-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.jl
183 lines (154 loc) · 6.38 KB
/
train.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
include("models.jl")
include("utils.jl")
include("loss.jl")
include("pyprocess.jl")
using Knet, ArgParse, FileIO, Images
function main(args)
s = ArgParseSettings()
s.description = "WGAN Implementation in Knet"
@add_arg_table s begin
("--gpu"; arg_type=Int; default=0; help="GPU ID if -1 don't use GPU")
("--dn"; arg_type=Int; default=1; help="Train discriminator n times")
("--type"; arg_type=String; default="dcganbn"; help="Type of model one of: [dcganbn (regular DCGAN), mlpg (Generator is MLP),
mlpgd (Both MLP), dcgan (Generator has no BN and has constant filter size)]")
("--data"; arg_type=String; default="/home/cem/lsun"; help="Dataset dir (lmdb)")
("--procedure"; arg_type=String; default="gan"; help="Training procedure. gan or wgan")
("--zsize"; arg_type=Int; default=100; help="Noise vector dimension")
("--epochs"; arg_type=Int; default=20; help="Number of training epochs")
("--report"; arg_type=Int; default=500; help="Report loss in n iterations")
("--batchsize"; arg_type=Int; default=64; help="Minibatch Size")
("--lr"; arg_type=Float64; default=0.0002; help="Learning rate")
("--clip"; arg_type=Float64; default=nothing; help="Clip value")
("--opt"; arg_type=String; default="adam"; help="Optimizer, one of: [adam, rmsprop]")
("--leak"; arg_type=Float64; default=0.2; help="LeakyReLU leak.")
("--out"; arg_type=String; default="./models"; help="Output directory for saving model and generating images")
end
isa(args, AbstractString) && (args=split(args))
o = parse_args(args, s; as_symbols=true)
gpuid = o[:gpu]
atype = gpuid >= 0 ? KnetArray{Float32} : Array{Float32}
if gpuid >= 0
gpu(gpuid)
end
batchsize = o[:batchsize]
procedure = o[:procedure]
zsize = o[:zsize]
numepoch = o[:epochs]
modeltype = o[:type]
leak = o[:leak]
optimizer = o[:opt]
lr = o[:lr]
datadir = o[:data]
dn = o[:dn]
report = o[:report]
myprint("Minibatch Size: $batchsize")
myprint("Training Procedure: $procedure")
myprint("Model Type: $modeltype")
myprint("Noise size: $zsize")
myprint("Number of epochs: $numepoch")
myprint("Using $optimizer with learning rate $lr")
myprint("Dataset directory: $datadir")
myprint("Training discriminator $dn times")
myprint("Report steps: $report")
myprint("Using GPU $gpuid")
outdir = joinpath(o[:out], modeltype)
if procedure == "wgan"
outdir *= "_wgan"
end
ispath(outdir) || mkdir(outdir)
logdir = joinpath(outdir, "log.csv")
isfile(logdir) && rm(logdir)
# Get model from models.jl
if modeltype == "dcganbn"
model = dcganbnorm
elseif modeltype == "dcgan"
model = dcgan
elseif modeltype == "mlpg"
model = mlpg
elseif modeltype == "mlpgd"
model = mlpgd
else
throw(ArgumentError("Unknown model type."))
end
generator, discriminator = model(leak, zsize, atype)
gparams, gmoments, gforw = generator
dparams, dmoments, dforw = discriminator
gnumparam = numparams(gparams)
dnumparam = numparams(dparams)
myprint("Generator # of Parameters: $gnumparam")
myprint("Discriminator # of Parameters: $dnumparam")
# Form optimizers
if optimizer == "adam"
gopt = optimizers(gparams, Adam, lr=lr, beta1=0.5)
dopt = optimizers(dparams, Adam, lr=lr, beta1=0.5)
elseif optimizer == "rmsprop"
gopt = optimizers(gparams, Rmsprop, lr=lr, rho=0.99, eps=1e-8)
dopt = optimizers(dparams, Rmsprop, lr=lr, rho=0.99, eps=1e-8)
else:
throw(ArgumentError("Unknown optimizer"))
end
# Save first randomly generated image
grid = generateimgs(gforw, gparams, gmoments, zsize, atype)
outfile = joinpath(outdir, "rand.png")
save(outfile, colorview(RGB, grid))
modelpath = joinpath(outdir, "model.jld")
trainD, trainG = traingan(zsize, atype, procedure, o[:clip])
myprint("Getting data loader...")
dataset = getdataset(datadir)
myprint("Started Training...")
genitertotal = 0
for epoch in 1:numepoch
dataiter = getdataiter(dataset, batchsize)
totaliter = length(dataiter)
i = 0
while i < totaliter
if procedure == "wgan"
if genitertotal < 25 || genitertotal % 500 == 0
Diters = 100
else
Diters = dn
end
j = 0;
while j < Diters && i < totaliter
i += 1; j += 1
minibatch = atype(getnext(dataiter))
dloss = trainD(dparams, gparams, gmoments, dmoments, gforw, dforw, minibatch, dopt, leak)
end
elseif procedure == "gan"
i += 1
minibatch = atype(getnext(dataiter))
dloss = trainD(dparams, gparams, gmoments, dmoments, gforw, dforw, minibatch, dopt, leak)
else
throw(ArgumentError("Unknown metric"))
end
gloss = trainG(gparams, dparams, gmoments, dmoments, gforw, dforw, batchsize, gopt, leak)
genitertotal += 1
appendcsv(logdir, gloss, dloss)
if i % report == 0
myprint("[$epoch/$numepoch][$i/$totaliter], LossD: $dloss, LossG: $gloss")
end
end
grid = generateimgs(gforw, gparams, gmoments, zsize, atype)
outfile = joinpath(outdir, "epoch$epoch.png")
save(outfile, colorview(RGB, grid))
end
myprint("Done. Exiting...")
return 0
end
main(ARGS)
# ===GAN: DCGAN===
# julia train.jl --gpu 0 --type dcganbn
# ===GAN: Generator with no batch norm===
# julia train.jl --gpu 1 --type dcgan
# ===GAN: Generator MLP===
# julia train.jl --gpu 2 --type mlpg
# ===GAN: Both MLP===
# julia train.jl --gpu 3 --type mlpgd
# ===WGAN: DCGAN===
# julia train.jl --gpu 0 --type dcganbn --procedure wgan --clip 0.01 --lr 0.00005 --opt rmsprop --dn 5 --epochs 30
# ===WGAN: Generator with no batch norm===
# julia train.jl --gpu 1 --type dcgan --procedure wgan --clip 0.01 --lr 0.00005 --opt rmsprop --dn 5 --epochs 30
# ===WGAN: Generator MLP===
# julia train.jl --gpu 0 --type mlpg --procedure wgan --clip 0.01 --lr 0.00005 --opt rmsprop --dn 5 --epochs 40
# ===WGAN: Both MLP===
# julia train.jl --gpu 3 --type mlpgd --procedure wgan --clip 0.01 --lr 0.00005 --opt rmsprop --dn 5 --epochs 30