-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakePlots.py
323 lines (251 loc) · 12.4 KB
/
makePlots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Script to make combined plots from different experiments
import os
import pickle as pkl
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
from scipy import stats
root_dir = "/Users/katecevora/Documents/PhD/data/AMOS_3D"
lblu = "#add9f4"
lred = "#f36860"
labels = {"background": 0,
"spleen": 1,
"right kidney": 2,
"left kidney": 3,
"gallbladder": 4,
"esophagus": 5,
"liver": 6,
"stomach": 7,
"aorta": 8,
"inferior vena cava": 9,
"pancreas": 10,
"right adrenal gland": 11,
"left adrenal gland": 12,
"duodenum": 13,
"bladder": 14,
"prostate/uterus": 15}
n_channels = int(len(labels))
def significanceThreshold(p):
# Test significance and return *, **, or blank
if p <= 0.01:
sig = "**"
elif p <= 0.05:
sig = "*"
else:
sig = ""
return sig
def plotDice(dice_men1, dice_women1, dice_men2, dice_women2, dice_men3, dice_women3, organ, save_path):
plt.clf()
# Delete NaNs
dice_men1 = dice_men1[~np.isnan(dice_men1)]
dice_women1 = dice_women1[~np.isnan(dice_women1)]
dice_men2 = dice_men2[~np.isnan(dice_men2)]
dice_women2 = dice_women2[~np.isnan(dice_women2)]
dice_men3 = dice_men3[~np.isnan(dice_men3)]
dice_women3 = dice_women3[~np.isnan(dice_women3)]
data = [dice_men1, dice_men2, dice_men3, dice_women1, dice_women2, dice_women3]
labels = ['Balanced', 'Female Training Set', 'Male Training Set', 'Balanced', 'Female Training Set', 'Male Training Set']
fig, ax1 = plt.subplots(figsize=(10, 6))
fig.canvas.manager.set_window_title('A Boxplot Example')
fig.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25)
bp = ax1.boxplot(data, notch=False, sym='+', vert=True, whis=1.5, showfliers=False)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')
# Add a horizontal grid to the plot, but make it very light in color
# so we can use it for reading data values but not be distracting
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.2)
ax1.set(
axisbelow=True, # Hide the grid behind plot objects
title='Dice scores for {}'.format(organ),
xlabel='',
ylabel='Dice Score',
)
# Now fill the boxes with desired colors
box_colors = [lblu, lblu, lblu, lred, lred, lred]
num_boxes = len(data)
medians = np.empty(num_boxes)
for i in range(num_boxes):
box = bp['boxes'][i]
box_x = []
box_y = []
for j in range(5):
box_x.append(box.get_xdata()[j])
box_y.append(box.get_ydata()[j])
box_coords = np.column_stack([box_x, box_y])
ax1.add_patch(Polygon(box_coords, facecolor=box_colors[i]))
# Now draw the median lines back over what we just filled in
med = bp['medians'][i]
median_x = []
median_y = []
for j in range(2):
median_x.append(med.get_xdata()[j])
median_y.append(med.get_ydata()[j])
ax1.plot(median_x, median_y, 'k')
medians[i] = median_y[0]
# Finally, overplot the sample averages, with horizontal alignment
# in the center of each box
ax1.plot(np.average(med.get_xdata()), np.average(data[i]), color='k', marker='*', markeredgecolor='k', markersize=10)
# Set the axes ranges and axes labels
ax1.set_xlim(0.5, num_boxes + 0.5)
top = 1.0
bottom = 0.2
#ax1.set_ylim(bottom, top)
ax1.set_xticklabels(labels, rotation=45, fontsize=8)
# Finally, add a basic legend
fig.text(0.80, 0.38, 'Male Test Set',
backgroundcolor=box_colors[0], color='black', weight='roman',
size='small')
fig.text(0.80, 0.345, 'Female Test Set',
backgroundcolor=box_colors[3],
color='white', weight='roman', size='small')
fig.text(0.80, 0.295, '*', color='black',
weight='roman', size='large')
fig.text(0.815, 0.300, ' Average Value', color='black', weight='roman',
size='small')
plt.axvline(x=3.5, color='k', linestyle="dashed", linewidth=1)
plt.savefig(save_path)
#plt.show()
def printDice(dice_men1, dice_women1, dice_men2, dice_women2, dice_men3, dice_women3):
# Calculate the deltas from the baseline experiment
organs = list(labels.keys())
for i in range(1, n_channels):
organ = organs[i]
# Delete NaNs
dice_men1_i = dice_men1[:, i][~np.isnan(dice_men1[:, i])]
dice_women1_i = dice_women1[:, i][~np.isnan(dice_women1[:, i])]
dice_men2_i = dice_men2[:, i][~np.isnan(dice_men2[:, i])]
dice_women2_i = dice_women2[:, i][~np.isnan(dice_women2[:, i])]
dice_men3_i = dice_men3[:, i][~np.isnan(dice_men3[:, i])]
dice_women3_i = dice_women3[:, i][~np.isnan(dice_women3[:, i])]
# Baseline results
av_dice_men1 = np.mean(dice_men1_i)
av_dice_women1 = np.mean(dice_women1_i)
# look at difference between men and women
delta_1 = ((av_dice_men1 - av_dice_women1) / np.mean((av_dice_men1, av_dice_women1))) * 100
(_, p_1) = stats.ttest_ind(dice_men1_i, dice_women1_i, equal_var=False)
# Experiment 2 (all female training set)
av_dice_men2 = np.mean(dice_men2_i)
av_dice_women2 = np.mean(dice_women2_i)
delta_men2 = -((av_dice_men1 - av_dice_men2) / np.mean((av_dice_men1, av_dice_men2))) * 100
delta_women2 = -((av_dice_women1 - av_dice_women2) / np.mean((av_dice_women1, av_dice_women2))) * 100
(_, p_men2) = stats.ttest_ind(dice_men1_i, dice_men2_i, equal_var=False)
(_, p_women2) = stats.ttest_ind(dice_women1_i, dice_women2_i, equal_var=False)
# Experiment 3 (male training set)
av_dice_men3 = np.mean(dice_men3_i)
av_dice_women3 = np.mean(dice_women3_i)
delta_men3 = -((av_dice_men1 - av_dice_men3) / np.mean((av_dice_men1, av_dice_men3))) * 100
delta_women3 = -((av_dice_women1 - av_dice_women3) / np.mean((av_dice_women1, av_dice_women3))) * 100
(_, p_men3) = stats.ttest_ind(dice_men1_i, dice_men3_i, equal_var=False)
(_, p_women3) = stats.ttest_ind(dice_women1_i, dice_women3_i, equal_var=False)
# Get significance thresholds as *'s
sig_1 = significanceThreshold(p_1)
sig_men2 = significanceThreshold(p_men2)
sig_women2 = significanceThreshold(p_women2)
sig_men3 = significanceThreshold(p_men3)
sig_women3 = significanceThreshold(p_women3)
print(organ + " & {0:.2f} {1} & {2:.2f} {3} & {4:.2f} {5} & {6:.2f} {7} & {8:.2f} {9}".format(delta_1,
sig_1,
delta_men2,
sig_men2,
delta_men3,
sig_men3,
delta_women2,
sig_women2,
delta_women3,
sig_women3) + r" \\")
def plot(experiments = ["Dataset501_Fold0", "Dataset502_Fold0", "Dataset503_Fold0"]):
# first get relevant metrics from all three experiments
# Experiment 1
f = open(os.path.join(root_dir, "inference", experiments[0], "all", "dice_and_hd.pkl"), "rb")
metrics1 = pkl.load(f)
f.close()
dice_men1 = metrics1["dice_men"]
dice_women1 = metrics1["dice_women"]
# Experiment 2
f = open(os.path.join(root_dir, "inference", experiments[1], "all", "dice_and_hd.pkl"), "rb")
metrics2 = pkl.load(f)
f.close()
dice_men2 = metrics2["dice_men"]
dice_women2 = metrics2["dice_women"]
# Experiment 3
f = open(os.path.join(root_dir, "inference", experiments[2], "all", "dice_and_hd.pkl"), "rb")
metrics3 = pkl.load(f)
f.close()
dice_men3 = metrics3["dice_men"]
dice_women3 = metrics3["dice_women"]
# Now make some plots
organs = list(labels.keys())
for i in range(1, n_channels):
organ = organs[i]
if organ == "prostate/uterus":
organ = "prostate or uterus"
save_path = os.path.join(root_dir, "plots", "Final", "{}_dice.png".format(organ))
plotDice(dice_men1[:, i],
dice_women1[:, i],
dice_men2[:, i],
dice_women2[:, i],
dice_men3[:, i],
dice_women3[:, i],
organ,
save_path)
# Now process dice scores for all three experiments into a tabular format
printDice(dice_men1, dice_women1, dice_men2, dice_women2, dice_men3, dice_women3)
def pullFoldsTogether():
# Combine results from all folds
# iterate over folds
for fold in range(5):
experiments = ["Dataset{}00_Fold{}".format((5+fold), fold),
"Dataset{}01_Fold{}".format((5+fold), fold),
"Dataset{}02_Fold{}".format((5+fold), fold)]
# Experiment 1
f = open(os.path.join(root_dir, "inference", experiments[0], "all", "dice_and_hd.pkl"), "rb")
metrics1 = pkl.load(f)
f.close()
# Experiment 2
f = open(os.path.join(root_dir, "inference", experiments[1], "all", "dice_and_hd.pkl"), "rb")
metrics2 = pkl.load(f)
f.close()
# Experiment 3
f = open(os.path.join(root_dir, "inference", experiments[2], "all", "dice_and_hd.pkl"), "rb")
metrics3 = pkl.load(f)
f.close()
if fold == 0:
dice_men1 = metrics1["dice_men"]
dice_women1 = metrics1["dice_women"]
dice_men2 = metrics2["dice_men"]
dice_women2 = metrics2["dice_women"]
dice_men3 = metrics3["dice_men"]
dice_women3 = metrics3["dice_women"]
else:
dice_men1 = np.concatenate((dice_men1, metrics1["dice_men"]), axis=0)
dice_women1 = np.concatenate((dice_women1, metrics1["dice_women"]), axis=0)
dice_men2 = np.concatenate((dice_men2, metrics2["dice_men"]), axis=0)
dice_women2 = np.concatenate((dice_women2, metrics2["dice_women"]), axis=0)
dice_men3 = np.concatenate((dice_men3, metrics3["dice_men"]), axis=0)
dice_women3 = np.concatenate((dice_women3, metrics3["dice_women"]), axis=0)
# Save results
if not os.path.exists(os.path.join(root_dir, "inference", "Dataset1_FoldAll")):
os.mkdir(os.path.join(root_dir, "inference", "Dataset1_FoldAll"))
os.mkdir(os.path.join(root_dir, "inference", "Dataset1_FoldAll", "all"))
if not os.path.exists(os.path.join(root_dir, "inference", "Dataset2_FoldAll")):
os.mkdir(os.path.join(root_dir, "inference", "Dataset2_FoldAll"))
os.mkdir(os.path.join(root_dir, "inference", "Dataset2_FoldAll", "all"))
if not os.path.exists(os.path.join(root_dir, "inference", "Dataset3_FoldAll")):
os.mkdir(os.path.join(root_dir, "inference", "Dataset3_FoldAll"))
os.mkdir(os.path.join(root_dir, "inference", "Dataset3_FoldAll", "all"))
f = open(os.path.join(root_dir, "inference", "Dataset1_FoldAll", "all", "dice_and_hd.pkl"), "wb")
pkl.dump({"dice_men": dice_men1, "dice_women": dice_women1}, f)
f.close()
f = open(os.path.join(root_dir, "inference", "Dataset2_FoldAll", "all", "dice_and_hd.pkl"), "wb")
pkl.dump({"dice_men": dice_men2, "dice_women": dice_women2}, f)
f.close()
f = open(os.path.join(root_dir, "inference", "Dataset3_FoldAll", "all", "dice_and_hd.pkl"), "wb")
pkl.dump({"dice_men": dice_men3, "dice_women": dice_women3}, f)
f.close()
printDice(dice_men1, dice_women1, dice_men2, dice_women2, dice_men3, dice_women3)
def main():
pullFoldsTogether()
#plot(experiments=["Dataset1_FoldAll", "Dataset2_FoldAll", "Dataset3_FoldAll"])
if __name__ == "__main__":
main()