-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththesis.bib
executable file
·6568 lines (5814 loc) · 204 KB
/
thesis.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{iwata2020meta,
title={Meta-learning from tasks with heterogeneous attribute spaces},
author={Iwata, Tomoharu and Kumagai, Atsutoshi},
journal={Advances in {N}eural {I}nformation {P}rocessing {S}ystems},
volume={33},
pages={6053--6063},
year={2020}
}
@inproceedings{wang2022st,
title={ST-MAML: A stochastic-task based method for task-heterogeneous meta-learning},
author={Wang, Zhe and Grigsby, Jake and Sekhon, Arshdeep and Qi, Yanjun},
booktitle={{U}ncertainty in {A}rtificial {I}ntelligence},
pages={2066--2074},
year={2022},
organization={PMLR}
}
@inproceedings{balcan2021much,
title={How much data is sufficient to learn high-performing algorithms? generalization guarantees for data-driven algorithm design},
author={Balcan, Maria-Florina and DeBlasio, Dan and Dick, Travis and Kingsford, Carl and Sandholm, Tuomas and Vitercik, Ellen},
booktitle={Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing},
pages={919--932},
year={2021}
}
@inproceedings{balcan2018learning,
title={Learning to branch},
author={Balcan, Maria-Florina and Dick, Travis and Sandholm, Tuomas and Vitercik, Ellen},
booktitle={International conference on machine learning},
pages={344--353},
year={2018},
organization={PMLR}
}
@article{friedman2010regularization,
title={Regularization paths for generalized linear models via coordinate descent},
author={Friedman, Jerome and Hastie, Trevor and Tibshirani, Rob},
journal={Journal of statistical software},
volume={33},
number={1},
pages={1},
year={2010},
publisher={NIH Public Access}
}
@article{bertsimas1993simulated,
title={Simulated annealing},
author={Bertsimas, Dimitris and Tsitsiklis, John},
journal={Statistical science},
volume={8},
number={1},
pages={10--15},
year={1993},
publisher={Institute of Mathematical Statistics}
}
@article{deblasio2020more,
title={More Accurate Transcript Assembly via Parameter Advising},
author={Deblasio, Dan and Kim, Kwanho and Kingsford, Carl},
journal={Journal of Computational Biology},
volume={27},
number={8},
pages={1181--1189},
year={2020},
publisher={Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New~…}
}
@incollection{miikkulainen2019evolving,
title={Evolving deep neural networks},
author={Miikkulainen, Risto and Liang, Jason and Meyerson, Elliot and Rawal, Aditya and Fink, Daniel and Francon, Olivier and Raju, Bala and Shahrzad, Hormoz and Navruzyan, Arshak and Duffy, Nigel and others},
booktitle={Artificial intelligence in the age of neural networks and brain computing},
pages={293--312},
year={2019},
publisher={Elsevier}
}
@inproceedings{liang2019evolutionary,
title={Evolutionary neural automl for deep learning},
author={Liang, Jason and Meyerson, Elliot and Hodjat, Babak and Fink, Dan and Mutch, Karl and Miikkulainen, Risto},
booktitle={Proceedings of the Genetic and Evolutionary Computation Conference},
pages={401--409},
year={2019}
}
@article{fogel1994introduction,
title={An introduction to simulated evolutionary optimization},
author={Fogel, David B},
journal={IEEE transactions on neural networks},
volume={5},
number={1},
pages={3--14},
year={1994},
publisher={IEEE}
}
@book{banzhaf1998genetic,
title={Genetic programming: an introduction: on the automatic evolution of computer programs and its applications},
author={Banzhaf, Wolfgang and Nordin, Peter and Keller, Robert E and Francone, Frank D},
year={1998},
publisher={Morgan Kaufmann Publishers Inc.}
}
@article{miikkulainen2021prediction,
title={From prediction to prescription: evolutionary optimization of nonpharmaceutical interventions in the COVID-19 pandemic},
author={Miikkulainen, Risto and Francon, Olivier and Meyerson, Elliot and Qiu, Xin and Sargent, Darren and Canzani, Elisa and Hodjat, Babak},
journal={IEEE Transactions on Evolutionary Computation},
volume={25},
number={2},
pages={386--401},
year={2021},
publisher={IEEE}
}
@article{bellio2016feature,
title={Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem},
author={Bellio, Ruggero and Ceschia, Sara and Di Gaspero, Luca and Schaerf, Andrea and Urli, Tommaso},
journal={Computers \& Operations Research},
volume={65},
pages={83--92},
year={2016},
publisher={Elsevier}
}
@article{wright2015coordinate,
title={Coordinate descent algorithms},
author={Wright, Stephen J},
journal={Mathematical Programming},
volume={151},
number={1},
pages={3--34},
year={2015},
publisher={Springer}
}
@article{liashchynskyi2019grid,
title={Grid search, random search, genetic algorithm: a big comparison for NAS},
author={Liashchynskyi, Petro and Liashchynskyi, Pavlo},
journal={arXiv preprint arXiv:1912.06059},
year={2019}
}
@article{bergstra2011algorithms,
title={Algorithms for hyper-parameter optimization},
author={Bergstra, James and Bardenet, R{\'e}mi and Bengio, Yoshua and K{\'e}gl, Bal{\'a}zs},
journal={Advances in neural information processing systems},
volume={24},
year={2011}
}
@inproceedings{balcan2017learning,
title={Learning-theoretic foundations of algorithm configuration for combinatorial partitioning problems},
author={Balcan, Maria-Florina and Nagarajan, Vaishnavh and Vitercik, Ellen and White, Colin},
booktitle={Conference on Learning Theory},
pages={213--274},
year={2017},
organization={PMLR}
}
@inproceedings{thornton2013auto,
title={Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms},
author={Thornton, Chris and Hutter, Frank and Hoos, Holger H and Leyton-Brown, Kevin},
booktitle={Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining},
pages={847--855},
year={2013}
}
@article{hoang2022differentiable,
title={Differentiable Learning of Sequence-Specific Minimizer Schemes with {D}eep{M}inimizer},
author={Hoang, Minh and Zheng, Hongyu and Kingsford, Carl},
journal={Journal of Computational Biology},
year={2022},
publisher={Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New Rochelle, NY}
}
@inproceedings{hoang2022deepminimizer,
title={Deep{M}inimizer: A Differentiable Framework for Optimizing Sequence-Specific Minimizer Schemes},
author={Hoang, Minh and Zheng, Hongyu and Kingsford, Carl},
booktitle={International Conference on Research in Computational Molecular Biology},
pages={52--69},
year={2022},
organization={Springer}
}
@article{shaw2021theory,
title={Theory of local k-mer selection with applications to long-read alignment},
author={Shaw, Jim and Yu, Yun William},
journal={Bioinformatics},
year={2021},
issn = {1367-4803},
pages={4659-4669}
}
@article{edgar2021syncmers,
title={Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences},
author={Edgar, Robert},
journal={PeerJ},
volume={9},
pages={e10805},
year={2021},
publisher={PeerJ Inc.}
}
@incollection{rice1976algorithm,
title={The algorithm selection problem},
author={Rice, John R},
booktitle={Advances in {C}omputers},
volume={15},
pages={65--118},
year={1976},
publisher={Elsevier}
}
@inproceedings{bender2018understanding,
title={Understanding and simplifying one-shot architecture search},
author={Bender, Gabriel and Kindermans, Pieter-Jan and Zoph, Barret and Vasudevan, Vijay and Le, Quoc},
booktitle={International {C}onference on {M}achine {L}earning},
pages={550--559},
year={2018},
organization={PMLR}
}
@article{liu2018darts,
title={Darts: Differentiable architecture search},
author={Liu, Hanxiao and Simonyan, Karen and Yang, Yiming},
journal={arXiv preprint arXiv:1806.09055},
year={2018}
}
@inproceedings{hutter2011sequential,
title={Sequential model-based optimization for general algorithm configuration},
author={Hutter, Frank and Hoos, Holger H and Leyton-Brown, Kevin},
booktitle={International conference on learning and intelligent optimization},
pages={507--523},
year={2011},
organization={Springer}
}
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
@inproceedings{sun2019meta,
title={Meta-transfer learning for few-shot learning},
author={Sun, Qianru and Liu, Yaoyao and Chua, Tat-Seng and Schiele, Bernt},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={403--412},
year={2019}
}
@article{lecun2015lenet,
title={LeNet-5, convolutional neural networks},
author={LeCun, Yann and others},
journal={URL: http://yann. lecun. com/exdb/lenet},
volume={20},
number={5},
pages={14},
year={2015}
}
@article{vaswani2017attention,
title={Attention is all you need},
author={Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, {\L}ukasz and Polosukhin, Illia},
journal={Advances in {N}eural {I}nformation {P}rocessing {S}ystems},
volume={30},
year={2017}
}
@article{iandola2016squeezenet,
title={SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size},
author={Iandola, Forrest N and Han, Song and Moskewicz, Matthew W and Ashraf, Khalid and Dally, William J and Keutzer, Kurt},
journal={arXiv preprint arXiv:1602.07360},
year={2016}
}
@article{mercer1909functions,
title={Functions ofpositive and negativetypeand theircommection with the theory ofintegral equations},
author={Mercer, J},
journal={Philos. Trinsdictions Rogyal Soc},
volume={209},
pages={4--415},
year={1909}
}
@article{delgado1994optimal,
title={Optimal spectral kernel for long-range dependent time series},
author={Delgado, Miguel A and Robinson, Peter M},
year={1994}
}
@article{hofmann2006support,
title={Support vector machines-kernels and the kernel trick},
author={Hofmann, Martin},
journal={Notes},
volume={26},
number={3},
pages={1--16},
year={2006},
publisher={University of Bamberg Bamberg, Germany}
}
@article{vanschoren2018meta,
title={Meta-learning: A survey},
author={Vanschoren, Joaquin},
journal={arXiv preprint arXiv:1810.03548},
year={2018}
}
@article{zhuang2020comprehensive,
title={A comprehensive survey on transfer learning},
author={Zhuang, Fuzhen and Qi, Zhiyuan and Duan, Keyu and Xi, Dongbo and Zhu, Yongchun and Zhu, Hengshu and Xiong, Hui and He, Qing},
journal={Proceedings of the IEEE},
volume={109},
number={1},
pages={43--76},
year={2020},
publisher={IEEE}
}
@article{hach12,
title={{SCALCE}: Boosting sequence compression algorithms using locally consistent encoding},
author={Faraz Hach and Ibrahim Numanagi{\'c} and Can Alkan and others},
journal={Bioinformatics},
volume={28},
number={23},
pages={3051--3057},
year={2012},
publisher={Oxford University Press}
}
@article{edgar21,
title={Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences},
author={Edgar, Robert},
journal={PeerJ},
volume={9},
pages={e10805},
year={2021},
publisher={PeerJ Inc.},
doi={http://dx.doi.org/10.7717/peerj.10805}
}
@article{kingma14adam,
title={{ADAM}: A {M}ethod for {S}tochastic {O}ptimization},
author={Diederik P. Kingma and Jimmy Ba},
journal={Computing {R}esearch {R}epository},
year={2015},
volume={1412.6980}
}
@article{miga19,
title={Telomere-to-{T}elomere assembly of a complete human {X} chromosome},
author={Karen H. Miga and Sergey Koren and Arang Rhie and others},
journal={Nature},
volume={585},
number={7823},
pages={79--84},
year={2020},
publisher={Nature Publishing Group}
}
@article{fukagawa14,
title={The centromere: chromatin foundation for the kinetochore machinery},
author={Tatsuo Fukagawa and William C. Earnshaw},
journal={Developmental {C}ell},
volume={30},
number={5},
pages={496--508},
year={2014},
publisher={Elsevier}
}
@inproceedings{schleimer03,
title={Winnowing: local algorithms for document fingerprinting},
author={Saul Schleimer and Daniel S. Wilkerson and Alex Aiken},
booktitle={Proceedings of the 2003 ACM SIGMOD {I}nternational {C}onference on {M}anagement of {D}ata},
pages={76--85},
year={2003}
}
@article{roberts05,
author = {Michael Roberts and Wayne Hayes and Brian Hunt and others},
year = {2005},
month = {01},
pages = {3363-9},
title = {Reducing storage requirements for biological sequence comparison},
volume = {20},
journal = {Bioinformatics},
}
@article{zheng21,
author = {Zheng, Hongyu and Kingsford, Carl and Marçais, Guillaume},
title = "{Sequence-specific minimizers via polar sets}",
journal = {Bioinformatics},
volume = {37},
pages = {i187-i195},
year = {2021}
}
@article{jain20,
author = {Chirag Jain and Arang Rhie and Nancy Hansen and others},
year = {2022},
pages = {1--6},
title = {Long-read mapping to repetitive reference sequences using {W}innowmap2},
volume = {19},
journal = {Nature Methods},
doi = {10.1038/s41592-022-01457-8}
}
@article{roberts04,
title={A preprocessor for shotgun assembly of large genomes},
author={Michael Roberts and Brian R. Hunt and James A. Yorke and others},
journal={Journal of {C}omputational {B}iology},
volume={11},
number={4},
pages={734--752},
year={2004},
publisher={Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA}
}
@article{li18minimap2,
title={Minimap2: Pairwise alignment for nucleotide sequences},
author={Heng Li},
journal={Bioinformatics},
volume={34},
number={18},
pages={3094--3100},
year={2018},
publisher={Oxford University Press}
}
@article{deorowicz15kmc,
title={{KMC} 2: fast and resource-frugal k-mer counting},
author={Sebastian Deorowicz and Marek Kokot and Szymon Grabowski and others},
journal={Bioinformatics},
volume={31},
number={10},
pages={1569--1576},
year={2015},
publisher={Oxford University Press}
}
@article{erbert17gerbil,
title={Gerbil: a fast and memory-efficient k-mer counter with {GPU}-support},
author={Marius Erbert and Steffen Rechner and Matthias M{\"u}ller-Hannemann},
journal={Algorithms for {M}olecular {B}iology},
year={2017},
volume={12},
number={1},
pages={1--12},
publisher={Springer}
}
@article{chikhi16,
title={Compacting de {B}ruijn graphs from sequencing data quickly and in low memory},
author={Rayan Chikhi and Antoine Limasset and Paul Medvedev},
journal={Bioinformatics},
volume={32},
number={12},
pages={i201--i208},
year={2016},
publisher={Oxford University Press}
}
@inproceedings{ye12,
title={Exploiting sparseness in de novo genome assembly},
author={Chengxi Ye and Zhanshan Sam Ma and Charles H. Cannon and others},
booktitle={{BMC} {B}ioinformatics},
volume={13},
pages={1--8},
year={2012},
organization={BioMed Central}
}
@inproceedings{ekim20pasha,
title={A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal Hitting Sets},
author={Barış Ekim and Bonnie Berger and Yaron Orenstein},
booktitle={Proceedings of the $24^{th}$ Annual International Conference on Research in Computational Molecular Biology},
year={2020}
}
@article{marcais17,
title={Improving the performance of minimizers and winnowing schemes},
author={Guillaume Mar{\c{c}}ais and David Pellow and Daniel Bork and others},
journal={Bioinformatics},
volume={33},
number={14},
pages={i110--i117},
year={2017},
publisher={Oxford University Press}
}
@article{marcais18,
title={Asymptotically optimal minimizers schemes},
author={Guillaume Mar{\c{c}}ais and Dan De{B}lasio and Carl Kingsford},
journal={Bioinformatics},
volume={34},
number={13},
pages={i13--i22},
year={2018},
publisher={Oxford University Press}
}
@article{orenstein17,
author = {Yaron Orenstein and David Pellow and Guillaume Mar{\c{c}}ais and others},
year = {2017},
month = {10},
pages = {e1005777},
title = {Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing},
volume = {13},
journal = {PLOS Computational Biology}
}
@article{jain20b,
title={Weighted minimizer sampling improves long read mapping},
author={Chirag Jain and Arang Rhie and Haowen Zhang and others},
journal={Bioinformatics},
volume={36},
number={Supplement\_1},
pages={i111--i118},
year={2020},
publisher={Oxford University Press}
}
@inproceedings{deblasio19,
author = {Dan De{B}lasio and Fiyinfoluwa Gbosibo and Carl Kingsford and others},
title = {Practical Universal K-Mer Sets for Minimizer Schemes},
year = {2019},
publisher = {Association for Computing Machinery},
booktitle={Proceedings of the 10$^{th}$ ACM Conference on {B}ioinformatics, {C}omputational {B}iology},
pages = {167--176}
}
@article{zheng20miniception,
title={Improved design and analysis of practical minimizers},
author={Hongyu Zheng and Carl Kingsford and Guillaume Mar{\c{c}}ais},
journal={Bioinformatics},
volume={36},
number={Supplement\_1},
pages={i119--i127},
year={2020},
publisher={Oxford University Press}
}
@article{zhang07,
title={Statistical analysis of the genomic distribution and correlation of regulatory elements in the ENCODE regions},
author={Zhengdong D. Zhang and Alberto Paccanaro and Yutao Fu and others},
journal={Genome {R}esearch},
volume={17},
number={6},
pages={787--797},
year={2007},
publisher={Cold Spring Harbor Lab}
}
@inproceedings{MinhICML19,
title={Collective model fusion for multiple black-box experts},
author={Hoang, Minh and Hoang, Nghia and Low, Bryan Kian Hsiang and Kingsford, Carleton},
booktitle={International Conference on Machine Learning},
pages={2742--2750},
year={2019}
}
@inproceedings{Hoang14,
title={Active learning is planning: Nonmyopic $\varepsilon$-Bayes-optimal active learning of Gaussian processes},
author={Hoang, Trong Nghia and Low, Kian Hsiang and Jaillet, Patrick and Kankanhalli, Mohan},
booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases},
pages={494--498},
year={2014},
organization={Springer}
}
@inproceedings{NghiaAAAI19,
title={Collective online learning of Gaussian processes in massive multi-agent systems},
author={Hoang, Trong Nghia and Hoang, Quang Minh and Low, Kian Hsiang and How, Jonathan},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={33},
pages={7850--7857},
year={2019}
}
@inproceedings{NghiaICML20,
title={Learning Task-Agnostic Embedding of Multiple Black-Box Experts for Multi-Task Model Fusion},
author={T. N. Hoang and C. T. Lam and K. H. Low and P. Jaillet},
booktitle={Proceedings of the International Conference on Machine Learning (ICML)},
year={2020},
pages={}
}
@inproceedings{yu19,
title={Stochastic variational inference for Bayesian sparse Gaussian process regression},
author={Yu, Haibin and Nghia, Trong and Low, Bryan Kian Hsiang and Jaillet, Patrick},
booktitle={2019 International Joint Conference on Neural Networks (IJCNN)},
pages={1--8},
year={2019},
organization={IEEE}
}
@inproceedings{vafaie1992genetic,
title={Genetic Algorithms as a Tool for Feature Selection in Machine Learning.},
author={Vafaie, Haleh and De Jong, Kenneth A},
booktitle={ICTAI},
pages={200--203},
year={1992}
}
@inproceedings{tackett1993genetic,
title={Genetic Programming for Feature Discovery and Image Discrimination.},
author={Tackett, Walter Alden},
booktitle={ICGA},
pages={303--311},
year={1993},
organization={Citeseer}
}
@article{lin2008particle,
title={Particle swarm optimization for parameter determination and feature selection of support vector machines},
author={Lin, Shih-Wei and Ying, Kuo-Ching and Chen, Shih-Chieh and Lee, Zne-Jung},
journal={Expert systems with applications},
volume={35},
number={4},
pages={1817--1824},
year={2008},
publisher={Elsevier}
}
@inproceedings{lorenzo2017particle,
title={Particle swarm optimization for hyper-parameter selection in deep neural networks},
author={Lorenzo, Pablo Ribalta and Nalepa, Jakub and Kawulok, Michal and Ramos, Luciano Sanchez and Pastor, Jos{\'e} Ranilla},
booktitle={Proceedings of the {G}enetic and {E}volutionary {C}omputation {C}onference},
pages={481--488},
year={2017}
}
@inproceedings{olson2016tpot,
title={TPOT: A tree-based pipeline optimization tool for automating machine learning},
author={Olson, Randal S and Moore, Jason H},
booktitle={Workshop on automatic machine learning},
pages={66--74},
year={2016},
organization={PMLR}
}
@article{svm95,
title={Support-vector networks},
author={Cortes, Corinna and Vapnik, Vladimir},
journal={Machine learning},
volume={20},
number={3},
pages={273--297},
year={1995},
publisher={Springer}
}
@article{wang2016bayesian,
title={Bayesian optimization in a billion dimensions via random embeddings},
author={Wang, Ziyu and Hutter, Frank and Zoghi, Masrour and Matheson, David and de Feitas, Nando},
journal={Journal of Artificial Intelligence Research},
volume={55},
pages={361--387},
year={2016}
}
@article{nesterov17,
title={Random gradient-free minimization of convex functions},
author={Nesterov, Yurii and Spokoiny, Vladimir},
journal={Foundations of Computational Mathematics},
volume={17},
number={2},
pages={527--566},
year={2017},
publisher={Springer}
}
@article{drineas05,
title={On the Nystr{\"o}m method for approximating a Gram matrix for improved kernel-based learning},
author={Drineas, Petros and Mahoney, Michael W},
journal={journal of machine learning research},
volume={6},
number={Dec},
pages={2153--2175},
year={2005}
}
@inproceedings{musco17,
title={Recursive sampling for the nystrom method},
author={Musco, Cameron and Musco, Christopher},
booktitle={Advances in Neural Information Processing Systems},
pages={3833--3845},
year={2017}
}
@article{wang05,
author = "Y. Wang and M. Papageorgiou",
title = "Real-time freeway traffic state estimation based on extended {Kalman} filter: a general approach",
journal = "Transport. Res. B-Meth.",
volume = 39,
number = "2",
pages = "141--167",
year = 2005 }
@article{Bayen10a,
author = "D. B. Work and S. Blandin and {O.-P.} Tossavainen and B. Piccoli and A. Bayen",
title = "A Traffic Model for Velocity Data Assimilation",
journal = "AMRX",
volume = 2010,
number = "1",
pages = "1--35",
year = 2010 }
@article{min11,
author = "W. Min and L. Wynter",
title = "Real-time road traffic prediction with spatio-temporal correlations",
journal = "Transport. Res. C-Emer.",
volume = 19,
number = "4",
pages = "606--616",
year = 2011 }
@incollection{MiguelNIPS09,
title = {Inter-domain Gaussian Processes for Sparse Inference using Inducing Features},
author = {Miguel L\'{a}zaro-Gredilla and An\'{\i}bal Figueiras-Vidal},
booktitle = {Advances in Neural Information Processing Systems 22},
editor = {Y. Bengio and D. Schuurmans and J. D. Lafferty and C. K. I. Williams and A. Culotta},
pages = {1087--1095},
year = {2009},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/3876-inter-domain-gaussian-processes-for-sparse-inference-using-inducing-features.pdf}
}
@article{Arik15,
author = "J. Chen and K. H. Low and P. Jaillet and Y. Yao",
title = "{Gaussian} Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems",
journal="IEEE Transactions on Automation Science and Engineering",
volume="12",
number="3",
year=2015,
pages="901--921"
}
@inproceedings{Boots16,
author = "C.-A. Cheng and B. Boots",
title = "Incremental Variational Sparse {Gaussian} Process Regression",
booktitle = "Proc. {NIPS}",
year = 2016
}
@inproceedings{Bui17,
author = "T. D. Bui and C. V. Nguyen and R. E. Turner",
title = "Streaming Sparse {Gaussian} Process Approximations",
booktitle = "Proc. {NIPS}",
year = 2017
}
@article{Kang16,
author = {Kang, James Jin and Larkin, Henry},
year = {2016},
month = {01},
pages = {1},
title = {Inference of Personal Sensors in Internet of Things},
volume = {2},
journal = {International Journal of Information, Communication Technology and Applications}
}
@inproceedings{chen2021hetmaml,
title={HetMAML: Task-Heterogeneous Model-Agnostic Meta-Learning for Few-Shot Learning Across Modalities},
author={Chen, Jiayi and Zhang, Aidong},
booktitle={Proceedings of the 30th {ACM} {I}nternational {C}onference on {I}nformation \& {K}nowledge {M}anagement},
pages={191--200},
year={2021}
}
@inproceedings{Sarkar14,
author = "C. Sarkar and S. N. A. U. Nambi and R. V. Prasad and A. Rahim",
title = "A scalable distributed architecture towards unifying {IoT} applications",
booktitle = "Proc. IEEE WF-IoT",
year = 2014
}
@inproceedings{Rakshit17,
author = "R. Allamraju and G. Chowdhary",
title = "Communication Efficient Decentralized {Gaussian} Process Fusion for
Multi-{UAS} Path Planning",
booktitle = "Proc. {ACC}",
year = 2017,
pages={4442-4447}
}
@inproceedings{Krahenbuhl11,
author = "P. Krahenbuhl and V. Koltun",
title = "Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials",
booktitle = "Proc. {NIPS}",
year = 2011
}
@inproceedings{Roger11,
title = "Bounded approximate decentralised coordination via the max-sum algorithm",
author = "A. Rogers and A. Farinelli and R. Stranders and N. R. Jennings",
booktitle = "Proc. {AIJ}",
pages = "730--759",
year = {2011}
}
@article{cifar10,
title={The CIFAR-10 dataset},
author={Krizhevsky, Alex and Nair, Vinod and Hinton, Geoffrey},
journal={online: http://www. cs. toronto. edu/kriz/cifar. html},
volume={55},
number={5},
year={2014}
}
@misc{UCI_protein_data,
author={P. S. Rana},
title={{Physicochemical Properties of Protein Tertiary Structure Data Set}},
url={http://archive.ics.uci.edu/ml/datasets/},
year={2013}
}
@incollection{LeCun95,
author = "Y. LeCun and Y. Bengio",
booktitle = {The Handbook of Brain Theory and Neural Networks},
editor = {Arbib, Michael A.},
pages = {255--258},
publisher = {The MIT Press},
title = {Convolutional Networks for Images, Speech, and Time Series},
year = 1995
}
@inproceedings{Liu18,
title = "Generalized Robust {Bayesian} Committee Machine for Large-scale {Gaussian} Process Regression",
author = "H. Liu and J. Cai and Y. Wang and Y.-S. Ong",
booktitle = "Proc. {ICML}",
year = 2018
}
@inproceedings{Wang17b,
title = "Max-value Entropy Search for Efficient {Bayesian} Optimization",
author = "Z. Wang and S. Jegelka",
booktitle = "Proc. {ICML}",
pages = "3627--3635",
year = 2017
}
@inproceedings{Li16,
author = "C.-L. Li and K. Kandasamy and B. P\'{o}czos and J. Schneider",
title = "High Dimensional {Bayesian} Optimization via Restricted Projection Pursuit Models",
booktitle = "Proc. {AISTATS}",
year = "2016"
}
@inproceedings{Duvenaud11,
title = "Additive {Gaussian} Processes",
author = "D. K. Duvenaud and H. Nickisch and C. E. Rasmussen",
booktitle = "Proc. {NIPS}",
pages = "226--234",
year = 2011
}
@inproceedings{Garnett17,
author = "J. R. Gardner and C. Guo and K. Q. Weinberger and R. Garnett and R. Grosse",
title = "Discovering and Exploiting Additive Structure for Bayesian Optimization",
booktitle = "Proc. {AISTATS}",
year = "2017"
}
@inproceedings{Erik17,
title = "Distributed Batch {Gaussian} Process Optimization",
author = "E. Daxberger and K. H. Low",
booktitle = "Proc. {ICML}",
pages = "951--960",
year = 2017
}
@article{shahriari16,
author="Shahriari, B. and Swersky, K. and Wang, Z. and Adams, R.P. and {de Freitas}, N.",
title="Taking the Human Out of the Loop: A Review of {Bayesian} Optimization",
journal="Proceedings of the IEEE",
volume="104",
number="1",
year=2016,
pages="148--175"
}
@article{villemonteix09,
author = "J. Villemonteix and E. Vazquez and E. Walter",
title = "An informational approach to the global optimization of expensive-to-evaluate functions",
journal = "J. Glob. Optim.",
volume = 44,
number = "4",
year = {2009},
pages = "509--534"
}
@article{Chapman11,
author = "A. Chapman and A. Rogers and N. R. Jennings and D. Leslie",
title = "A Unifying Framework for Iterative Approximate Best-Response Algorithms for Distributed Constraint Optimisation Problems",
journal = "The Knowledge Engineering Review",
volume = 26,
number = 4,
pages = "411--444",
year = 2011 }
@article{Leite14,
author = "A. R. Leite and F. Enembreck and J.-P. A. Barth{\`{e}}s",
title = "Distributed Constraint Optimization Problems: Review and perspectives",
journal = "Expert Systems with Applications",
volume = 41,
number = 11,
pages = "5139--5157",
year = 2014
}
@article{hoang2020revisiting,
title={Revisiting the sample complexity of sparse spectrum approximation of gaussian processes},
author={Hoang, Minh and Hoang, Nghia and Pham, Hai and Woodruff, David},
journal={Advances in Neural Information Processing Systems},
volume={33},
pages={12710--12720},
year={2020}
}
@article{hoang2022masked,
title={Masked Minimizers: Unifying sequence sketching methods},
author={Hoang, Minh and Marcais, Guillaume and Kingsford, Carl},
journal={bioRxiv},
year={2022},
publisher={Cold Spring Harbor Laboratory}
}
@article{kumar2022effect,
title={The Effect of Diversity in Meta-Learning},
author={Kumar, Ramnath and Deleu, Tristan and Bengio, Yoshua},
journal={arXiv preprint arXiv:2201.11775},
year={2022}
}
@article{jacot2018neural,
title={Neural tangent kernel: Convergence and generalization in neural networks},
author={Jacot, Arthur and Gabriel, Franck and Hongler, Cl{\'e}ment},
journal={Advances in neural information processing systems},
volume={31},
year={2018}
}
@inproceedings{Tresp02,
title = "Transductive and inductive method for approximate {G}aussian process regression",
author = "A. Schwaighofer and V. Tresp",
booktitle = "Proc. {NIPS}",
pages = "953--960",
year = 2002
}
@inproceedings{Titsias14,
title = "Doubly Stochastic Variational {B}ayes for non-Conjugate Inference",
author = "M. K. Titsias and M. {L\'{a}zaro}-Gredilla",
booktitle = "Proc. {ICML}",
year = 2014
}
@inproceedings{Titsias13,
title = "Variational Inference for {M}ahalanobis Distance Metrics in {G}aussian Process Regression",
author = "M. K. Titsias and M. {L\'{a}zaro}-Gredilla",
booktitle = "Proc. {NIPS}",
year = 2013
}
@inproceedings{NghiaICML16,
title = "A Distributed Variational Inference Framework for Unifying Parallel Sparse {G}aussian Process Regression Models",
author = "T. N. Hoang and Q. M. Hoang and K. H. Low",
booktitle = "Proc. {ICML}",
pages = "382--391",
year = 2016
}
@article{Jordan08,
author = "M. J. Wainwright and M. I. Jordan",
title = "Graphical Models, Exponential Families, and Variational Inference",
journal = "Foundations and Trends$^{\textregistered}$ in Machine Learning",
volume = 1,
number = "1--2",
pages = "1--305",
year = 2008 }
@inproceedings{Marco2008,
title = "On Entropy Approximation for {Gaussian} Mixture Random Vectors",
author = "M. Huber and T. Bailey and H. {Durrant-Whyte} and U. D. Hanebeck",
booktitle = "Proc. {IEEE} International Conference on Multisensor Fusion and Integration for Intelligent Systems",
pages = "181--188",
year = 2008
}
@inproceedings{How15,
title = "Streaming, Distributed Variational Inference for {Bayesian} Nonparametrics",
author = "T. Campbell and J. Straub and J. W. {Fisher III} and J. P. How",
booktitle = "Proc. NIPS",
pages = {280--288},
year = {2015}
}
@inproceedings{Gordon05,
author = "H. B. McMahan and M. Likhachev and G. J. Gordon",
title = "Bounded Real-Time Dynamic Programming: {RTDP} with Monotone Upper Bounds and Performance Guarantees",
booktitle = "Proc. {ICML}",
pages = "569--576",
year = 2005 }
@inproceedings{Simmons06,
author = "T. Smith and R. Simmons",
title = "Focused Real-Time Dynamic Programming for {MDP}s: Squeezing More Out of a Heuristic",
booktitle = "Proc. {AAAI}",
pages = "1227--1232",
year = 2006 }
@book{Rue05,
author = "H. Rue and L. Held",
title = "{Gaussian Markov} Random Fields: Theory and Applications",
publisher = "Chapman \& Hall/CRC",
year = 2005 }
@book{Soong04,
author = "T. T. Soong",
title = "Fundamentals of Probability and Statistics for Engineers",
publisher = "John Wiley \& Sons",
year = 2004 }
@article{Shewry87,
author = "M. C. Shewry and H. P. Wynn",
title = "Maximum Entropy Sampling",
journal = "J. Applied Statistics",
volume = 14,
number = 2,
pages = "165--170",
year = 1987 }
@book{Cover91,
author = "T. Cover and J. Thomas",
title = "Elements of Information Theory",
publisher = "John Wiley \& Sons",
address = "NY",
year = 1991 }
@inproceedings{Isler13,
title = "Sensor Planning for a Symbiotic {UAV} and {UGV} system for Precision Agriculture",
author = "P. Tokekar and J. V. Hook and D. Mulla and V. Isler",
booktitle = "Proc. {IROS}",
year = 2013
}
@inproceedings{Natarajan_2012,