-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.jl
109 lines (98 loc) · 3.26 KB
/
models.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
include("utils.jl")
include("layers.jl")
include("params.jl")
using Knet
function myinit(a...)
return gaussian(a..., mean=0.0, std=0.02)
end
function dcgeneratorbn(params, moments, x; training=true)
"""
Deep Convolutional Generator With Batch Notmalization
"""
x = dcGbn_input(params[1:2], moments[1], x, training)
x = dcGbn_hidden(params[3:4], moments[2], x, training)
x = dcGbn_hidden(params[5:6], moments[3], x, training)
x = dcGbn_hidden(params[7:8], moments[4], x, training)
return dcGbn_out(params[9], x)
end
function dcgenerator(params, moments, x; training=true)
"""
Deep Convolutional Generator without Batch Normalization
Moments and training stay here in order to use other functions
in a generic way.
"""
x = dcGinput(params[1], x)
x = dcGhidden(params[2], x)
x = dcGhidden(params[3], x)
x = dcGhidden(params[4], x)
return dcGout(params[5], x)
end
function dcdiscriminator(params, moments, x, leak; training=true)
"""
Deep Convolutional Discriminator with Batchnorm
"""
x = dcDin(params[1], x, leak)
x = dcD(params[2:3], moments[1], x, leak, training)
x = dcD(params[4:5], moments[2], x, leak, training)
x = dcD(params[6:7], moments[3], x, leak, training)
return dcDout(params[8], x)
end
function mlpgenerator(params, moments, x; training=true)
"""
MLP-ReLU Generator
Moments and training stay here in order to use other functions
in a generic way. Input is 4D (1,1,zsize,N) squeeze it
"""
batchsize = size(x, 4)
x = mat(x)
x = mlp(params[1:2], x)
x = mlp(params[3:4], x)
x = mlp(params[5:6], x)
x = mlpout(params[7:8], x)
return reshape(x, 64, 64, 3, batchsize)
end
function mlpdiscriminator(params, moments, x, leak; training=true)
"""
MLP-ReLU Discriminator
Moments and training stay here in order to use other functions
in a generic way. Input is 4D 64,64,3,N. Make input 2D 64x64x3,N
"""
x = mat(x)
x = mlp(params[1:2], x)
x = mlp(params[3:4], x)
x = mlp(params[5:6], x)
return mlpout(params[7:8], x)
end
# Below G and D are connected
function dcganbnorm(leak, zsize, atype; winit=myinit)
"""
Regular DCGAN
"""
gparams, gmoments = dcGinitbn(atype, winit, zsize)
dparams, dmoments = dcDinitbn(atype, winit)
return (gparams, gmoments, dcgeneratorbn), (dparams, dmoments, dcdiscriminator)
end
function dcgan(leak, zsize, atype; winit=myinit)
"""
DCGAN, but generator do not have batch normalization and has constant filter size
"""
gparams = dcGinit(atype, winit, 64, zsize)
dparams, dmoments = dcDinitbn(atype, winit)
return (gparams, [], dcgenerator), (dparams, dmoments, dcdiscriminator)
end
function mlpg(leak, zsize, atype; winit=myinit)
"""
Generator is an MLP, discriminator is DCGAN
"""
gparams = mlpGinit(atype, 512, zsize)
dparams, dmoments = dcDinitbn(atype, winit)
return (gparams, [], mlpgenerator), (dparams, dmoments, dcdiscriminator)
end
function mlpgd(leak, zsize, atype; winit=myinit)
"""
leak stay here in order to use other functions in a generic way.
"""
gparams = mlpGinit(atype, 512, zsize)
dparams = mlpDinit(atype, 512)
return (gparams, [], mlpgenerator), (dparams, [], mlpdiscriminator)
end