-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
326 lines (271 loc) · 24.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<!--
Design by Free CSS Templates
http://www.freecsstemplates.org
Released for free under a Creative Commons Attribution 2.5 License
Name : Old Stairwell
Description: A two-column, fixed-width design with dark color scheme.
Version : 1.0
Released : 20130313
-->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="google-site-verification" content="TKhkDFKyhvcrubOqVQVf7xQG4bUSzAuJlXiN4_Ts7yQ" />
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Karlsruhe High Quality Partitioning</title>
<meta name="keywords" content="graph partitioning, multilevel algorithm, multilevel graph partitioning, open source, kahip, algorithm, software, ordering, fill-reducing ordering, nested disection, partitioning, mesh partitioning, parallel simulations, dynamic load-balancing, domain decomposition, data mining, schulz, sanders, clustering, graph clustering, label propagation, max flow, min cut" />
<meta name="description" content="The main project page of to open source graph partitioning framework KaHIP -- Karlsruhe High Quality Partitioning" />
<link rel="shortcut icon" type="image/x-icon" href="favicon.ico">
<link href="http://fonts.googleapis.com/css?family=Open+Sans:400,300,600,700" rel="stylesheet" type="text/css">
<link href="default.css" rel="stylesheet" type="text/css" media="all" />
<!--[if IE 6]>
<link href="default_ie6.css" rel="stylesheet" type="text/css" />
<![endif]-->
</head>
<body>
<div id="wrapper">
<div id="header">
<div id="logo">
<h1><a href="#">KaHIP - </a><a href="#" style="color:red">Ka</a><a href="#">rlsruhe </a> <a href="#" style="color:red">Hi</a><a href="#">gh Quality</a> <a href="#" style="color:red">P</a><a href="#">artitioning</a></h1>
</div>
</div>
<div id="page">
<div id="content">
<!--<h2><a href="#" style="color:red">Due to typo on DMANET: </a><br></h2><h2>Link to <a href="http://algo2.iti.kit.edu/kamis/">KaMIS -- Karlsruhe Maximum Independent Sets</a></h2>-->
<h2>Overview</h2>
The graph partitioning problem asks for a division of a graph's node set into k equally sized blocks such that the number of edges that run between the blocks is minimized. An example graph that is partitioned into four blocks: <br><br>
<p><img alt="A mesh around an airfoil." src="images/airfoil1.png" width=300 alt="A graph that is partitioned into four blocks."></p>
<br>
KaHIP - <a href="#" style="color:red">Ka</a>rlsruhe <a href="#" style="color:red">Hi</a>gh Quality <a href="#" style="color:red">P</a>artitioning - is a family of graph partitioning programs. It includes KaFFPa (Karlsruhe Fast Flow Partitioner), which is a multilevel graph partitioning algorithm, in its variants Strong, Eco and Fast, KaFFPaE (KaFFPaEvolutionary) which is a parallel evolutionary algorithm that uses KaFFPa to provide combine and mutation operations, as well as KaBaPE which extends the evolutionary algorithm.
Moreover, specialized techniques are included to partition road networks (Buffoon), to output a vertex separator from a given partition or techniques geared towards efficient partitioning of social networks.
<br><br>
<b style="color:black">Project Contributors:</b> Yaroslav Akhremtsev, Roland Glantz, Alexandra Henzinger, Henning Meyerhenke, Alexander Noe, Wolfgang Ost, Ilya Safro, Peter Sanders, Sebastian Schlag, Christian Schulz, Daniel Seemaier, Darren Strash, Jesper Larsson Träff <br><br>
<b style="color:red">New in KaHIPv3.10 (December 2020):</b> <br>
<ul>
<li><i>Support for Python:</i> The framework now builds a Python module that you can load in your Python programs to partition graphs.
<li><i>Node Ordering Algorithms:</i> Many applications rely on time-intensive matrix operations, such as factorization, which can be sped up significantly for large sparse matrices by interpreting the matrix as a sparse graph and computing a node ordering that minimizes the so-called fill-in. Here, we added new algorithms to compute fill-in reduced orderings in graphs.
<li><i> ILPs For Even Higher Quality:</i> ILPs typically don't scale to large instances. We adapt them to heuristically improve a given partition. We do so by defining a much smaller model that allows us to use symmetry breaking and other techniques that make the approach scalable. We include ILPs that can be used as a post-processing step to improve high-quality partitions even further. The codes are now included in KaHIP.
<li><i>Added Support for Vertex and Edge Weights in ParHIP:</i> we extended the IO functionality of ParHIP to read weighted graphs in the METIS format.
<li><i>Global Multisection Mapping:</i> we added global multisection n-to-1 process mapping algorithms. This compute better process mapping for parallel applications if information about the system hierarchy/architecture is known.
</ul>
<br>
<b style="color:black">New in KaHIPv2.10:</b> <br>
<ul>
<li><i>ParHIP (Parallel High Quality Partitioning):</i> Our distributed memory parallel partitioning techniques designed to partition hierarchically structured networks such as web graphs or social networks.
<li><i>Mapping Algorithms:</i> Our new algorithms to map the blocks onto processors to minimize overall communication time based on hierarchical partitionings of the task graph and fast local search algorithms.
<li><i>Edge Partitioning Algorithms:</i> Our new algorithms to compute edge partitionings of graphs.
</ul>
<br>
<b style="color:red">News:</b> <br>
<b>December 2023:</b> We released streaming hypergraph partitioning FREIGHT, streaming graph partitioning HeiStream, as well as streaming process mapping tools. Have a look at the <a href="https://github.com/KaHIP/">github orga.</a> <br>
<b>23rd November 2023:</b> We released KaHIP v3.16, <br>
<b>17th May 2021:</b> We released <a href="https://github.com/KaHIP/KaMinPar">KaMinPar</a>. KaMinPar is a shared-memory parallel tool to heuristically solve the graph partitioning problem <br>
<b>4nd December 2020:</b> We released KaHIP v3.10. It now includes a Python module to use our partitioning algorithms within Python. <br>
<b>5nd August 2020:</b> We released KaHIP v3.0. It now includes algorithms for node orderings, ILPs to improve partitions and to solve the problem to optimality, global multisection process mapping algorithms as well as a couple of minor improvements. <br>
<b>2nd May 2020:</b> Released mt-KaHIP which is a shared-memory parallel version of KaHIP due to Yaroslav Akhremtsev. <br>
<b>3rd January 2019:</b> Released KaHIP v2.1 which now includes <i style="color:red">edge partitioning algorithms</i> and <i style="color:red">64bit edge support</i>. Moreover, we switched to <b style="color:red">MIT licence</b>. <br>
<b>1st March 2017:</b> Released KaHIP v2.00 which now includes ParHIP, i.e. distributed memory parallel codes to partition hierarchically structured networks such as web graphs or social networks, and mapping algorithms that map task graphs (quotient graphs) onto processor graphs. <br>
<b>29th April 2016:</b> Released KaHIP v1.00 which now includes improved codes for the node separator problem based on max-flow min-cut computations as well as locallized local search.<br>
<b>5th October 2015:</b> Released KaHIP v0.73 which now includes an example program to link and call the library.<br>
<!--<b>21st September 2015:</b> Released KaHIP v0.72 which now contains better exhaustion of larger imbalance values.<br> -->
<b>3rd January 2015:</b> Included example wrapper to link the KaHIP library within Java projects.<br>
<b>22nd November 2014:</b> We released KaHIP v0.7 which includes the possibility to balance edges among blocks and integrates our own max-flow min-cut implementations. Balancing edges among blocks is in particular important for graph processing frameworks or parallel matrix vector multiplications.<br>
<b>13rd June 2014:</b> We added huge weighted <i>max-flow min-cut instances</i> from multilevel graph partitioning which may be used for benchmarking max-flow min-cut algorithms. <br>
<!--<b>19nd Mai 2014:</b> We released a minor update of KaHIP (v0.62), e.g. we updated the perfectly balanced case in KaFFPa and the possibility to specify the name of the output partition file</a>. <br> -->
<b>22nd April 2014:</b> We released a technical report on parallel graph partitioning for complex networks. For example, we can obtain a high quality partition of uk-2007, which has 3.3 billion edges, in roughly 16 seconds. The report can be found <a href="http://arxiv.org/abs/1404.4797">here</a>. The code will also be released within the project -- stay tuned!<br>
<b>22nd April 2014:</b> We released a technical report on (semi-)external graph partitioning. The report can be found <a href="http://arxiv.org/abs/1404.4887">here</a>. <br>
<b>3rd March 2014:</b> We added huge <i>max-flow min-cut instances</i> created with our partitioning framework. The max-flow min-cut instances stem from the local search algorithms within KaFFPa that are used to improve a bipartition of the graph. They contain up to 2.6 billion edges and can be found in the miscellaneous section. <br>
<!--<b>19th February 2014:</b> We now integrated the size-constrained label propagation clustering algorithm as an alone standing program. <br> -->
<b>14th February 2014:</b> Version 0.6 is out! We integrated improved algorithms for social networks and web graphs. The algorithms integrated are from the paper "Partitioning Complex Networks via Size-constrained Clustering" (see below).<br> <br>
For regular project updates follow us on <a href="https://twitter.com/#!/ProjectKaHIP">Twitter</a>. <br>
<p></p>
<br>
<h2>Download</h2>
<ul>
<!--<li> <a href="http://algo2.iti.kit.edu/schulz/software_releases/KaHIP_1.00.tar.gz">KaHIP_1.00.tar.gz</a> (or available on GitHub <a href="https://github.com/schulzchristian/KaHIP/">here</a>) -->
<li> <a href="https://github.com/KaHIP/KaHIP/archive/v3.10.tar.gz">KaHIP_3.10.tar.gz</a> (or available on GitHub <a href="https://github.com/KaHIP/">here</a>)
<li> <a href="https://github.com/KaHIP/KaHIP/raw/master/manual/kahip.pdf">User Guide to KaHIP v3.00</a>
<li> Note: this release does NOT contain natural cuts due to an US software patent. If you want to use specialized techniques for road networks, e.g. Buffoon, please send us an <a href="mailto:[email protected]?subject=BuffoonRequest">email</a>.
<li> Shared-memory parallel version Mt-KaHIP (due to Yaroslav Akhremtsev): <a href="https://github.com/KaHIP/mt-KaHIP/archive/v1.0.tar.gz">mt-KaHIP-v1.0.tar.gz</a>
<img alt="build status" src="https://travis-ci.org/KaHIP/KaHIP.svg?branch=master"/>
</ul>
<h2>Support</h2>
<ul>
<li> Write us an <a href="mailto:[email protected]?subject=SupportRequest">email</a> if you need support!
<li>We are glad for any comments and error reports (or even bug fixes or feature requests) that you send us.
<li>Graphs used in our papers will be provided to you on request!
</ul>
<br>
<h2>Licence</h2>
The program is licenced under MIT licence.<br>
If you publish results using our algorithms, <b>please acknowledge</b> our work by quoting the following paper:
<pre class="verbatim select-on-click">
@inproceedings{DBLP:conf/wea/SandersS13,
author = {Peter Sanders and
Christian Schulz},
title = {Think Locally, Act Globally: Highly Balanced Graph Partitioning},
booktitle = {Experimental Algorithms, 12th International Symposium, {SEA} 2013,
Rome, Italy, June 5-7, 2013. Proceedings},
pages = {164--175},
year = {2013},
volume = {7933},
publisher = {Springer},
year = {2013}
}
</pre>
If you use our parallel partitioner ParHIP please also cite the following paper (<a href="http://arxiv.org/pdf/1404.4797.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@article{DBLP:journals/tpds/MeyerhenkeSS17,
author = {Henning Meyerhenke and
Peter Sanders and
Christian Schulz},
title = {Parallel Graph Partitioning for Complex Networks},
journal = {{IEEE} Trans. Parallel Distrib. Syst.},
volume = {28},
number = {9},
pages = {2625--2638},
year = {2017},
url = {https://doi.org/10.1109/TPDS.2017.2671868},
doi = {10.1109/TPDS.2017.2671868},
timestamp = {Fri, 27 Dec 2019 21:15:41 +0100},
biburl = {https://dblp.org/rec/journals/tpds/MeyerhenkeSS17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
} </pre>
If you use mapping algorithm please also cite the following paper (<a href="http://arxiv.org/pdf/1702.04164.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@inproceedings{DBLP:conf/wea/SchulzT17,
author = {Christian Schulz and
Jesper Larsson Tr{\"{a}}ff},
title = {Better Process Mapping and Sparse Quadratic Assignment},
booktitle = {16th International Symposium on Experimental Algorithms, {SEA}},
pages = {4:1--4:15},
year = {2017},
series = {LIPIcs},
volume = {75},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum f{\"{u}}r Informatik},
crossref = {DBLP:conf/wea/2017},
url = {https://doi.org/10.4230/LIPIcs.SEA.2017.4},
doi = {10.4230/LIPIcs.SEA.2017.4},
timestamp = {Tue, 11 Feb 2020 15:52:14 +0100},
biburl = {https://dblp.org/rec/conf/wea/SchulzT17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}</pre>
If you use edge partitioning algorithms please also cite the following paper (<a href="https://arxiv.org/pdf/1808.06411.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@inproceedings{DBLP:conf/alenex/Schlag0SS19,
author = {Sebastian Schlag and
Christian Schulz and
Daniel Seemaier and
Darren Strash},
title = {Scalable Edge Partitioning},
booktitle = {Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments, {ALENEX}},
pages = {211--225},
publisher = {{SIAM}},
year = {2019},
doi = {10.1137/1.9781611975499.17}
}</pre>
If you use mt-KaHIP (shared-memory parallel version) please also cite the following paper (<a href="https://arxiv.org/pdf/1808.06411.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@inproceedings{DBLP:conf/europar/Akhremtsev0018,
author = {Yaroslav Akhremtsev and
Peter Sanders and
Christian Schulz},
title = {High-Quality Shared-Memory Graph Partitioning},
booktitle = {24th International Conference on Parallel and Distributed Computing},
pages = {659--671},
year = {2018},
series = {Lecture Notes in Computer Science},
volume = {11014},
publisher = {Springer},
doi = {10.1007/978-3-319-96983-1\_47}
}</pre>
If you use node ordering algorithms please also cite the following paper (<a href="https://arxiv.org/pdf/2004.11315.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@article{DBLP:journals/corr/abs-2004-11315,
author = {Wolfgang Ost and
Christian Schulz and
Darren Strash},
title = {Engineering Data Reduction for Nested Dissection},
journal = {CoRR},
volume = {abs/2004.11315},
year = {2020},
url = {https://arxiv.org/abs/2004.11315},
archivePrefix = {arXiv},
eprint = {2004.11315},
timestamp = {Tue, 28 Apr 2020 16:10:02 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2004-11315.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
</pre>
If you use ILP algorithms to improve an partition please also cite the following paper (<a href="https://arxiv.org/pdf/1802.07144.pdf">PDF</a>):
<pre class="verbatim select-on-click">
@inproceedings{DBLP:conf/wea/HenzingerN018,
author = {Alexandra Henzinger and
Alexander Noe and
Christian Schulz},
title = {ILP-based Local Search for Graph Partitioning},
booktitle = {17th International Symposium on Experimental Algorithms, {SEA} 2018},
pages = {4:1--4:15},
year = {2018},
url = {https://doi.org/10.4230/LIPIcs.SEA.2018.4},
doi = {10.4230/LIPIcs.SEA.2018.4},
series = {LIPIcs},
volume = {103},
publisher = {Schloss Dagstuhl - Leibniz-Zentrum f{\"{u}}r Informatik}
}
</pre>
The algorithms that are included for download are mainly based on the following publications: <br> <br>
<ul>
<li>Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proceedings of the 19th European Symposium on Algorithms (ESA'11), volume 6942 of LNCS, pages 469--480. Springer, 2011. <a href="http://algo2.iti.kit.edu/documents/kahip/engineering_multilevel.pdf">Download PDF</a>.<br> <br>
<li> Peter Sanders and Christian Schulz. Distributed Evolutionary Graph Partitioning. In Proceedings of the 12th Workshop on Algorithm Engineering and Experimentation (ALENEX'12), pages 16--19, 2012. <a href="http://siam.omnibooksonline.com/2012ALENEX/data/papers/014.pdf#page=1">Download PDF</a>.<br><br>
<li> Peter Sanders and Christian Schulz. High Quality Graph Partitioning. In Proceedings of the 10th DIMACS Implementation Challenge Workshop: Graph Partitioning and Graph Clustering, pages 1--17, AMS, 2013. <a href="http://www.cc.gatech.edu/dimacs10/papers/%5B01%5D-high_quality_graph_partitioning_final.pdf">Download PDF</a>.<br><br>
<li> Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proceedings of the 12th International Symposium on Experimental Algorithms (SEA'13), volume 7933 of LNCS, pages 164--175, 2013. <a href="http://algo2.iti.kit.edu/documents/kahip/highly_balanced.pdf">Download PDF</a>.<br><br>
<li> Christian Schulz. High Quality Graph Partitioning. PhD thesis. Karlsruhe Institute of Technology, 2013. <br>ISBN 978-3844264623, epubli GmbH. <a href="http://algo2.iti.kit.edu/schulz/dissertation_christian_schulz.pdf">Download PDF</a>.<br><br>
<li> Roland Glantz and Henning Meyerhenke and Christian Schulz. Tree-based Coarsening and Partitioning of Complex Networks. In Proceedings of the 13th Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in Computer Science, pages 364--375. Springer, 2014. <a href="http://arxiv.org/pdf/1402.2782.pdf">Download PDF</a>.<br><br>
<li> Henning Meyerhenke and Peter Sanders and Christian Schulz. Partitioning of Complex Networks via Size-constrained Clustering. In Proceedings of the 13th Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in Computer Science, pages 351--363. Springer, 2014. <a href="http://arxiv.org/pdf/1402.3281.pdf">Download PDF</a>.<br><br>
<li> Yaroslav Akhremtsev and Peter Sanders and Christian Schulz. (Semi-)External Algorithms for Graph Partitioning and Clustering. In Proceedings of the 15th Workshop on Algorithm Engineering and Experimentation (ALENEX'15), pages 33--43, 2015. <a href="http://arxiv.org/pdf/1404.4887.pdf">Download PDF</a>.<br><br>
<li> Henning Meyerhenke and Peter Sanders and Christian Schulz. Parallel Graph Partitioning for Complex Networks. In 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS'15), 2015. <a href="http://arxiv.org/pdf/1404.4797.pdf">Download PDF</a>.<br><br>
<li> Peter Sanders and Christian Schulz. Advanced Multilevel Node Separator Algorithms. In Proceedings of the 15th International Symposium on Experimental Algorithms (SEA'13), 2016. <a href="http://arxiv.org/pdf/1509.01190.pdf">Download PDF</a>.<br><br>
<li> Christian Schulz and Jepser Larsson Träff. Better Process Mapping and Sparse Quadratic Assignment. In Proceedings of the 15th International Symposium on Experimental Algorithms (SEA'17), 2017. <a href="http://arxiv.org/pdf/1702.04164.pdf">Download PDF</a>.<br><br>
<li> Sebastian Schlag, Christian Schulz, Daniel Seemaier and Darren Strash. Scalable Edge Partitioning. Proceedings of the 12th Workshop on Algorithm Engineering and Experimentation (ALENEX'19), 2019. <a href="http://arxiv.org/pdf/1808.06411.pdf">Download PDF</a>.<br><br>
<li> Yaroslav Akhremtsev, Peter Sanders and Christian Schulz. High-Quality Shared-Memory Graph Partitioning.
In Proceedings of the 24th International European Conference on Parallel Computing (Euro-Par), volume 11014 of LNCS, pages 659--671, 2018. <a href="https://arxiv.org/pdf/1710.08231.pdf"> Download PDF </a> </li><br>
<li>Wolfgang Ost, Christian Schulz and Darren Strash. Engineering Data Reduction for Nested Dissection.
Technical report, University of Vienna, Faculty of Computer Science, and Hamilton College, 2020. <a href="https://arxiv.org/pdf/2004.11315.pdf"> Download PDF </a> <br><br>
<li>Alexandra Henzinger, Alexander Noe and Christian Schulz.
ILP-based Local Search for Graph Partitioning.
ACM Journal of Experimental Algorithms (ACM JEA), accepted, 2020. <a href="https://arxiv.org/pdf/1802.07144.pdf"> Download PDF </a> </li>
<br>
</ul>
<h2>Miscellaneous</h2>
<ul>
<li>Large flow networks used to improve a given bipartition of the graph which contain up to 2.6 billion edges:
<ul>
<li> Based on Delaunay Graphs: <a href="http://algo2.iti.kit.edu/schulz/flow_networks/del_flow_networks.tar.gz">del_flow_networks.tar.gz </a> (11GB)
<li> Based on Grid Graphs: <a href="http://algo2.iti.kit.edu/schulz/flow_networks/grid_flow_networks.tar.gz">grid_flow_networks.tar.gz </a> (22GB)
<li> Based on Random Geometric Graphs: <a href="http://algo2.iti.kit.edu/schulz/flow_networks/rgg_flow_networks.tar.gz">rgg_flow_networks.tar.gz </a> (6.8GB)
<li> Based on Other Graphs (Road Networks, Scientific Computing, ...): <a href="http://algo2.iti.kit.edu/schulz/flow_networks/other_flow_networks.tar.gz">other_flow_networks.tar.gz</a> (1.7GB)
<li> Weigthed Flow Networks From Multilevel Graph Partitioning based on Various Graphs <a href="http://algo2.iti.kit.edu/schulz/flow_networks/directed_flownetworks.tar.gz">weighted_flownetworks.tar.gz</a> (16GB)
</a>
</ul>
</ul>
<h2>Other Open Source Frameworks</h2>
<ul>
<li> <a href="https://kahip.github.io">KaHIP</a> -- Karlsruhe High Quality Partitioning
<li> <a href="https://kahip.github.io">ParHIP</a> -- Parallel High Quality Partitioning
<li> <a href="https://karlsruhemis.github.io">KaMIS</a> -- Karlsruhe Maximum Independent Sets
<li> <a href="https://karlsruhelongestpaths.github.io">KaLP</a> -- Karlsruhe Longest Paths
<li> <a href="https://vieclus.github.io">VieClus</a> -- Vienna Graph Clustering
<li> <a href="https://kadraw.github.io">KaDraw</a> -- Karlsruhe Graph Drawing
<li> <a href="https://viennamapping.github.io">VieM</a> -- Vienna Process Mapping
<li> <a href="https://github.com/sebalamm/KaGen/"> KaGen </a> -- Karlsruhe Graph Generation
<li> <a href="https://github.com/kahypar/kahypar"> KaHyPar </a> -- Karlsruhe Hypergraph Partitioning
</div>
</div>
<div id="footer">
<p>Copyright (c) 2013-2024. Site maintained by Christian Schulz. All rights reserved. Initial release of KaHIP: 23. Mai 2013. See main site for impressum. Design by <a href="http://www.freecsstemplates.org">FCT</a>.</p>
</div>
</div>
</body>
</html>