-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateDatasetJson.py
50 lines (41 loc) · 1.59 KB
/
generateDatasetJson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Generate the dataset.json file
from nnunetv2.dataset_conversion.generate_dataset_json import generate_dataset_json
import argparse
import os
# argparse
parser = argparse.ArgumentParser(description="Just an example",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-r", "--root_dir", default='/vol/biomedic3/kc2322/data/AMOS_3D', help="Root directory for nnUNet")
parser.add_argument("-n", "--dataset_name", default='Dataset703_Set3', help="Name of the dataset")
parser.add_argument("-tc", "--training_cases", default=120)
args = vars(parser.parse_args())
# set up variables
ROOT_DIR = args['root_dir']
DS_NAME = args['dataset_name']
TC = args['training_cases']
output_dir = os.path.join(ROOT_DIR, "nnUNet_raw/{}".format(DS_NAME))
imagesTr_dir = os.path.join(ROOT_DIR, "nnUNet_raw/{}/imagesTr".format(DS_NAME))
imagesTs_dir = os.path.join(ROOT_DIR, "nnUNet_raw/{}/imagesTs".format(DS_NAME))
channel_names = {0: "CT"}
labels = {"background": 0,
"spleen": 1,
"right kidney": 2,
"left kidney": 3,
"gallbladder": 4,
"esophagus": 5,
"liver": 6,
"stomach": 7,
"aorta": 8,
"inferior vena cava": 9,
"pancreas": 10,
"right adrenal gland": 11,
"left adrenal gland": 12,
"duodenum": 13,
"bladder": 14,
"prostate/uterus": 15}
file_ending = ".nii.gz"
generate_dataset_json(str(output_dir),
channel_names,
labels,
int(TC),
file_ending)