-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_nnUNet.sh
executable file
·42 lines (31 loc) · 1.11 KB
/
predict_nnUNet.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#!/bin/bash
#PBS -l walltime=15:00:00
#PBS -l select=1:ncpus=15:mem=120gb:ngpus=1:gpu_type=RTX6000
#PBS -N nnUNet_AMOS_predict_800
cd ${PBS_O_WORKDIR}
# Launch virtual environment
module load anaconda3/personal
source activate nnUNetv2
## Verify install:
python -c "import torch;print(torch.cuda.is_available())"
# Set environment variables
ROOT_DIR='/rds/general/user/kc2322/home/data/AMOS_3D/'
datasets=("Dataset800_Fold3" "Dataset801_Fold3" "Dataset802_Fold3")
tasks=(800 801 802)
export nnUNet_raw=$ROOT_DIR"nnUNet_raw"
export nnUNet_preprocessed=$ROOT_DIR"nnUNet_preprocessed"
export nnUNet_results=$ROOT_DIR"nnUNet_results"
for number in {0..2}; do
DATASET=${datasets[number]}
TASK=${tasks[number]}
# Inference
INPUT_FOLDER=$ROOT_DIR"nnUNet_raw/"$DATASET"/imagesTs"
OUTPUT_FOLDER=$ROOT_DIR"inference/"$DATASET"/all"
echo $TASK
echo $DATASET
echo $INPUT_FOLDER
echo $OUTPUT_FOLDER
nnUNetv2_predict -i $INPUT_FOLDER -o $OUTPUT_FOLDER -d $TASK -c 3d_fullres -f all -chk checkpoint_best.pth
# Run python script to evaluate results
python3 processResults.py -d $DATASET
done