-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKNN.py
57 lines (43 loc) · 1.92 KB
/
KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
from math import sqrt
from collections import Counter
from metrics import accuracy_score
class KNNClassifier:
def __init__(self, k):
"""初始化KNN分类器"""
assert k >= 1, "K must be valid."
self.k = k
self._X_train = None;
self._y_train = None;
def fit(self, X_train, y_train):
"""根据训练数据集 X_train 和 y_train 训练KNN分类器"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train."
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定特定预测数据集X_predict, 返回表示X_predict的结果向量"""
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个带预测数据 x, 返回 x 的预测结果值"""
assert x.shape[0] == self._X_train.shape[1], \
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def score(self, X_test, y_test):
'''根据测试数据集 X_test 和 y_test 确定当前模型的准确度'''
y_predict = self.predict(X_test)
return accuracy_score(y_test, y_predict)
def __repr__(self):
return "KNN(k=%d)" % self.k