forked from michaelmarty/UniDec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunidec.py
1160 lines (1029 loc) · 48.5 KB
/
unidec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import time
import shutil
from copy import deepcopy
import subprocess
import zipfile
import fnmatch
import string
import numpy as np
from scipy.interpolate import interp1d
from scipy import signal
from unidec_modules import unidecstructure, peakstructure, MassFitter
import unidec_modules.unidectools as ud
import unidec_modules.IM_functions as IM_func
import unidec_modules.MassSpecBuilder as MSBuild
from unidec_modules.unidec_enginebase import UniDecEngine
__author__ = 'Michael.Marty'
class UniDec(UniDecEngine):
def __init__(self):
"""
UniDec Engine
Consists of three main subclasses: Config, DataContiner, Peaks
:return: None
"""
UniDecEngine.__init__(self)
self.autopeaks = None
self.peakparams = None
self.massfit = None
self.massfitdat = None
self.errorgrid = None
pass
def open_file(self, file_name, file_directory=None, *args, **kwargs):
"""
Open text or mzML file. Will create _unidecfiles directory if it does not exist.
If it finds a _conf.dat file in _unidecfiles, it will import the old configuration.
Otherwise, it keeps the existing configuration but resets file names.
If silent=True is passed in **kwargs, prints are suppressed.
:param file_name: Name of file to open. May be in x y or x y z text format or in mzML format.
May be tab or space delimited
:param file_directory: Directory in which filename is located. Default is current directory.
:return: None
"""
if file_directory is None:
file_directory = os.path.dirname(file_name)
file_name = os.path.basename(file_name)
tstart = time.perf_counter()
self.pks = peakstructure.Peaks()
self.data = unidecstructure.DataContainer()
# Handle Paths
self.config.filename = file_name
if "silent" not in kwargs or not kwargs["silent"]:
print("Opening File: ", self.config.filename)
self.config.outfname = os.path.splitext(self.config.filename)[0]
self.config.extension = os.path.splitext(self.config.filename)[1]
self.config.default_file_names()
self.config.dirname = file_directory
file_directory = os.path.join(self.config.dirname, self.config.filename)
os.chdir(self.config.dirname)
# Import Data
self.data.rawdata = ud.load_mz_file(file_directory, self.config)
if self.data.rawdata.shape[1] == 3:
self.config.imflag = 1
self.config.discreteplot = 1
self.config.poolflag = 1
mzaxis = np.unique(self.data.rawdata[:, 0])
dtaxis = np.unique(self.data.rawdata[:, 1])
intgrid = np.zeros((len(mzaxis), len(dtaxis)))
if len(self.data.rawdata[:, 2]) == len(np.ravel(intgrid)):
intgrid = self.data.rawdata[:, 2].reshape((len(mzaxis), len(dtaxis)))
else:
for x, y, z in self.data.rawdata:
intgrid[np.where(mzaxis == x)[0][0], np.where(dtaxis == y)[0][0]] = z
self.data.rawdata = np.transpose([mzaxis, np.sum(intgrid, axis=1)])
mzaxis, dtaxis = np.meshgrid(mzaxis, dtaxis, sparse=False, indexing='ij')
self.data.rawdata3 = np.transpose([np.ravel(mzaxis), np.ravel(dtaxis), np.ravel(intgrid)])
self.data.data3 = self.data.rawdata3
else:
self.config.imflag = 0
self.data.data2 = self.data.rawdata
self.config.procflag = 0
# Change paths to unidecfiles folder
dirnew = self.config.outfname + "_unidecfiles"
if "clean" in kwargs and kwargs["clean"] and os.path.isdir(dirnew):
shutil.rmtree(dirnew)
if not os.path.isdir(dirnew):
os.mkdir(dirnew)
os.chdir(dirnew)
self.config.udir = os.getcwd()
if self.config.imflag == 0:
newname = os.path.join(os.getcwd(), self.config.outfname + "_rawdata.txt")
else:
newname = os.path.join(os.getcwd(), self.config.outfname + "_imraw.txt")
if not os.path.isfile(newname):
shutil.copy(file_directory, newname)
# Initialize Config
if os.path.isfile(self.config.confname) == True:
self.load_config(self.config.confname)
tend = time.perf_counter()
if "silent" not in kwargs or not kwargs["silent"]:
print("Loading Time: %.2gs" % (tend - tstart))
def raw_process(self, dirname, inflag=False, binsize=1):
"""
Processes Water's Raw files into .txt using external calls to:
self.config.rawreaderpath for MS
self.config.cdcreaderpath for IM-MS
Default files are created with the header of the .raw file plus:
_rawdata.txt for MS
_imraw.txt for IM-MS
:param dirname: .raw directory name
:param inflag: If True, it will put the output .txt file inside the existing .raw directory. If False, it will
put the file in the same directory that contains the .raw directory
:param binsize: Parameter for IM-MS to specify the m/z bin size for conversion. If binsize=0, the conversion
will be at full resolution (which is huge), so the default is every 1 m/z.
:return: self.config.filename, self.config.dirname (name and location of created file)
"""
self.config.dirname = dirname
self.config.filename = os.path.split(self.config.dirname)[1]
self.config.outfname = os.path.splitext(self.config.filename)[0]
print("Openening: ", self.config.filename)
if os.path.splitext(self.config.filename)[1] == ".zip":
print("Can't open zip, try Load State.")
return None, None
if os.path.splitext(self.config.filename)[1] == ".raw" and self.config.system == "Windows":
self.config.outfname = os.path.splitext(self.config.filename)[0]
newfilename = self.config.outfname + "_rawdata.txt"
if self.config.imflag == 1:
newfilename = self.config.outfname + "_imraw.txt"
if inflag:
newfilepath = os.path.join(self.config.dirname, newfilename)
else:
newfilepath = os.path.join(os.path.dirname(self.config.dirname), newfilename)
if os.path.isfile(newfilepath):
self.config.filename = newfilename
print("Data already converted")
else:
if self.config.system == "Windows":
if self.config.imflag == 0:
result = subprocess.call(
[self.config.rawreaderpath, "-i", self.config.dirname, "-o", newfilepath])
self.config.filename = newfilename
else:
call = [self.config.cdcreaderpath, '-r', self.config.dirname, '-m',
newfilepath[:-10] + "_msraw.txt", '-i', newfilepath, '--ms_bin', binsize,
"--ms_smooth_window", "0", "--ms_number_smooth", "0", "--im_bin", binsize, "--sparse",
"1"]
result = subprocess.call(call)
self.config.filename = newfilename
if result == 0 and os.path.isfile(newfilepath):
print("Converted data from raw to txt")
else:
print("Failed conversion to txt file. ", result, newfilepath)
return None, None
else:
print("Sorry. Waters Raw converter only works on windows. Convert to txt file first.")
return None, None
return self.config.filename, self.config.dirname
pass
def process_data(self, **kwargs):
"""
Process data according to parameters in config.
Checks certain parameters to make sure the limits make sense.
Will accept silent=True kwarg to suppress printing.
:return: None
"""
tstart = time.perf_counter()
self.export_config()
try:
float(self.config.minmz)
except ValueError:
self.config.minmz = np.amin(self.data.rawdata[:, 0])
try:
float(self.config.maxmz)
except ValueError:
self.config.maxmz = np.amax(self.data.rawdata[:, 0])
if self.config.imflag == 1:
try:
float(self.config.mindt)
except ValueError:
self.config.mindt = np.amin(self.data.rawdata3[:, 1])
try:
float(self.config.maxdt)
except ValueError:
self.config.maxdt = np.amax(self.data.rawdata3[:, 1])
if self.check_badness() == 1:
print("Badness found, aborting data prep")
return 1
if self.config.imflag == 0:
self.data.data2 = ud.dataprep(self.data.rawdata, self.config)
ud.dataexport(self.data.data2, self.config.infname)
else:
tstart2 = time.perf_counter()
mz, dt, i3 = IM_func.process_data_2d(self.data.rawdata3[:, 0], self.data.rawdata3[:, 1],
self.data.rawdata3[:, 2],
self.config)
tend = time.perf_counter()
if "silent" not in kwargs or not kwargs["silent"]:
print("Time: %.2gs" % (tend - tstart2))
self.data.data3 = np.transpose([np.ravel(mz), np.ravel(dt), np.ravel(i3)])
self.data.data2 = np.transpose([np.unique(mz), np.sum(i3, axis=1)])
ud.dataexport(self.data.data3, self.config.infname)
pass
self.config.procflag = 1
tend = time.perf_counter()
if "silent" not in kwargs or not kwargs["silent"]:
print("Data Prep Done. Time: %.2gs" % (tend - tstart))
# self.get_spectrum_peaks()
pass
def run_unidec(self, silent=False, efficiency=False):
"""
Runs UniDec.
Checks that everything is set to go and then places external call to:
self.config.UniDecPath for MS
self.config.UniDecIMPath for IM-MS
If successful, calls self.unidec_imports()
If not, prints the error code.
:param silent: If True, it will suppress printing the output from UniDec
:param efficiency: Passed to self.unidec_imports()
:return: out (stdout from external UniDec call)
"""
# Check to make sure everything is in order
if self.config.procflag == 0:
print("Need to process data first...")
self.process_data()
if self.check_badness() == 1:
print("Badness found, aborting UniDec run")
return 1
# Export Config and Call
self.export_config()
tstart = time.perf_counter()
out = ud.unidec_call(self.config, silent=silent)
tend = time.perf_counter()
self.config.runtime = (tend - tstart)
if not silent:
print("UniDec run %.2gs" % self.config.runtime)
# Import Results if Successful
if out == 0:
self.unidec_imports(efficiency)
if not silent:
print("File Name: ", self.config.filename, "R Sqaured: ", self.config.error)
return out
else:
print("UniDec Run Error:", out)
return out
def unidec_imports(self, efficiency=False):
"""
Imports files output from the UniDec core executable into self.data.
:param efficiency: If True, it will ignore the larger files to speed up the run.
:return: None
"""
# Import Results
self.pks = peakstructure.Peaks()
self.data.massdat = np.loadtxt(self.config.outfname + "_mass.txt")
self.data.ztab = np.arange(self.config.startz, self.config.endz + 1)
self.config.massdatnormtop = np.amax(self.data.massdat[:, 1])
if not efficiency:
self.data.massgrid = np.fromfile(self.config.outfname + "_massgrid.bin", dtype=float)
self.data.fitdat = np.fromfile(self.config.outfname + "_fitdat.bin", dtype=float)
try:
if self.config.aggressiveflag != 0:
self.data.baseline = np.fromfile(self.config.outfname + "_baseline.bin", dtype=float)
else:
self.data.baseline = np.array([])
except Exception as e:
self.data.baseline = np.array([])
pass
if self.config.imflag == 1:
self.data.fitdat2d = deepcopy(self.data.data3)
self.data.fitdat2d[:, 2] = self.data.fitdat
self.data.fitdat = np.sum(self.data.fitdat.reshape(
(len(np.unique(self.data.data3[:, 0])), len(np.unique(self.data.data3[:, 1])))), axis=1)
runstats = np.genfromtxt(self.config.outfname + "_error.txt", dtype='str')
if self.config.imflag == 0:
# Calculate Error
sse = float(runstats[0, 2])
mean = np.mean(self.data.data2[:, 1])
self.config.error = 1 - sse / np.sum((self.data.data2[:, 1] - mean) ** 2)
if not efficiency:
# Import Grid
self.data.mzgrid = np.fromfile(self.config.outfname + "_grid.bin", dtype=float)
xv, yv = np.meshgrid(self.data.ztab, self.data.data2[:, 0])
xv = np.c_[np.ravel(yv), np.ravel(xv)]
self.data.mzgrid = np.c_[xv, self.data.mzgrid]
else:
# Calculate Error
self.config.error = float(runstats[1])
self.data.ccsdata = np.loadtxt(self.config.outfname + "_ccs.txt")
if not efficiency:
# Import Grids and Reshape
masslen = len(self.data.massdat)
ccslen = len(self.data.ccsdata)
zlen = len(self.data.ztab)
self.data.massccs = np.fromfile(self.config.outfname + "_massccs.bin", dtype=float)
self.data.ccsz = np.fromfile(self.config.outfname + "_ccsz.bin", dtype=float)
self.data.mztgrid = np.fromfile(self.config.outfname + "_mzgrid.bin", dtype=float)
self.data.massccs = self.data.massccs.reshape((masslen, ccslen))
self.data.ccsz = self.data.ccsz.reshape((zlen, ccslen))
self.data.mztgrid = np.clip(self.data.mztgrid, 0.0, np.amax(self.data.mztgrid))
self.data.mztgrid = self.data.mztgrid.reshape(
(len(np.unique(self.data.data3[:, 0])), len(np.unique(self.data.data3[:, 1])), zlen))
self.data.mzgrid = np.sum(self.data.mztgrid, axis=1)
xv, yv = np.meshgrid(self.data.ztab, np.unique(self.data.data3[:, 0]))
xv = np.c_[np.ravel(yv), np.ravel(xv)]
self.data.mzgrid = np.c_[xv, np.ravel(self.data.mzgrid)]
def pick_peaks(self):
"""
Detect, Normalize, and Output Peaks
:return: None
"""
self.export_config()
# Detect Peaks and Normalize
peaks = ud.peakdetect(self.data.massdat, self.config)
if self.config.peaknorm == 1:
norm = np.amax(peaks[:, 1]) / 100.
peaks[:, 1] = peaks[:, 1] / norm
self.data.massdat[:, 1] = self.data.massdat[:, 1] / norm
elif self.config.peaknorm == 2:
norm = np.sum(peaks[:, 1]) / 100.
peaks[:, 1] = peaks[:, 1] / norm
self.data.massdat[:, 1] = self.data.massdat[:, 1] / norm
else:
norm = np.amax(peaks[:, 1]) / self.config.massdatnormtop
peaks[:, 1] = peaks[:, 1] / norm
self.data.massdat[:, 1] = self.data.massdat[:, 1] / norm
self.pks = peakstructure.Peaks()
self.pks.add_peaks(peaks, massbins=self.config.massbins)
self.pks.default_params(cmap=self.config.peakcmap)
ud.dataexport(peaks, self.config.peaksfile)
# Generate Intensities of Each Charge State for Each Peak
mztab = ud.make_peaks_mztab(self.data.mzgrid, self.pks, self.config.adductmass)
#Calculate errors for peaks with FWHM
try:
ud.peaks_error_FWHM(self.pks, self.data.massdat)
ud.peaks_error_mean(self.pks, self.data.massgrid, self.data.ztab, self.data.massdat, self.config)
except Exception as e:
print("Error in error calculations:", e)
if self.config.batchflag == 0:
ud.make_peaks_mztab_spectrum(self.data.mzgrid, self.pks, self.data.data2, mztab)
self.export_config()
def convolve_peaks(self):
"""
Convolve Peaks with Peak Shape
:return: None
"""
ud.makeconvspecies(self.data.data2, self.pks, self.config)
def autorun(self):
self.process_data()
self.get_auto_peak_width()
self.run_unidec()
self.pick_peaks()
self.autointegrate()
self.export_params(0)
def autocorrelation(self, massdat=None):
"""
Performs autocorrelation on mass data. Result is stored as self.data.autocorr.
Picks peaks greater than 0 using peak detection parameters in config file.
Peaks are stored as a peak structure at self.autopeaks
:param massdat: Data on which to run autocorrelation. Default is None, in which case self.data.massdat is used.
:return: float. First peak in autocorrelation.
"""
if massdat is None:
massdat = self.data.massdat
# corr=np.correlate(self.data.massdat[:,1],self.data.massdat[:,1],mode="same")
self.data.autocorr, cpeaks = ud.autocorr(massdat, self.config)
self.autopeaks = peakstructure.Peaks()
self.autopeaks.add_peaks(cpeaks, massbins=self.config.massbins)
self.autopeaks.default_params()
print("Autocorrelation:", [p.mass for p in self.autopeaks.peaks])
return self.autopeaks.peaks[0].mass
def kendrick_peaks(self, kmass=None, centermode=1):
"""
Run Kendrick analysis on peaks (self.pks object)
:param kmass: Kendrick mass. Default is prior kendrick mass if it exists and is >0.
Otherwise, default is oligomer mass (self.config.molig)
:param centermode: Set range for normalization 1=(0,1),0=(-0.5,0.5)
:return: Array of [mass,defect] for each peak in self.pks.
"""
if kmass is not None:
self.config.kendrickmass = kmass
if not self.config.kendrickmass > 0:
self.config.kendrickmass = self.config.molig
if self.config.kendrickmass > 0:
self.pks.get_mass_defects(self.config.kendrickmass, mode=centermode)
return np.array([[p.mass, p.kendrickdefect] for p in self.pks.peaks])
else:
print("Need non-zero Kendrick mass")
return None
def kendrick_continuous(self, ref_mass=None, centermode=0, nbins=50, transformmode=0, xaxistype=1):
"""
Runs continuous Kendrick analysis on self.data.massdat
:param ref_mass: Kendrick mass. Default is self.config.kendrickmass if it is already set and >0.
Otherwise, default is oligomer mass (self.config.molig)
:param centermode: Set range for normalization 0=(0,1),1=(-0.5,0.5). Default is 0.
:param nbins: Set mass defect axis density. Default is 50 bins.
:param transformmode: Set type of transformation. 0=Interpolation. 1=Integration. Default is 0.
:param xaxistype: Set x-axis dimensions. 0=Kendrick Mass Number, 1=Mass Number * Kendrick Mass. Default is 1.
:return: mass grid, mass defect grid, intensity grid. All with shape (len(self.data.massdat),nbins)
"""
if ref_mass is not None:
self.config.kendrickmass = ref_mass
if not self.config.kendrickmass > 0:
self.config.kendrickmass = self.config.molig
if self.config.kendrickmass > 0:
data1, data2, m1grid, m2grid, igrid = ud.kendrick_analysis(self.data.massdat, self.config.kendrickmass,
centermode=centermode, nbins=nbins,
transformmode=transformmode,
xaxistype=xaxistype)
# Write outputs
outfile2 = os.path.join(self.config.outfname + "_2D_Mass_Defects.txt")
outfile1 = os.path.join(self.config.outfname + "_1D_Mass_Defects.txt")
np.savetxt(outfile2, data2)
np.savetxt(outfile1, data1)
print("Saved Kendrick:", outfile2, outfile1)
return m1grid, m2grid, igrid
else:
print("Need non-zero Kendrick mass")
return None, None, None
def mass_grid_to_f_grid(self):
"""
Convert the mass vs charge grid to a mass vs charge offset grid.
Calculates the charge offset for each (mass,charge) point, creates a new axis of regularly spaced charge
offsets (oaxis), and the interpolates a new grid of (mass, offset) from oaxis, which is output as outgrid.
:return: oxais, outgrid: offset axis (N) and offset grid (M x N)
"""
mgrid, zgrid = np.meshgrid(self.data.massdat[:, 0], np.array(self.data.ztab), indexing="ij")
ogrid = ud.get_z_offset(mgrid, zgrid)
oaxis = np.arange(np.amin(ogrid), np.amax(ogrid), 0.5)
mgrid2, ogrid2 = np.meshgrid(self.data.massdat[:, 0], oaxis, indexing="ij")
massgrid = self.data.massgrid.reshape((len(self.data.massdat[:, 0]), len(self.data.ztab)))
outgrid = ud.mergedata2d(mgrid2, ogrid2, mgrid, ogrid, massgrid)
outgrid -= np.amin(outgrid)
outgrid /= np.amax(outgrid)
return oaxis, outgrid
def integrate(self, limits, data=None):
"""
Trapezoid ntegrate data between limits[0] and limits[1]
:param limits: [min,max] list of lower and upper bounds on integration
:param data: N x 2 array of data (mass, intensity)
If data is None (default), self.data.massdat is used.
:return: None
"""
if data is None:
massdat = self.data.massdat
else:
massdat = np.transpose([self.data.massdat[:, 0], data])
integral, intdat = ud.integrate(massdat, limits[0], limits[1])
return integral, intdat
def autointegrate(self, ztab=None):
"""
Perform automatic integration of peaks.
If self.config.integrateup is empty, the upperbound becomes self.config.peakwindow.
If self.config.integratelb is empty, the lowerbound becomes -self.config.peakwindow.
Integral range for each peak is set to peak.integralrange.
Integral value is set to peak.integral.
If ztab parameter is set to a list of charge states, it will integrate the mass vs charge grid at each
individual charge state. Otherwise, this is ignored.
:param ztab: List of charge states (default = None)
:return: zarea: P x Z array where P is the number of peaks and Z is the number of charge states.
Each value of the array is the integral of peak P at charge state Z.
"""
if self.config.integrateub == "":
ub = self.config.peakwindow
else:
ub = self.config.integrateub
if self.config.integratelb == "":
lb = -self.config.peakwindow
else:
lb = self.config.integratelb
zarea = []
for p in self.pks.peaks:
p.integralrange = [p.mass + lb, p.mass + ub]
p.integral = self.integrate(p.integralrange)[0]
zlist = []
if ztab is not None:
for i in range(0, len(ztab)):
integral = self.integrate(p.integralrange,
data=np.reshape(self.data.massgrid, (len(self.data.massdat), len(ztab)))[
:, i])[0]
zlist.append(integral)
zarea.append(zlist)
self.normalize_peaks()
return np.array(zarea)
def export_params(self, e):
"""
Export a number of different parameters about the peaks into different text files.
:param e: if e is "PostFit", it will output mass fit parameters as well
:return: None
"""
if self.pks.plen > 0:
# Export Peaks Height by Charge Grid
mztab = np.array([p.mztab for p in self.pks.peaks])
ud.dataexport(mztab[:, :, 1], self.config.outfname + "_chargedata.dat")
print("Exported data to " + self.config.outfname + "_chargedata.dat")
# Export Peaks Integral by Charge Grid
if self.config.batchflag == 0:
try:
chargeareas = self.autointegrate(ztab=self.data.ztab)
ud.dataexport(chargeareas, self.config.outfname + "_chargedata_areas.dat")
except (IndexError, ValueError, AttributeError, ZeroDivisionError):
print("Unable to autointegrate")
# Get Params
peaks = np.array([[p.mass, p.height] for p in self.pks.peaks])
try:
self.autointegrate()
areas = [p.integral for p in self.pks.peaks]
except (IndexError, ValueError, AttributeError, ZeroDivisionError):
areas = peaks[:, 1]
print("Failed to integrate. Substituting heights for areas.")
peakparams = []
for i in range(0, len(peaks)):
avg = np.average(self.data.ztab, weights=mztab[i, :, 1])
std = np.sqrt(np.average((np.array(self.data.ztab) - avg) ** 2, weights=mztab[i, :, 1]))
if e == "PostFit":
peakparams.append(
[peaks[i, 0], self.config.mzsig * avg, avg, std, peaks[i, 1] / np.sum(peaks[:, 1]),
self.massfit[i, 1], self.massfit[i, 2] / np.sum(self.massfit[:, 2])])
else:
peakparams.append([peaks[i, 0], self.config.mzsig * avg, avg, std, peaks[i, 1], areas[i]])
self.peakparams = np.array(peakparams)
print("Mass MassStdGuess AvgCharge StdDevCharge Height Area")
np.set_printoptions(precision=2, formatter={'float': '{: 0.2f}'.format})
print(self.peakparams)
np.set_printoptions()
outfile = self.config.outfname + "_peakparam.dat"
ud.dataexport(self.peakparams, outfile)
print("Peak Parameters (Saved To", outfile, ")")
else:
print("Pick Peaks First")
# TODO: Streamline to remove multiple integration steps
# TODO: Rework params into peakstructure
# TODO: Better docstring
def process_mass_data(self):
"""
Apply the same parameters used to process the data to process the mass distribution. Linearization parameters
are ignored, but smoothing, baseline subtraction, normalization, and intensity threshold all apply.
:return: None
"""
self.pks = peakstructure.Peaks()
if self.config.smooth > 0:
self.data.massdat = ud.gsmooth(self.data.massdat, self.config.smooth)
# Baseline Subtraction
buff = abs(self.config.subbuff)
subtype = self.config.subtype
if subtype == 1 and buff != 0:
self.data.massdat = ud.datasimpsub(self.data.massdat, buff)
elif subtype == 2 and buff != 0:
self.data.massdat = ud.datacompsub(self.data.massdat, buff)
elif subtype == 0 and buff != 0:
self.data.massdat[:, 1] = self.data.massdat[:, 1] - np.amin(self.data.massdat[:, 1])
# Normalization
self.data.massdat = ud.normalize(self.data.massdat)
# Intensity Threshold
self.data.massdat = ud.intensitythresh(self.data.massdat, self.config.intthresh) # thresh
def center_of_mass(self, data=None, limits=None):
"""
Return the center of mass and weighted standard deviation for data within some limits. If data is None,
self.data.massdat is used. If limits is None, the whole range is used.
:param data: mass data to determine center of mass
:param limits: limits to restrict the calculation
:return: com, std (center of mass, weighted standard deviation)
"""
if data is None:
data = self.data.massdat
if limits is None:
com = np.average(data[:, 0], weights=data[:, 1])
std = ud.weighted_std(data[:, 0], data[:, 1])
else:
com, std = ud.center_of_mass(data, limits[0], limits[1])
return com, std
def fit_all_masses(self):
"""
Fit all masses to a series of peaks, with initial guesses defined by the peak parameters.
:return: self.massfitdat, self.massfit (fit to data, fit parameters)
"""
self.massfitdat, self.massfit = MassFitter.MassFitter(self.data.massdat, self.peakparams,
self.config.psfun).perform_fit("nonorm", "sort")
return self.massfitdat, self.massfit
def get_charge_peaks(self):
"""
Determines total charge distribution. Imports each charge state as a peak in self.pks.
Will overwrite mass peaks.
:return: cpeaks (Z x 2 array of (charge state, intensity))
"""
if not ud.isempty(self.data.mzgrid):
dat = self.data.mzgrid
c = dat[:, 2]
xlen = len(np.unique(dat[:, 0]))
ylen = len(np.unique(dat[:, 1]))
newgrid = np.reshape(c, (xlen, ylen))
cint = np.sum(newgrid, axis=0)
if self.config.peaknorm == 1:
cint = cint / np.amax(cint) * 100.
elif self.config.peaknorm == 2:
cint = cint / np.sum(cint) * 100.
cpeaks = np.transpose([self.data.ztab, cint])
np.savetxt(self.config.outfname + "_chargepeaks.txt", cpeaks)
# com, std = self.center_of_mass(data=cpeaks)
self.pks = peakstructure.Peaks()
self.pks.add_peaks(cpeaks, massbins=1)
self.pks.default_params(self.config.peakcmap)
for i, p in enumerate(self.pks.peaks):
p.stickdat = newgrid[:, i]
p.label = str(int(self.data.ztab[i]))
return cpeaks
else:
print("Error: no m/z grid.")
return None
def save_state(self, file_name):
ud.zip_folder(file_name)
def load_state(self, load_path):
"""
Load UniDec state from a zip save file.
Note: save_state is located under unidectools (ud.savestate)
:param load_path: .zip file to load
:return: True is successful, False if failed
"""
# Set up extensions
extension = "_rawdata."
extension2 = "_imraw."
# In zip file, search for correct files
zipf = zipfile.ZipFile(load_path)
imfile = None
msfile = None
for file_path in zipf.namelist():
if fnmatch.fnmatch(file_path, '*' + extension + "*") or fnmatch.fnmatch(file_path, '*' + extension2 + "*"):
if fnmatch.fnmatch(file_path, '*' + extension + "*"):
msfile = file_path
elif fnmatch.fnmatch(file_path, '*' + extension2 + "*"):
imfile = file_path
# Set file and extension
header = None
if imfile is not None:
if msfile is None or self.config.imflag == 1:
header = imfile[:-8]
extension = "_imraw."
elif msfile is not None:
if imfile is None or self.config.imflag == 0:
header = msfile[:-10]
extension = "_rawdata."
else:
print("Broken Save File. Unable to find _rawdata or _imraw")
return False
# Get directory, filename, and header
self.config.dirname = os.path.split(load_path)[0]
self.config.outfname = header.rsplit(sep="_", maxsplit=1)[0]
print("Header:", self.config.outfname)
# Setup default file names, unidecfile directory, and extract there
self.config.default_file_names()
os.chdir(self.config.dirname)
dirnew = os.path.join(self.config.dirname, self.config.outfname + "_unidecfiles")
flag = os.path.isdir(dirnew)
if not flag:
os.mkdir(dirnew)
os.chdir(dirnew)
zipf.extractall(dirnew)
# Copy data file from unidecfiles to directory above it
file_name = self.config.outfname + extension + "txt"
# if not os.path.isfile(file_name):
# file_name = self.config.outfname + extension + "dat"
filename2 = self.config.outfname + ".txt"
load_path = os.path.join(self.config.dirname, filename2)
print("Data file:", file_name, load_path)
shutil.copy(file_name, load_path)
# Open File
self.open_file(filename2, self.config.dirname)
# Import Processed Data
if os.path.isfile(self.config.infname):
if self.config.imflag == 0:
self.data.data2 = np.loadtxt(self.config.infname)
else:
self.data.data3 = np.loadtxt(self.config.infname)
i3 = self.data.data3[:, 2].reshape(
(len(np.unique(self.data.data3[:, 0])), len(np.unique(self.data.data3[:, 1]))))
self.data.data2 = np.transpose([np.unique(self.data.data3[:, 0]), np.sum(i3, axis=1)])
self.config.procflag = 1
else:
self.config.procflag = 0
# Import UniDec Results
if os.path.isfile(self.config.outfname + "_error.txt"):
self.unidec_imports()
# Import Peaks
if os.path.isfile(self.config.peaksfile):
self.pick_peaks()
return True
# TODO: Import Matches, others things in state?
def cross_validate(self, numcrosstot=5):
"""
Experimental function to perform cross validation
:param numcrosstot: Number of cross validation routines to perform
:return: mean, stddtev (mean and standard deviaition of mass distribution following cross validation)
"""
data2archive = deepcopy(self.data.data2)
tstart = time.perf_counter()
massdatavg = []
peakdatavg = []
toppeaks = ud.peakdetect(self.data.massdat, self.config)
for j in range(2, numcrosstot + 1):
numcross = j
for i in range(0, numcross):
# Delete one of k-fold
traindata = ud.dataprep(np.delete(self.data.rawdata, np.s_[i::numcross], 0), self.config)
# Select one of k-fold
# testdata = ud.dataprep(self.data.rawdata[i::numcross], self.config)
ud.dataexport(traindata, self.config.infname)
ud.unidec_call(self.config, silent=True)
massdat = np.loadtxt(self.config.outfname + "_mass.txt")
try:
peaks = ud.peakdetect(massdat, self.config)
peaks = ud.mergepeaks(toppeaks, peaks, self.config.peakwindow)
peakdatavg.append(peaks)
except (ValueError, TypeError, IndexError, ZeroDivisionError):
print("No peaks selected")
pass
massdat = ud.mergedata(self.data.massdat, massdat)
massdatavg.append(massdat[:, 1])
tend = time.perf_counter()
mean = np.mean(np.array(massdatavg), axis=0)
stddev = np.std(np.array(massdatavg), axis=0)
print(j, "Total CV Time:", (tend - tstart), "STD:", np.mean(stddev))
self.data.data2 = deepcopy(data2archive)
ud.dataexport(self.data.data2, self.config.infname)
try:
peaksvert = []
for peak in toppeaks:
i = np.where(self.data.massdat[:, 0] == peak[0])
peaksvert.append([peak[0], mean[i], stddev[i], stddev[i] / mean[i] * 100])
peaksvert = np.array(peaksvert)
print("\nIntensity Variation at Fixed Mass: ")
print("Mass Int.Mean Int.Std Int.%Std")
print(peaksvert)
ud.dataexport(peaksvert, self.config.outfname + "_peakcvinterr.dat")
peakdatavg = np.array(peakdatavg)
peakmean = np.array(
[np.mean(peakdatavg[:, i][peakdatavg[:, i, 1] != 0], axis=0) for i in range(0, len(toppeaks))])
peakstd = np.array(
[np.std(peakdatavg[:, i][peakdatavg[:, i, 1] != 0], axis=0) for i in range(0, len(toppeaks))])
peaks = [peakmean[:, 0], peakstd[:, 0], peakstd[:, 0] / peakmean[:, 0] * 100., peakmean[:, 1],
peakstd[:, 1], peakstd[:, 1] / peakmean[:, 1] * 100.]
# Output format: Mass: Mean, Std Dev, % Std Dev Intensity: Mean, Std Dev, %Std Dev
peaks = np.transpose(np.array(peaks))
print("\nMass and Intensity Variation for Fresh Peaks Each Round:")
print("MassMean MassStd Mass%Std Int.Mean Int.Std Int.%Std")
print(peaks)
ud.dataexport(peaks, self.config.outfname + "_peakcverr.dat")
except (IndexError, ValueError, ZeroDivisionError, TypeError, AttributeError):
print("No peaks in cross validation...")
return mean, stddev
def normalize_peaks(self):
"""
Noamlize everything in the peaks accoring to the type set in self.config.peaknorm
0 = No normalization
1 = Normalize the max value to 1
2 = Normalize the sum to 1
:return: None
"""
integrals = np.array([p.integral for p in self.pks.peaks])
heights = np.array([p.height for p in self.pks.peaks])
corrints = np.array([p.corrint for p in self.pks.peaks])
fitareas = np.array([p.fitarea for p in self.pks.peaks])
if self.config.peaknorm == 1:
inorm = np.amax(integrals) / 100.
hnorm = np.amax(heights) / 100.
cnorm = np.amax(corrints) / 100.
fnorm = np.amax(fitareas) / 100.
elif self.config.peaknorm == 2:
inorm = np.sum(integrals) / 100.
hnorm = np.sum(heights) / 100.
cnorm = np.sum(corrints) / 100.
fnorm = np.sum(fitareas) / 100.
else:
inorm = 1.
hnorm = 1.
cnorm = 1.
fnorm = 1.
if inorm != 0:
for p in self.pks.peaks:
p.integral /= inorm
if hnorm != 0:
for p in self.pks.peaks:
p.height /= hnorm
if cnorm != 0:
for p in self.pks.peaks:
p.corrint /= cnorm
p.correrr /= cnorm
if fnorm != 0:
for p in self.pks.peaks:
p.fitarea /= fnorm
p.fitareaerr /= fnorm
def align_peaks(self, pmasses=None, x_range=None, window=None, norm=False):
if x_range is None:
if window is None:
window = self.config.peakwindow * 1.
x_range = [-window, window]
if pmasses is None:
pmasses = [p.mass for p in self.pks.peaks]
# xaxis = np.arange(x_range[0], x_range[1], self.config.massbins)
aligned = []
for i, pm in enumerate(pmasses):
x = self.data.massdat[:, 0] - pm
boo1 = x > x_range[0]
boo2 = x < x_range[1]
boo3 = np.all([boo1, boo2], axis=0)
y = self.data.massdat[boo3, 1]
x = x[boo3]
# x2 = self.data.massdat[boo3, 0]
if norm:
y /= np.amax(y)
dat = np.transpose([x, y])
if i == 0:
aligned.append(dat)
else:
dat1 = deepcopy(dat)
if len(aligned[0]) < len(dat):
f = interp1d(aligned[0][:, 0], aligned[0][:, 1], fill_value=0, bounds_error=False)
aligned[0] = np.transpose([dat[:, 0], f(dat[:, 0])])
# TODO: Problem when len (aligned[[0]) < len (dat) (Fixed?)
corr = np.correlate(dat[:, 1], aligned[0][:, 1], mode="same")
move = np.argmax(corr) - np.argmax(dat[:, 1])
y = np.roll(self.data.massdat[:, 1], -move)[boo3]
if norm:
y /= np.amax(y)
dat = np.transpose([x, y])
'''
print move
import matplotlib.pyplot as plt
plt.figure()
plt.plot(dat1[:,0],dat1[:,1])
#plt.plot(dat1[:,0],corr)
plt.plot(dat[:,0],dat[:,1])
plt.plot(aligned[0][:,0],aligned[0][:,1])
plt.show()
'''
aligned.append(ud.mergedata(aligned[0], dat))
aligned = np.array(aligned)
combined, aligned = ud.broaden(aligned)
'''
# Realign on combined
aligned=[]
for i,pm in enumerate(pmasses):
x=self.data.massdat[:,0]-pm
boo1=x>x_range[0]
boo2=x<x_range[1]
boo3=np.all([boo1,boo2],axis=0)
y=self.data.massdat[boo3,1]
x=x[boo3]
x2=self.data.massdat[boo3,0]
if norm:
y=y/np.amax(y)
dat=np.transpose([x,y])
corr=signal.correlate(dat[:,1],combined[:,1],mode="same")
move=np.argmax(corr)-np.argmax(dat[:,1])
y=np.roll(self.data.massdat[:,1],-move)[boo3]
if norm:
y=y/np.amax(y)
dat=np.transpose([x,y])
aligned.append(ud.mergedata(combined,dat))
'''
return np.array(aligned), combined
def correlate_intensities(self, pmasses=None, x_range=None, window=None, ci=0.99, **kwargs):
aligned, combined = self.align_peaks(pmasses=pmasses, x_range=x_range, window=window, norm=False)
corrs = np.array([ud.correlation_integration(combined, spec, alpha=(1 - ci), **kwargs) for spec in aligned])
cmax = np.amax(corrs[:, 0])
norm = np.amax(self.data.massdat[:, 1]) / cmax
if pmasses is None:
self.get_peaks_scores(window=window, x_range=x_range, ci=ci)
for i, p in enumerate(self.pks.peaks):
plvl = corrs[i, 4]
if plvl < (1 - ci):
p.corrint = corrs[i, 0] * norm
p.correrr = p.tval * corrs[i, 3] / np.sqrt(p.score) * norm
else:
p.corrint = 0
p.correrr = 0
return corrs
def get_peaks_scores(self, window=None, x_range=None, ci=0.99, **kwargs):
if x_range is None:
if window is None:
window = self.config.peakwindow * 1.
x_range = [-window, window]
zarr = np.reshape(self.data.massgrid, (len(self.data.massdat), len(self.data.ztab)))
zarr = zarr / np.amax(np.sum(zarr, axis=1)) * np.amax(self.data.massdat[:, 1])
for i, p in enumerate(self.pks.peaks):
boo1 = self.data.massdat[:, 0] < p.mass + x_range[1]
boo2 = self.data.massdat[:, 0] > p.mass + x_range[0]
boo3 = np.all([boo1, boo2], axis=0)
top = self.data.massdat[boo3]
mztabi = []
peakmasses = []
for j, z in enumerate(self.data.ztab):
spec = np.transpose([top[:, 0], zarr[boo3, j]])
corr = ud.correlation_integration(top, spec, alpha=(1 - ci), **kwargs)
if corr[4] < (1 - ci):
mztabi.append([corr[0], corr[3]])
peakmasses.append(top[np.argmax(spec[:, 1]), 0])
else: