-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathloader.py
executable file
·73 lines (56 loc) · 2.44 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from .utils import *
class Loader(object):
"""A loader class designed to help provide batches one at a time in random order during training, or in the same order all at once when evaluating results."""
def __init__(self, data, labels=None, shuffle=False):
"""
Initialize Loader.
:param data: array_like of size (N, D) for N points with D features
:param labels: array_like of of size (N,) with a label for each point
"""
self.start = 0
self.epoch = 0
self.data = [x for x in [data, labels] if x is not None]
self.input_dim = data.shape[1]
if shuffle:
self.r = list(range(data.shape[0]))
np.random.shuffle(self.r)
self.data = [x[self.r] for x in self.data]
def next_batch(self, batch_size=400):
"""
Get the next batch of size batch_size.
:param batch_size: the number of points to get
"""
num_rows = self.data[0].shape[0]
if self.start + batch_size < num_rows:
batch = [x[self.start:self.start + batch_size] for x in self.data]
self.start += batch_size
# if we're at the end of data, wrap around and get some from the beginning
else:
self.epoch += 1
batch_part1 = [x[self.start:] for x in self.data]
batch_part2 = [x[:batch_size - (x.shape[0] - self.start)] for x in self.data]
batch = [np.concatenate([x1, x2], axis=0) for x1, x2 in zip(batch_part1, batch_part2)]
self.start = batch_size - (num_rows - self.start)
return batch
def iter_batches(self, batch_size=100):
"""
Iterate through all the batches in the data.
:param batch_size: the size of batch to yield each time as it's iterating
"""
num_rows = self.data[0].shape[0]
end = 0
for i in range(num_rows // batch_size):
start = i * batch_size
end = (i + 1) * batch_size
yield [x[start:end] for x in self.data]
if end != num_rows:
yield [x[end:] for x in self.data]
def restore_order(self, data):
"""
Since the data is randomly shuffled at initialization, this helper can return it to its original order if necessary.
:param data: array_like of size (N,D)
"""
data_out = np.zeros_like(data)
for i, j in enumerate(self.r):
data_out[j] = data[i]
return data_out