forked from tobacco-mofs/tobacco_3.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopo_pore_analysis.py
176 lines (130 loc) · 3.57 KB
/
topo_pore_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import glob
import re
import numpy as np
import itertools
from scipy.spatial import Voronoi
from ase.io import read
topos = ['tty' , 'hwx', 'ucp' , 'sab', 'sqca',
'edq' , 'apo', 'lnj' , 'scu', 'qza' ,
'pts' , 'hof', 'cut' , 'ftw', 'sit' ,
'lil' , 'lim', 'svnd', 'phx', 'pcu' ,
'ddi' , 'fog', 'sur' , 'rtl', 'csq' ,
'rhrb', 'reo', 'lvtb', 'mcn', 'dag' ,
'fcu' , 'tfk', 'pyr' , 'pfm', 'rht' ,
'tfb' , 'kkm', 'nbob', 'ceq', 'flu' ,
'ssa' , 'fsc', 'stx' , 'xbq', 'ibe' ,
'acs' , 'stu', 'xll' , 'stp', 'xly' ,
'act' , 'bcu', 'the' , 'xbf', 'tru' ,
'sty' , 'mrc']
templates = ['svnd.cif']
templates = [c for c in glob.glob('*.cif') if c.split('.')[0] in topos]
def PBC3DF_sym(vec1, vec2):
dX,dY,dZ = vec1 - vec2
if dX > 0.5:
s1 = 1
ndX = dX - 1.0
elif dX < -0.5:
s1 = -1
ndX = dX + 1.0
else:
s1 = 0
ndX = dX
if dY > 0.5:
s2 = 1
ndY = dY - 1.0
elif dY < -0.5:
s2 = -1
ndY = dY + 1.0
else:
s2 = 0
ndY = dY
if dZ > 0.5:
s3 = 1
ndZ = dZ - 1.0
elif dZ < -0.5:
s3 = -1
ndZ = dZ + 1.0
else:
s3 = 0
ndZ = dZ
return np.array([ndX,ndY,ndZ]), np.array([s1,s2,s3])
def Voronoi_tessalate(atoms):
base_coords = [a.position for a in atoms]
repeat_unit_cell = atoms.get_cell().T
inv_ruc = np.linalg.inv(repeat_unit_cell)
basis = [np.array([1,0,0]), np.array([0,1,0]), np.array([0,0,1])]
mesh = []
for coord in base_coords:
mesh.append(coord)
fcoord = np.dot(inv_ruc, coord)
zero_threshold_indices = fcoord < 1e-6
fcoord[zero_threshold_indices] = 0.0
one_threshold_indices = abs(fcoord - 1.0) < 1e-6
fcoord[one_threshold_indices] = 0.0
if np.all(fcoord):
trans_vecs = [-1 * b for b in basis] + basis
else:
trans_vecs = [basis[dim] for dim in (0,1,2) if fcoord[dim] == 0.0]
combs = list(itertools.combinations(trans_vecs, 2)) + list(itertools.combinations(trans_vecs, 3))
for comb in combs:
compound = np.array([0.0,0.0,0.0])
for vec in comb:
compound += vec
trans_vecs.append(compound)
for vec in trans_vecs:
trans_coord = [np.round(i, 6) for i in np.dot(repeat_unit_cell, fcoord + vec)]
mesh.append(trans_coord)
mesh = np.asarray(mesh)
vor = Voronoi(mesh)
return vor, mesh
for cif in templates:
template = read(cif)
unit_cell = template.get_cell().T
inv_uc = np.linalg.inv(unit_cell)
coords = []
labels = []
for v in template:
coords.append(v.position)
labels.append(v.symbol)
nv = len(set(labels))
vor, mesh = Voronoi_tessalate(template)
voronoi_vertices = vor.vertices
in_cell_vertices = []
count = 0
for vertex in voronoi_vertices:
fcoord = np.dot(inv_uc, vertex)
include = True
for dim in fcoord:
if dim > 1 or dim < 0:
include = False
if include:
in_cell_vertices.append(vertex)
spectrums = []
norm_val = 0
for v in in_cell_vertices:
dists = []
vf = np.dot(inv_uc, v)
for nv in coords:
nvf = np.dot(inv_uc, nv)
fdist, sym = PBC3DF_sym(vf, nvf)
dist = np.dot(unit_cell, fdist)
dists.append(np.linalg.norm(dist))
md = min(dists)
spectrum = [d for d in dists if (d - md) < 1e-5]
spectrums.append(spectrum)
if spectrum[0] > norm_val:
norm_val = spectrum[0]
spec_vals = [s[0] for s in spectrums]/norm_val
avg_diff = 0
for i in range(len(spec_vals)):
ival = spec_vals[i]
for j in range(i + 1, len(spec_vals)):
jval = spec_vals[j]
diff = abs(ival - jval)
avg_diff += diff
avg_diff /= float(len(spec_vals))
num_nodes = [len(s) for s in spectrums]
max_c = max(num_nodes)
min_c = min(num_nodes)
nsites = len(set(num_nodes))
print cif.split('.')[0], np.round(avg_diff,5), nsites