forked from facebookresearch/detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmask_rcnn_R_50_FPN_100ep_LSJ.py
72 lines (60 loc) · 2.46 KB
/
mask_rcnn_R_50_FPN_100ep_LSJ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import detectron2.data.transforms as T
from detectron2.config.lazy import LazyCall as L
from detectron2.layers.batch_norm import NaiveSyncBatchNorm
from detectron2.solver import WarmupParamScheduler
from fvcore.common.param_scheduler import MultiStepParamScheduler
from ..common.data.coco import dataloader
from ..common.models.mask_rcnn_fpn import model
from ..common.optim import SGD as optimizer
from ..common.train import train
# train from scratch
train.init_checkpoint = ""
train.amp.enabled = True
train.ddp.fp16_compression = True
model.backbone.bottom_up.freeze_at = 0
# SyncBN
# fmt: off
model.backbone.bottom_up.stem.norm = \
model.backbone.bottom_up.stages.norm = \
model.backbone.norm = "SyncBN"
# Using NaiveSyncBatchNorm becase heads may have empty input. That is not supported by
# torch.nn.SyncBatchNorm. We can remove this after
# https://github.com/pytorch/pytorch/issues/36530 is fixed.
model.roi_heads.box_head.conv_norm = \
model.roi_heads.mask_head.conv_norm = lambda c: NaiveSyncBatchNorm(c,
stats_mode="N")
# fmt: on
# 2conv in RPN:
# https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/modeling/architecture/heads.py#L95-L97 # noqa: E501, B950
model.proposal_generator.head.conv_dims = [-1, -1]
# 4conv1fc box head
model.roi_heads.box_head.conv_dims = [256, 256, 256, 256]
model.roi_heads.box_head.fc_dims = [1024]
# resize_and_crop_image in:
# https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/utils/input_utils.py#L127 # noqa: E501, B950
image_size = 1024
dataloader.train.mapper.augmentations = [
L(T.ResizeScale)(
min_scale=0.1, max_scale=2.0, target_height=image_size, target_width=image_size
),
L(T.FixedSizeCrop)(crop_size=(image_size, image_size)),
L(T.RandomFlip)(horizontal=True),
]
# recompute boxes due to cropping
dataloader.train.mapper.recompute_boxes = True
# larger batch-size.
dataloader.train.total_batch_size = 64
# Equivalent to 100 epochs.
# 100 ep = 184375 iters * 64 images/iter / 118000 images/ep
train.max_iter = 184375
lr_multiplier = L(WarmupParamScheduler)(
scheduler=L(MultiStepParamScheduler)(
values=[1.0, 0.1, 0.01],
milestones=[163889, 177546],
num_updates=train.max_iter,
),
warmup_length=500 / train.max_iter,
warmup_factor=0.067,
)
optimizer.lr = 0.1
optimizer.weight_decay = 4e-5