Skip to content

Latest commit

 

History

History
67 lines (51 loc) · 2.16 KB

README.md

File metadata and controls

67 lines (51 loc) · 2.16 KB

MvObjectFitting

Welcome to the MvObjectFitting repository, a comprehensive toolkit designed for object fitting from multi-view images.

Updates

  • April 2, 2024: The source code has been fully uploaded!

Environment Setup

To set up your environment, follow these steps:

conda create -n MvObjectFitting python=3.8 -y
conda activate MvObjectFitting
conda install --file conda_install_cuda117_package.txt -c nvidia
pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
conda install -c fvcore -c iopath -c conda-forge fvcore iopath
pip install "git+https://github.com/facebookresearch/pytorch3d.git@stable"
git clone https://github.com/JiangWenPL/multiperson.git && cd multiperson/neural_renderer
python setup.py install

Note: If you are using the latest versions of PyTorch, you may encounter an error related to the use of "AT_CHECK". To resolve this issue, you should replace instances of AT_CHECK with TORCH_CHECK in your code.

Data Structure

Organize your dataset as follows:

├─ Path_of_Folder
    ├─ calibration.json        # camera intrinsics and world-to-cam extrinsics
    ├─ object_id.txt
    ├─ mask
        ├─ 0
            ├─ 000000.jpg
            ├─ 000001.jpg
            ├─ 000003.jpg
                ...
            ...
    ├─ videos
        ├─ data1.mp4
        ├─ data2.mp4
        ...
        ├─ data76.mp4
    ├─ Object Template
        ├─ object_name_1.obj
        ├─ object_name_2.obj
        ...
    ...

Single Person and Single Object Fitting (SPSO)

python object_fitting_256_spso.py

Multiple Person and Multiple Object Fitting (MPMO)

python object_fitting_256_mpmo.py

Licenses

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.