-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathknn.py
105 lines (65 loc) · 2.9 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import pandas as pd
import jsonlines
from collections import defaultdict
from datasets import load_dataset
from transformers import AutoTokenizer
import torch
from transformers import AutoTokenizer, AutoModel
from sklearn.neighbors import KNeighborsClassifier
words2sent = AutoTokenizer.from_pretrained("bert-large-cased").convert_tokens_to_string
K = 10
n_neighbors = 5
batch_size = 128
device_idx = "cuda:0"
fname = "datasets/sst2.cotam.train.jsonl"
encoder_name = "princeton-nlp/sup-simcse-roberta-large"
dataset_name = "sst2"
label_texts = ["sentiment: negative", "sentiment: positive"]
device = torch.device(device_idx)
tok = AutoTokenizer.from_pretrained(encoder_name)
encoder = AutoModel.from_pretrained(encoder_name).to(device)
dataset_test = load_dataset("glue", "sst2")["validation"]
def load_cotam(fname, label_texts, K):
dataset_train = []
dataset = [items for items in jsonlines.open(fname) if len(items) == 2 * len(label_texts) - 1]
label2dataset = defaultdict(list)
for data in dataset:
label2dataset[list(data.keys())[0]].append(data)
dataset = [items for label_text in label_texts for items in np.random.choice(label2dataset[label_text], K, replace=False)]
np.random.shuffle(dataset)
for items in dataset:
for label_text in label_texts:
text = items[label_text]
dataset_train.append({"text":text, "label":label_text})
return dataset_train
dataset_test = load_dataset("glue", "sst2")["validation"]
accs = []
for run in range(10):
dataset_train = load_cotam(fname, label_texts, K)
clusters = {label_text:[] for label_text in label_texts}
for data in dataset_train:
clusters[data["label"]].append(data["text"])
with torch.no_grad():
X_train, y_train = [], []
for idx, label_text in enumerate(label_texts):
texts = clusters[label_text]
reprs = encoder(**tok(texts, padding=True, return_tensors="pt", truncation=True).to(device)).pooler_output
reprs = reprs.detach().cpu().numpy()
X_train.append(reprs)
y_train.extend([idx for text in texts])
X_train = np.concatenate(X_train, 0)
knn = KNeighborsClassifier(n_neighbors=n_neighbors)
knn.fit(X_train, y_train)
res = []
with torch.no_grad():
for idx in range(0, len(dataset_test), batch_size):
texts = [text for text in dataset_test[idx:idx+batch_size]["sentence"]]
X_test = encoder(**tok(texts, padding=True, return_tensors="pt", truncation=True).to(device)).pooler_output
X_test = X_test.detach().cpu().numpy()
y_test = [text for text in dataset_test[idx:idx+batch_size]["label"]]
predictions = knn.predict(X_test)
res.extend(y_test == predictions)
acc = np.mean(res)
accs.append(acc)
print(f"#Run: {run+1} #Accuracy: {np.mean(accs)*100:.4}%")