forked from dmlc/xgboost
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhiggs-pred.py
executable file
·50 lines (39 loc) · 1.14 KB
/
higgs-pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/python
# make prediction
import numpy as np
import xgboost as xgb
# path to where the data lies
dpath = 'data'
modelfile = 'higgs.model'
outfile = 'higgs.pred.csv'
# make top 15% as positive
threshold_ratio = 0.15
# load in training data, directly use numpy
dtest = np.loadtxt( dpath+'/test.csv', delimiter=',', skiprows=1 )
data = dtest[:,1:31]
idx = dtest[:,0]
print ('finish loading from csv ')
xgmat = xgb.DMatrix( data, missing = -999.0 )
bst = xgb.Booster({'nthread':16}, model_file = modelfile)
ypred = bst.predict( xgmat )
res = [ ( int(idx[i]), ypred[i] ) for i in range(len(ypred)) ]
rorder = {}
for k, v in sorted( res, key = lambda x:-x[1] ):
rorder[ k ] = len(rorder) + 1
# write out predictions
ntop = int( threshold_ratio * len(rorder ) )
fo = open(outfile, 'w')
nhit = 0
ntot = 0
fo.write('EventId,RankOrder,Class\n')
for k, v in res:
if rorder[k] <= ntop:
lb = 's'
nhit += 1
else:
lb = 'b'
# change output rank order to follow Kaggle convention
fo.write('%s,%d,%s\n' % ( k, len(rorder)+1-rorder[k], lb ) )
ntot += 1
fo.close()
print ('finished writing into prediction file')