-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcoco_to_yolo.py
377 lines (310 loc) · 15.8 KB
/
coco_to_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import json
import shutil
import random
import click
import yaml
from shapely.geometry import Polygon
from shapely.affinity import rotate
from ImageElement import ImageElement
def preprocessing_for_yolov8_obb_model(coco_json: str, lang_ru=False):
"""
Checks for Oriented Bounding Boxes in COCO format. If found,
replaces the bbox and rotation of each object with the coordinates of four points in the segmentation section.
Args:
- coco_json (str): Path to the file containing COCO data in JSON format.
- lang_ru (bool): If True, all comments will be in Russian (otherwise in English).
"""
# Loading COCO data from file
with open(coco_json, 'r') as f:
coco_data = json.load(f)
# Getting the list of annotations from COCO
annotations = coco_data['annotations']
changes = 0
# Iterating through the annotations
for annotation in annotations:
segmentation = annotation['segmentation']
# If segmentation is empty and bbox contains information, perform the operation
if not segmentation and annotation['bbox']:
bbox = annotation['bbox']
rotation_angle = annotation['attributes']['rotation'] # Assumes rotation information is available
# Converting bbox to x, y, width, height format
x, y, width, height = bbox
# Creating a rotated rectangle
rectangle = Polygon([(x, y), (x + width, y), (x + width, y + height), (x, y + height)])
# Rotating the rectangle
rotated_rectangle = rotate(rectangle, rotation_angle, origin='center')
# Getting the coordinates of the vertices of the rotated rectangle
new_segmentation = list(rotated_rectangle.exterior.coords)
# Keeping only the vertex coordinates (first 4 elements)
new_segmentation = new_segmentation[:4]
# Converting the list of vertices into the desired format
flattened_segmentation = [coord for point in new_segmentation for coord in point]
# Updating the value in the annotation
annotation['segmentation'] = [flattened_segmentation]
changes += 1
if changes > 0:
if lang_ru:
print(f'Было обнаружено {changes} Oriented Bounding Boxes в файле {coco_json}')
else:
print(f'Found {changes} Oriented Bounding Boxes in the file {coco_json}')
# Saving the updated data to the file
with open(coco_json, 'w') as f:
json.dump(coco_data, f)
@click.command()
@click.option(
"--coco_dataset",
default="COCO_dataset",
help="Folder with COCO 1.0 format dataset (can be exported from CVAT). Default is COCO_dataset",
type=str,
)
@click.option(
"--yolo_dataset",
default="YOLO_dataset",
help="Folder with the resulting YOLOv8 format dataset. Default is YOLO_dataset",
type=str,
)
@click.option(
"--print_info",
default=False,
help="Enable/Disable processing log output mode. Default is disabled",
type=bool,
)
@click.option(
"--autosplit",
help="Enable/Disable automatic split into train/val. Default is disabled (uses the CVAT annotations)",
default=False,
type=bool,
)
@click.option(
"--percent_val",
help="Percentage of data for validation when using autosplit=True. Default is 25%",
default=25,
type=float,
)
@click.option(
"--lang_ru",
help="Sets the Russian language of comments, if selected value is True. English by default",
default=False,
type=bool,
)
def main(**kwargs):
# ------------------ ARG parse ------------------
coco_dataset_path = kwargs["coco_dataset"]
yolo_dataset_path = kwargs["yolo_dataset"]
print_info = kwargs["print_info"]
autosplit = kwargs["autosplit"]
percent_val = kwargs["percent_val"]
lang_ru = kwargs["lang_ru"]
coco_annotations_path = os.path.join(coco_dataset_path, 'annotations')
coco_images_path = os.path.join(coco_dataset_path, 'images')
# Check the presence of the dataset
if not os.path.exists(coco_dataset_path):
if lang_ru:
raise FileNotFoundError(f"Папка с COCO датасетом '{coco_images_path}' не найдена.")
else:
raise FileNotFoundError(f"The COCO dataset folder '{coco_images_path}' was not found.")
# Check the presence of the images folder
if not os.path.exists(coco_images_path):
if lang_ru:
raise FileNotFoundError(f"Папка с изображениями '{coco_images_path}' не найдена. "
f"Убедитесь, что вы загрузили разметку COCO так, чтобы имелась папка со всеми изображениями.")
else:
raise FileNotFoundError(f"The images folder '{coco_images_path}' was not found. "
f"Make sure you have uploaded COCO annotations so that there is a folder with all images.")
# Check if the annotations folder exists
if not os.path.exists(coco_annotations_path):
if lang_ru:
raise FileNotFoundError(f"The folder with json files '{coco_annotations_path}' was not found.")
else:
raise FileNotFoundError(f"Папка с json файлами '{coco_annotations_path}' не найдена.")
list_of_image_elements = []
list_of_images_path = []
# Get a list of all files in the annotations folder
annotation_files = os.listdir(coco_annotations_path)
shutil.rmtree(yolo_dataset_path, ignore_errors=True) # Clear old data in the folder
if autosplit:
for folder_path in ['images', 'labels']:
for type in ['validation', 'train']:
path_create=os.path.join(yolo_dataset_path, type, folder_path)
os.makedirs(path_create, exist_ok=True)
### Check for duplicates in different subsets ###
# Create a dictionary to store files and their corresponding JSON files
file_json_mapping = {}
# Iterate through annotation files
for annotation_file in annotation_files:
json_file_path = os.path.join(coco_annotations_path, annotation_file)
with open(json_file_path, 'r') as f:
coco_data = json.load(f)
# Get the list of images from JSON
images = coco_data['images']
# Iterate through images and update the file_json_mapping dictionary
for image in images:
file_name = image['file_name']
if file_name not in file_json_mapping:
file_json_mapping[file_name] = [annotation_file]
else:
file_json_mapping[file_name].append(annotation_file)
# Check if any file has more than one occurrence
for file_name, json_files in file_json_mapping.items():
if len(json_files) > 1:
if lang_ru:
print(f"Файл {file_name} встречается в следующих JSON файлах: {json_files}")
print(f'В каком-либо из JSON файлов удалите в разделе "images" словарь ' \
f'с описанием этой фотографии, иначе будет ошибка при выполнении кода')
raise SystemExit
else:
print(f"The file {file_name} appears in the following JSON files: {json_files}")
print(f"Remove the dictionary describing this photo from the 'images' section in " \
f"one of the JSON files, otherwise there will be an error when running the code.")
raise SystemExit
### Run the main code: ###
# Iterate through annotation files
for annotation_file in annotation_files:
# Parse the image file name from the annotation file
type_data = os.path.splitext(annotation_file)[0].split('_')[-1]
json_file_path = os.path.join(coco_annotations_path, annotation_file) # path to the json file
# Preprocessing for YOLOv8-obb
preprocessing_for_yolov8_obb_model(coco_json=json_file_path, lang_ru=lang_ru)
# Create folder if it doesn't exist
if not autosplit:
for folder_path in ['images', 'labels']:
path_create=os.path.join(yolo_dataset_path, type_data.lower(), folder_path)
os.makedirs(path_create, exist_ok=True)
# Open coco json
with open(json_file_path, 'r') as f:
coco_data = json.load(f)
# Get the list of images from JSON
images = coco_data['images']
# Create a dictionary with class information
coco_categories = coco_data['categories']
categories_dict = {category['id']-1: category['name'] for category in coco_categories}
# Print information
if print_info:
if lang_ru:
print(f'Осуществляется обработка {annotation_file}')
print(f'Имеющиеся классы: {categories_dict}')
else:
print(f'Processing {annotation_file}')
print(f'Available classes: {categories_dict}')
print('-----------------\n')
#### Additional check for the presence of all image files
# Get the list of image files with annotations in COCO
annotated_images = set([entry['file_name'] for entry in coco_data['images']])
# Get the list of files in the images folder
all_images = set(os.listdir(coco_images_path))
# Check that all images from COCO are annotated
if not annotated_images.issubset(all_images):
missing_images = annotated_images - all_images
if lang_ru:
raise FileNotFoundError(f"Некоторые изображения, для которых есть разметка в {json_file_path}, отсутствуют в папке с изображениями. "
f"Отсутствующие изображения: {missing_images}")
else:
raise FileNotFoundError(f"Some images annotated in {json_file_path} are missing from the images folder. "
f"Missing images: {missing_images}")
# Iterate through images and read annotations
for image in images:
image_id = image['id']
file_name = image['file_name']
path_image_initial = os.path.join(coco_images_path, file_name)
# Find corresponding annotations for the image
list_of_lists_annotations = [ann['segmentation'] for ann in coco_data['annotations'] if ann['image_id'] == image_id]
try:
annotations = [sublist[0] for sublist in list_of_lists_annotations]
except:
if lang_ru:
print(f"В разметке фотографии {file_name} имеются объекты, не являющиеся полигонами. "\
f"\nНеобходимо, чтобы все объекты для обучения YOLOv8-seg были размечены как полигоны! "\
f"\nИсправьте это и заново выгрузите датасет.")
else:
print(f"The annotations for the image {file_name} contain objects that are not polygons. "\
f"\nAll objects for training YOLOv8-seg must be annotated as polygons! "\
f"\nPlease correct this and reload the dataset.")
raise SystemExit
classes = [ann['category_id']-1 for ann in coco_data['annotations'] if ann['image_id'] == image_id]
if autosplit:
# Generate a random number from 1 to 100
random_number = random.randint(1, 100)
# If the random number <= percent_val, then type_dataset = "validation", otherwise "train"
type_dataset = "validation" if random_number <= percent_val else "train"
else:
type_dataset = type_data.lower()
# Create an instance of the ImageElement class:
element = ImageElement(
path_image_initial=path_image_initial,
path_label_initial=json_file_path,
img_width=image['width'],
img_height=image['height'],
image_id=image_id,
type_data=type_dataset,
path_label_final=os.path.join(yolo_dataset_path, type_dataset,
'labels', os.path.splitext(file_name)[0]+'.txt'),
path_image_final=os.path.join(yolo_dataset_path, type_dataset,
'images', file_name),
classes_names=[categories_dict[cl] for cl in classes],
classes_ids=classes,
point_list=annotations,
)
list_of_image_elements.append(element)
list_of_images_path.append(file_name)
# Print information about ImageElement if necessary
if print_info:
print(element)
### Check for the presence of all images in the images folder
# Get the list of files in the folder
files_in_folder = set(os.listdir(coco_images_path))
# Check that all files from the list are present in the folder
missing_files = set(list_of_images_path) - files_in_folder
extra_files = files_in_folder - set(list_of_images_path)
# Display notification
if missing_files:
if lang_ru:
print(f"Отсутствующие файлы в папке {coco_images_path}: {missing_files}")
else:
print(f"Missing files in the folder {coco_images_path}: {missing_files}")
if extra_files:
if lang_ru:
print(f"Лишние файлы в папке {coco_images_path}: {extra_files}")
else:
print(f"Extra files in the folder {coco_images_path}: {extra_files}")
# Creating data.yaml configuration:
# Create a data structure for writing to data.yaml
data_dict = {
'names': list(categories_dict.values()),
'nc': len(categories_dict),
'test': 'test/images',
'train': 'train/images',
'val': 'validation/images'
}
if autosplit:
data_dict['test'] = 'validation/images'
# Path to the data.yaml file
data_yaml_path = f"{yolo_dataset_path}/data.yaml"
# Write data to the data.yaml file
with open(data_yaml_path, 'w') as file:
yaml.dump(data_dict, file, default_flow_style=False)
# Creating labels and copying images to folders:
for element in list_of_image_elements:
# Copying the image
shutil.copy(element.path_image_initial, element.path_image_final)
# Creating a YOLO annotation file
with open(element.path_label_final, 'w') as yolo_label_file:
for i in range(len(element.classes_ids)):
class_id = element.classes_ids[i]
class_name = element.classes_names[i]
points = element.point_list[i]
output_string = f'{class_id}'
for i, point in enumerate(points):
if i % 2 == 0:
result = round(point / element.img_width, 9)
else:
result = round(point / element.img_height, 9)
output_string += f' {result:.6f}'
# Writing data to the file
yolo_label_file.write(output_string+'\n')
if lang_ru:
print(f"Итоговая разметка в формате YOLOv8 расположена в папке - {yolo_dataset_path}.")
else:
print(f"The final YOLOv8 format annotations are located in the folder - {yolo_dataset_path}.")
if __name__ == "__main__":
main()