-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyze_coupled_moves.py
471 lines (419 loc) · 22.4 KB
/
analyze_coupled_moves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#!/usr/bin/env python2
# encoding: utf-8
# The MIT License (MIT)
#
# Copyright (c) 2017 Kyle Barlow
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import os
import sys
import weblogolib
import corebio
import subprocess
import numpy as np
import random
import shutil
import cPickle as pickle
from cogent import LoadSeqs, PROTEIN, DNA, RNA
from cogent.core.alignment import DenseAlignment
from cogent.evolve.coevolution import validate_alignment, coevolve_pair_functions, coevolve_pair, sca_input_validation, sca_pair, ancestral_state_pair, ancestral_states_input_validation, validate_position, coevolve_alignment, coevolve_alignment_functions
# import multiprocessing
topx_to_show = 10
display_secondary_mutations = False
class Seqs:
def __init__(self):
self.alphabet = corebio.seq.unambiguous_protein_alphabet
self.alphabet_as_list_shuffled = [x for x in self.alphabet]
random.shuffle( self.alphabet_as_list_shuffled )
self.raw_seqs = corebio.seq.SeqList( alphabet = self.alphabet )
self.seq_length = None
self.design_positions = None
self.starting_seq = None
self.name = None
self.seq_dicts = []
self.dir_path = None
self.mi = {}
def make_wt(self):
wt_seqs = Seqs()
wt_seqs.alphabet = self.alphabet
wt_seqs.alphabet_as_list_shuffled = self.alphabet_as_list_shuffled
wt_seqs.raw_seqs = corebio.seq.SeqList( alphabet = self.alphabet )
wt_seqs.seq_length = self.seq_length
wt_seqs.design_positions = self.design_positions
wt_seqs.starting_seq = self.starting_seq
wt_seqs.name = self.name + '_wt'
wt_seqs.seq_dicts = []
wt_seqs.dir_path = self.dir_path
wt_seqs.raw_seqs.append(self.starting_seq)
return wt_seqs
@staticmethod
def self_minus_other(s, o):
delta_seqs = Seqs()
delta_seqs.load_seqs_from_freqs_matrix( s.delta_other(o) )
assert( s.design_positions == o.design_positions )
delta_seqs.design_positions = s.design_positions
assert( o.starting_seq == s.starting_seq )
delta_seqs.starting_seq = s.starting_seq
if s.name and o.name:
delta_seqs.name = '%s-%s' % (s.name, o.name)
return delta_seqs
def mutations_enriched_over_other(self, other):
delta_matrix = self.delta_other(other)
self_matrix = self.as_matrix()
other_matrix = other.as_matrix()
mutations = []
for i, delta_matrix_position in enumerate(delta_matrix):
design_position = self.design_positions[i]
for j, enrichment_factor in enumerate(delta_matrix_position):
mutations.append( (enrichment_factor, design_position, self.alphabet[j], self.starting_seq[i], self_matrix[i][j], other_matrix[i][j], i) )
mutations.sort(reverse = True)
return mutations
def load_seqs_from_freqs_matrix(self, matrix):
decoy_seqs_to_make = 10000
assert( len(matrix.shape) == 2 )
self.seq_length = matrix.shape[0]
assert( len(self.alphabet) == matrix.shape[1] )
all_position_chars = []
for pos_index in xrange(self.seq_length):
position_chars = []
# # Rescale to 1.0
# if np.sum(matrix[pos_index]) > 0.0:
# scale_factor = np.float64(1.0) / np.sum(matrix[pos_index])
# rescaled_row = matrix[pos_index] * scale_factor
# else:
# rescaled_row = matrix[pos_index]
rescaled_row = matrix[pos_index]
for char_index, char in enumerate(self.alphabet):
if rescaled_row[char_index] > 0.0:
for char_num in xrange( int( np.around(np.float64(decoy_seqs_to_make) * rescaled_row[char_index]) ) ):
position_chars.append(char)
random.shuffle(position_chars)
while len(position_chars) > decoy_seqs_to_make:
position_chars.pop()
# random.shuffle(self.alphabet_as_list_shuffled)
# alphabet_index = 0
# while len(position_chars) < decoy_seqs_to_make:
# position_chars.append( self.alphabet_as_list_shuffled[alphabet_index] )
# alphabet_index = (alphabet_index + 1) % len(self.alphabet_as_list_shuffled)
if len(position_chars) == 0:
while len(position_chars) < decoy_seqs_to_make:
position_chars.append( '' )
while len(position_chars) < decoy_seqs_to_make:
position_chars.append( random.choice(position_chars) )
random.shuffle(position_chars)
all_position_chars.append(position_chars)
for i in xrange(decoy_seqs_to_make):
decoy_seq = ''
for pos_index in xrange(self.seq_length):
decoy_seq += all_position_chars[pos_index][i]
self.raw_seqs.append(decoy_seq)
def load_seqs_from_stats(self, stats_path):
new_seqs = []
seq_count = 0
with open(stats_path, 'r') as f:
for line in f:
data = line.strip().split()
seq_dict = { 'scores' : {'seq_count' : seq_count} }
seq_count += 1
for i in xrange(len(data)):
if i % 2 != 0 or i + 1 >= len(data):
# continue for odd numbers and if no pair
pass
elif i == 0:
seq_dict['scores']['total_score'] = float(data[i+1])
else:
label = data[i].strip(':')
value = data[i+1]
try:
float_value = float(value)
seq_dict['scores'][label] = float_value
except ValueError:
seq_dict[label] = value
if label == 'sequence':
if self.seq_length == None:
self.seq_length = len(value)
else:
assert( len(value) == self.seq_length )
new_seqs.append(seq_dict)
self.seq_dicts.extend( new_seqs )
self.raw_seqs.extend( [d['sequence'] for d in new_seqs] )
def filter_by_score_percentile(self, score_types, percentile_cutoff, reverse = False):
raise Exception( 'Check if reverse should be False before using' )
score_list = [(sum(seq_dict['scores'][score_type] for score_type in score_types), seq_dict['scores']['seq_count'], seq_dict) for seq_dict in self.seq_dicts]
score_list.sort( reverse = reverse )
filtered_scores = score_list[ : int( float(len(score_list)) * float(percentile_cutoff) )]
filtered_seqs = Seqs()
filtered_seqs.alphabet = self.alphabet
filtered_seqs.alphabet_as_list_shuffled = self.alphabet_as_list_shuffled
filtered_seqs.raw_seqs = corebio.seq.SeqList( alphabet = self.alphabet )
filtered_seqs.seq_length = self.seq_length
filtered_seqs.design_positions = self.design_positions
filtered_seqs.starting_seq = self.starting_seq
filtered_seqs.name = self.name + '_%s-filtered-%.2f' % ('-'.join(score_types), percentile_cutoff)
filtered_seqs.seq_dicts = [seq_dict for score, seq_count, seq_dict in filtered_scores]
filtered_seqs.raw_seqs.extend( [d['sequence'] for d in filtered_seqs.seq_dicts] )
return filtered_seqs
def filter_by_seq_position(self, pos, seq, seq_present = True):
filtered_seqs = Seqs()
filtered_seqs.alphabet = self.alphabet
filtered_seqs.alphabet_as_list_shuffled = self.alphabet_as_list_shuffled
filtered_seqs.raw_seqs = corebio.seq.SeqList( alphabet = self.alphabet )
filtered_seqs.seq_length = self.seq_length
filtered_seqs.design_positions = self.design_positions
filtered_seqs.starting_seq = self.starting_seq
if seq_present:
filtered_seqs.name = self.name + '_%d-is%s' % (self.design_positions[pos], seq)
else:
filtered_seqs.name = self.name + '_%d-not%s' % (self.design_positions[pos], seq)
filtered_seqs.seq_dicts = []
for raw_seq, seq_dict in zip(self.raw_seqs, self.seq_dicts):
add_seq = False
if seq_present:
if raw_seq[pos] == seq:
add_seq = True
else:
if raw_seq[pos] != seq:
add_seq = True
if add_seq:
filtered_seqs.raw_seqs.append(raw_seq)
filtered_seqs.seq_dicts.append(seq_dict)
return filtered_seqs
def delta_other(self, other):
self_matrix = self.get_counts().as_matrix()
other_matrix = other.get_counts().as_matrix()
assert( self_matrix.shape == other_matrix.shape )
return np.subtract(self_matrix, other_matrix)
def as_matrix(self):
return self.get_counts().as_matrix()
def get_counts(self):
counts = Counts(self.seq_length)
for raw_seq in self.raw_seqs:
counts.add_seq(raw_seq)
return counts
def __len__(self):
return len(self.raw_seqs)
def make_pdf_weblogo(self, pdf_path, prior = None ): # prior could also be = weblogolib.parse_prior('equiprobable', corebio.seq.unambiguous_protein_alphabet) )
assert( pdf_path.endswith('.pdf') )
assert( self.design_positions != None )
assert( self.starting_seq != None )
pdf_basedir = os.path.dirname(pdf_path)
if not os.path.isdir(pdf_basedir):
os.makedirs(pdf_basedir)
eps_logo_filename = pdf_path[:-4] + '.eps'
data = weblogolib.LogoData.from_seqs(self.raw_seqs, prior = prior )
options = weblogolib.LogoOptions()
options.show_fineprint = False
options.xaxis_tic_interval = 1
options.number_interval = 1
options.number_fontsize = 3
options.stacks_per_line = 40
options.show_errorbars = False
logo_format = weblogolib.LogoFormat(data, options)
eps_binary = weblogolib.eps_formatter( data, logo_format )
eps_str = eps_binary.decode()
eps_str = replace_logo_numbers(eps_str, self.design_positions, self.starting_seq )
with open( eps_logo_filename, 'w') as f:
f.write( eps_str )
eps_to_pdf(eps_logo_filename)
def compute_mi(self, use_multiprocessing = True, mi_func='nmi'):
self.mi = { x : [] for x in xrange(self.seq_length) }
aln = LoadSeqs( data = { x+1 : y for x,y in enumerate(self.raw_seqs)}, moltype=PROTEIN, aligned=DenseAlignment)
validate_alignment(aln)
matrix = coevolve_alignment(coevolve_alignment_functions[mi_func] ,aln)
for x in xrange( len(matrix) ):
for y in xrange( len(matrix) ):
self.mi[x].append( (matrix[x][y], y) )
self.mi[x].sort( reverse = True )
def pool_helper(pos1, pos2, method, aln):
return ( pos1, pos2, method(aln, pos1=pos1, pos2=pos2) )
class Counts:
def __init__(self, num_positions):
self.alphabet = corebio.seq.unambiguous_protein_alphabet
self.total_seqs = 0
self.position_counts = []
for i in xrange(num_positions):
self.position_counts.append({})
for char in self.alphabet:
self.position_counts[i][char] = 0
@property
def num_positions(self):
return len(self.position_counts)
@property
def freqs(self):
position_freqs = []
for position_count_dict in self.position_counts:
d = {}
for char, count in position_count_dict.iteritems():
d[char] = float(count) / float(self.total_seqs)
position_freqs.append(d)
return position_freqs
def as_matrix(self):
matrix = []
for position_count_dict in self.position_counts:
matrix_line = []
for char in sorted([x for x in self.alphabet]):
matrix_line.append( np.float64(float(position_count_dict[char] / float(self.total_seqs)) ) )
matrix.append(matrix_line)
return np.array( matrix )
def add_seq(self, seq):
assert( len(seq) == self.num_positions )
for i, char in enumerate(seq):
self.position_counts[i][char] += 1
self.total_seqs += 1
def display(self):
print 'Counts object based on %d total sequences:' % self.total_seqs
for i, freq_d in enumerate(self.freqs):
freq_str = ' Position %02d - ' % (i+1)
for char in sorted(freq_d.keys()):
if freq_d[char] >= 0.01:
freq_str += '%s: %.2f, ' % (char, freq_d[char])
freq_str = freq_str[:-2] # Remove trailing comma and space
print freq_str
def eps_to_pdf(eps_path):
assert( eps_path.endswith('.eps') )
subprocess.check_call( ['epstopdf', eps_path] )
pdf_path = eps_path[:-4] + '.pdf'
assert( os.path.isfile(pdf_path) )
os.remove( eps_path )
return pdf_path
def parse_rosetta_output( file_path ):
design_positions_str = 'protocols.coupled_moves: Design Positions:'
starting_sequence_str = 'Starting Sequence:'
with open(file_path, 'r') as f:
for line in f:
if line.startswith(design_positions_str):
design_positions = [int(x) for x in line[len(design_positions_str):line.find(starting_sequence_str)].strip().split()]
starting_seq = line[line.find(starting_sequence_str)+len(starting_sequence_str):].strip()
return design_positions, starting_seq
def replace_logo_numbers(eps_str, sorted_design_positions, ordered_starting_seq ):
new_eps_str_lines = []
pos_count = 0
for line in eps_str.split('\n'):
if line.endswith('StartStack') and not line.startswith('%'):
line = line.replace( str(pos_count + 1), '%s%d' % (ordered_starting_seq[pos_count], sorted_design_positions[pos_count]) )
pos_count += 1
new_eps_str_lines.append( line)
return '\n'.join( new_eps_str_lines )
def analyze_single_dir(output_dir, dir_name):
assert( os.path.isdir(output_dir) )
stats_files = []
design_positions = None
starting_seq = None
def recursive_search(cwd, stats_files, design_positions, starting_seq):
for output_file in os.listdir(cwd):
output_file_path = os.path.join(cwd, output_file)
if output_file.endswith('.log'):
if design_positions == None:
design_positions, starting_seq = parse_rosetta_output( output_file_path )
else:
this_design_positions, this_starting_seq = parse_rosetta_output( output_file_path )
assert( this_design_positions == design_positions )
assert( this_starting_seq == starting_seq )
if output_file.endswith('.stats'):
stats_files.append(output_file_path)
for subdir in os.listdir(cwd):
subdir_path = os.path.join(cwd, subdir)
if os.path.isdir(subdir_path):
stats_files, design_positions, starting_seq = recursive_search(subdir_path, stats_files, design_positions, starting_seq)
return (stats_files, design_positions, starting_seq)
stats_files, design_positions, starting_seq = recursive_search(output_dir, stats_files, design_positions, starting_seq)
seqs = Seqs()
seqs.design_positions = design_positions
seqs.starting_seq = starting_seq
seqs.name = dir_name
seqs.dir_path = os.path.dirname(output_dir)
for stats_path in stats_files:
seqs.load_seqs_from_stats(stats_path)
print '{} sequences loaded from {} stats files'.format(len(seqs), len(stats_files))
seqs.make_pdf_weblogo( os.path.join(output_dir, '%s-logo.pdf' % seqs.name ), prior = None )
return seqs
if __name__ == '__main__':
output_dirs = sys.argv[1:]
all_seqs = []
for output_dir in output_dirs:
assert( os.path.isdir(output_dir) )
dir_name = os.path.basename(output_dir)
print 'Analyzing:', dir_name
all_seqs.append( analyze_single_dir(output_dir, dir_name) )
# Precompute mutual information
root_text_output_dir = os.path.join('output', 'text')
for seqs in all_seqs:
seqs.compute_mi()
text_output_dir = os.path.join(root_text_output_dir, seqs.dir_path)
cov_dump_path = os.path.join(text_output_dir, '%s_covariation.pickle' % (seqs.name) )
if not os.path.isdir(text_output_dir):
os.makedirs(text_output_dir)
with open(cov_dump_path, 'w') as f:
pickle.dump(seqs.mi, f)
for i, seqs_pair0 in enumerate(all_seqs):
for j, seqs_pair1 in enumerate(all_seqs):
if ( len(all_seqs) == 2 and i < j ) or ( len(all_seqs) > 2 and i != j ):
seq_pairs = [
(seqs_pair0, seqs_pair1),
]
for seqs0, seqs1 in seq_pairs:
delta_seqs = Seqs.self_minus_other( seqs0, seqs1 )
delta_seqs.make_pdf_weblogo( os.path.join('plots', '%s.pdf' % delta_seqs.name), prior = None )
mutations = seqs0.mutations_enriched_over_other(seqs1)
print 'Top %d enriched mutations (enriched in %s over %s)' % (topx_to_show, seqs0.name, seqs1.name)
printed_lines = 0
assert( seqs0.dir_path == seqs1.dir_path )
with open(os.path.join(text_output_dir, '%s_over_%s.tsv' % (seqs0.name, seqs1.name) ), 'w') as f:
f.write('enrichment_factor\twt_aa\tresnum\tmut_aa\t%s_freq\t%s_freq\n' % (seqs0.name, seqs1.name) )
# Get top mutations
top_enriched_mutations_index = []
top_enriched_mutations_restype = []
for enrichment_factor, resi, mut_aa, wt_aa, freq0, freq1, raw_index in mutations:
if mut_aa != wt_aa:
top_enriched_mutations_index.append(raw_index)
top_enriched_mutations_restype.append(mut_aa)
for enrichment_factor, resi, mut_aa, wt_aa, freq0, freq1, raw_index in mutations:
if mut_aa == wt_aa:
continue
mutation_description = '%d%s->%s: %.2f (%s freq: %.2f; %s freq: %.2f)' % (resi, wt_aa, mut_aa, enrichment_factor, seqs0.name, freq0, seqs1.name, freq1)
covariation_cache = {}
for cov_val, y in seqs0.mi[raw_index]:
if y !=raw_index:
covariation_cache[seqs0.design_positions[y]] = cov_val
# Look for enrichment at other postions in sequences with this mutation
mut_present = seqs0.filter_by_seq_position(raw_index, mut_aa, seq_present = True)
mut_absent = seqs0.filter_by_seq_position(raw_index, mut_aa, seq_present = False)
mut_present_lines = []
min_present_count = min( len(mut_present), len(mut_absent) )
if min_present_count > 0:
enriched_for_mut = mut_present.mutations_enriched_over_other(mut_absent)
for mut_present_enrichment_factor, mut_present_resi, mut_present_mut_aa, mut_present_wt_aa, mut_present_freq0, mut_present_freq1, mut_present_raw_index in enriched_for_mut:
if mut_present_mut_aa != mut_present_wt_aa and not (mut_present_mut_aa == mut_aa and mut_present_wt_aa == wt_aa) and len(mut_present_lines) < 10 and abs(mut_present_enrichment_factor) >= 0.05:
if mut_present_resi in covariation_cache:
mut_present_mutation_description = '%03d%s->%s: %.2f (%s freq: %.2f, n=%d; %s freq: %.2f, n=%d) covariation=%.2f' % (mut_present_resi, mut_present_wt_aa, mut_present_mut_aa, mut_present_enrichment_factor, mut_present.name, mut_present_freq0, len(mut_present), mut_absent.name, mut_present_freq1, len(mut_absent), covariation_cache[mut_present_resi])
else:
mut_present_mutation_description = '%03d%s->%s: %.2f (%s freq: %.2f, n=%d; %s freq: %.2f, n=%d) covariation=N/A' % (mut_present_resi, mut_present_wt_aa, mut_present_mut_aa, mut_present_enrichment_factor, mut_present.name, mut_present_freq0, len(mut_present), mut_absent.name, mut_present_freq1, len(mut_absent) )
mut_present_lines.append(mut_present_mutation_description)
if len(mut_present_lines) > 1:
mut_present_lines.insert(0, 'Mutations enriched in %s over %s when %d%s->%s is present' % (seqs0.name, seqs1.name, resi, wt_aa, mut_aa) )
if abs(enrichment_factor) >= 0.01:
f.write( '%.2f\t%s\t%d\t%s\t%.2f\t%.2f\n' % (enrichment_factor, wt_aa, resi, mut_aa, freq0, freq1) )
if printed_lines < topx_to_show:
print mutation_description
if display_secondary_mutations:
for line in mut_present_lines:
print line
print
printed_lines += 1
print