form of folder with dicom files
dicom_names = reader.GetGDCMSeriesFileNames(dirString)
reader.SetFileNames(dicom_names)
return reader.Execute()
elseif (isMHD) #mhd file
image = sitk.ReadImage(dirString)
return sitk.DICOMOrient(image, "LPS")
end
end#getPixelDataAndSpacing
function permuteAndReverse(pixels)
pixels = permutedims(pixels, (3, 2, 1))
sizz = size(pixels)
for i in 1:sizz[1]
for j in 1:sizz[3]
pixels[i, :, j] = reverse(pixels[i, :, j])
end#
end#
return pixels
end#permuteAndReverse
function getPixelsAndSpacing(image)
pixelsArr = np.array(sitk.GetArrayViewFromImage(image))# we need numpy in order for pycall to automatically change it into julia array
spacings = image.GetSpacing()
return (permuteAndReverse(pixelsArr), spacings)
end#getPixelsAndSpacing
# directories to adapt
resample_image = "D:/mingw_installation/home/hurtbadly/Downloads/Output Volume.nii.gz"
dirOfExample = "D:/mingw_installation/home/hurtbadly/Downloads/ct_soft_pat_3_sudy_0.nii.gz"
dirOfExamplePET = "D:/mingw_installation/home/hurtbadly/Downloads/pet_orig_pat_3_sudy_0.nii.gz"
# in most cases dimensions of PET and CT data arrays will be diffrent in order to make possible to display them we need to resample and make dimensions equal
# imagePET = getImageFromDirectory(dirOfExamplePET, true, false)
ctImage = getImageFromDirectory(resample_image, true, false)
# pet_image_resampled = sitk.Resample(imagePET, ctImage)
ctPixels, ctSpacing = getPixelsAndSpacing(ctImage)
# In my case PET data holds 64 bit floats what is unsupported by Opengl
# petPixels, petSpacing = getPixelsAndSpacing(pet_image_resampled)
# purePetPixels, PurePetSpacing = getPixelsAndSpacing(imagePET)
# petPixels = Float32.(petPixels)
ctPixels = Float32.(ctPixels)
# we need to pass some metadata about image array size and voxel dimensions to enable proper display
datToScrollDimsB = MedEye3d.ForDisplayStructs.DataToScrollDims(imageSize=size(ctPixels), voxelSize=ctSpacing, dimensionToScroll=3);
# purePetMedian = median(petPixels)
# purePetStd = std(petPixels)
# example of texture specification used - we need to describe all arrays we want to display, to see all possible configurations look into TextureSpec struct docs .
textureSpecificationsPETCT::Vector{TextureSpec} = [
TextureSpec{Float32}(
name="manualModif",
numb=Int32(2),
color=RGB(0.0, 1.0, 0.0), minAndMaxValue=Float32.([0, 1]), isEditable=true
), TextureSpec{Float32}(
name="CTIm",
numb=Int32(3),
color=RGB(1.0, 1.0, 1.0),
minAndMaxValue=Float32.([0, 100]))
];
# We need also to specify how big part of the screen should be occupied by the main image and how much by text fractionOfMainIm= Float32(0.8);
fractionOfMainIm = Float32(0.8);
import MedEye3d.DisplayWords.textLinesFromStrings
mainLines = textLinesFromStrings(["main Line1", "main Line 2"]);
supplLines = map(x -> textLinesFromStrings(["sub Line 1 in $(x)", "sub Line 2 in $(x)"]), 1:size(ctPixels)[3]);
import MedEye3d.StructsManag.getThreeDims
tupleVect = [("CTIm", ctPixels), ("manualModif", zeros(Float32, size(ctPixels)))]
slicesDat = getThreeDims(tupleVect)
mainScrollDat = FullScrollableDat(dataToScrollDims=datToScrollDimsB, dimensionToScroll=1, dataToScroll=slicesDat, mainTextToDisp=mainLines, sliceTextToDisp=supplLines);
# function prepares all for display; 1000 in the end is responsible for setting window width for more look into SegmentationDisplay.coordinateDisplay
mainMedEye3d = SegmentationDisplay.coordinateDisplay(textureSpecificationsPETCT, fractionOfMainIm, datToScrollDimsB, 1000);
# SegmentationDisplay.coordinateDisplay(textureSpecificationsPETCT ,fractionOfMainIm ,datToScrollDimsB ,1000);
# As all is ready we can finally display image
Main.SegmentationDisplay.passDataForScrolling(mainMedEye3d, mainScrollDat);