-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfuzzy_cluster.py
96 lines (80 loc) · 3.62 KB
/
fuzzy_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
from cluster import Cluster
class FuzzyCluster(Cluster):
"""
Class that implements the fuzzy clustering algorithm
"""
def __init__(self, data: np.ndarray, centers_number: int, m: float = 2., seed: int = None):
"""
Main constructor
Warning! A number of centers close to the number of data does not produce good results in this implementation
:param data: ndarray, the data set to be clustered
:param centers_number: int, number of classes wished
:param m: float, fuzzy coefficient
:param seed: int, number to set the random seed for reproducibility
"""
if seed is not None:
np.random.seed(seed)
super().__init__(data, np.random.rand(centers_number, data.shape[1]))
self.m = m
self.membership_values = None
def _calc_membership(self, point, center):
return 1 / (np.sum([self.dist(point, center) /
self.dist(point, center_iterator)
for center_iterator in self.centers]) ** (1 / (self.m - 1)))
def _calc_new_centers(self):
return np.array(
[np.sum([self._calc_membership(point, center) ** self.m * point for point in self.data], axis=0) /
np.sum([self._calc_membership(point, center) ** self.m for point in self.data]) for center in
self.centers])
def calc_centers(self, iterations: int = 100, error: float = 1E-6):
"""
Fit method, update the centers using fuzzy clustering
:param iterations: int, number to set the max number of iterations
:param error: float, set the allowed tolerance
"""
for _ in range(iterations):
new_centers = self._calc_new_centers()
self.centers = new_centers
if np.allclose((self.centers, new_centers), error):
break
def calc_membership_values(self, return_values: bool = True) -> np.ndarray:
"""
Method to calc the membership values
:param return_values: bool, by default True, set it in false if you don't want keep values.
:return: ndarray with membership values
"""
self.membership_values = np.array([[self._calc_membership(x, v) for v in self.centers] for x in self.data])
if return_values:
return self.membership_values
def classify(self) -> np.ndarray:
"""
Method to get the classification
:return: ndarry that contains the class of every point
"""
self.labels = np.argmax(self.calc_membership_values(), axis=1)
return self.labels
def calc_PC(self):
"""
Method to calc the partition coefficient defined by Bezdek
"""
if self.membership_values is None:
self.calc_membership_values(False)
return np.sum(np.square(self.membership_values)) / self.data.shape[0]
def calc_CE(self):
"""
Method to calculate the lack of fuzivity of the groups
"""
if self.membership_values is None:
self.calc_membership_values(False)
return -np.sum(self.membership_values * np.log10(self.membership_values)) / self.data.shape[0]
def calc_I(self):
"""
Method to calc the safety of a classification
"""
if self.membership_values is None:
self.calc_membership_values(False)
max_values = np.max(self.membership_values, axis=1, keepdims=True)
lambda_i = max_values - self.membership_values
C = self.m - 1
return np.sum(lambda_i * np.exp(lambda_i), axis=1) / (C * max_values * np.exp(max_values)).reshape(-1)