forked from naturomics/CapsNet-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcapsNet.py
149 lines (123 loc) · 6.91 KB
/
capsNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
License: Apache-2.0
Author: Huadong Liao
E-mail: [email protected]
"""
import tensorflow as tf
from config import cfg
from utils import get_batch_data
from capsLayer import CapsLayer
epsilon = 1e-9
class CapsNet(object):
def __init__(self, is_training=True):
self.graph = tf.Graph()
with self.graph.as_default():
if is_training:
self.X, self.labels = get_batch_data(cfg.dataset, cfg.batch_size, cfg.num_threads)
self.Y = tf.one_hot(self.labels, depth=10, axis=1, dtype=tf.float32)
self.build_arch()
self.loss()
self._summary()
# t_vars = tf.trainable_variables()
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer()
self.train_op = self.optimizer.minimize(self.total_loss, global_step=self.global_step) # var_list=t_vars)
else:
self.X = tf.placeholder(tf.float32, shape=(cfg.batch_size, 28, 28, 1))
self.labels = tf.placeholder(tf.int32, shape=(cfg.batch_size, ))
self.Y = tf.reshape(self.labels, shape=(cfg.batch_size, 10, 1))
self.build_arch()
tf.logging.info('Seting up the main structure')
def build_arch(self):
with tf.variable_scope('Conv1_layer'):
# Conv1, [batch_size, 20, 20, 256]
conv1 = tf.contrib.layers.conv2d(self.X, num_outputs=256,
kernel_size=9, stride=1,
padding='VALID')
assert conv1.get_shape() == [cfg.batch_size, 20, 20, 256]
# Primary Capsules layer, return [batch_size, 1152, 8, 1]
with tf.variable_scope('PrimaryCaps_layer'):
primaryCaps = CapsLayer(num_outputs=32, vec_len=8, with_routing=False, layer_type='CONV')
caps1 = primaryCaps(conv1, kernel_size=9, stride=2)
assert caps1.get_shape() == [cfg.batch_size, 1152, 8, 1]
# DigitCaps layer, return [batch_size, 10, 16, 1]
with tf.variable_scope('DigitCaps_layer'):
digitCaps = CapsLayer(num_outputs=10, vec_len=16, with_routing=True, layer_type='FC')
self.caps2 = digitCaps(caps1)
# Decoder structure in Fig. 2
# 1. Do masking, how:
with tf.variable_scope('Masking'):
# a). calc ||v_c||, then do softmax(||v_c||)
# [batch_size, 10, 16, 1] => [batch_size, 10, 1, 1]
self.v_length = tf.sqrt(tf.reduce_sum(tf.square(self.caps2),
axis=2, keep_dims=True) + epsilon)
self.softmax_v = tf.nn.softmax(self.v_length, dim=1)
assert self.softmax_v.get_shape() == [cfg.batch_size, 10, 1, 1]
# b). pick out the index of max softmax val of the 10 caps
# [batch_size, 10, 1, 1] => [batch_size] (index)
self.argmax_idx = tf.to_int32(tf.argmax(self.softmax_v, axis=1))
assert self.argmax_idx.get_shape() == [cfg.batch_size, 1, 1]
self.argmax_idx = tf.reshape(self.argmax_idx, shape=(cfg.batch_size, ))
# Method 1.
if not cfg.mask_with_y:
# c). indexing
# It's not easy to understand the indexing process with argmax_idx
# as we are 3-dim animal
masked_v = []
for batch_size in range(cfg.batch_size):
v = self.caps2[batch_size][self.argmax_idx[batch_size], :]
masked_v.append(tf.reshape(v, shape=(1, 1, 16, 1)))
self.masked_v = tf.concat(masked_v, axis=0)
assert self.masked_v.get_shape() == [cfg.batch_size, 1, 16, 1]
# Method 2. masking with true label, default mode
else:
# self.masked_v = tf.matmul(tf.squeeze(self.caps2), tf.reshape(self.Y, (-1, 10, 1)), transpose_a=True)
self.masked_v = tf.multiply(tf.squeeze(self.caps2), tf.reshape(self.Y, (-1, 10, 1)))
self.v_length = tf.sqrt(tf.reduce_sum(tf.square(self.caps2), axis=2, keep_dims=True) + epsilon)
# 2. Reconstructe the MNIST images with 3 FC layers
# [batch_size, 1, 16, 1] => [batch_size, 16] => [batch_size, 512]
with tf.variable_scope('Decoder'):
vector_j = tf.reshape(self.masked_v, shape=(cfg.batch_size, -1))
fc1 = tf.contrib.layers.fully_connected(vector_j, num_outputs=512)
assert fc1.get_shape() == [cfg.batch_size, 512]
fc2 = tf.contrib.layers.fully_connected(fc1, num_outputs=1024)
assert fc2.get_shape() == [cfg.batch_size, 1024]
self.decoded = tf.contrib.layers.fully_connected(fc2, num_outputs=784, activation_fn=tf.sigmoid)
def loss(self):
# 1. The margin loss
# [batch_size, 10, 1, 1]
# max_l = max(0, m_plus-||v_c||)^2
max_l = tf.square(tf.maximum(0., cfg.m_plus - self.v_length))
# max_r = max(0, ||v_c||-m_minus)^2
max_r = tf.square(tf.maximum(0., self.v_length - cfg.m_minus))
assert max_l.get_shape() == [cfg.batch_size, 10, 1, 1]
# reshape: [batch_size, 10, 1, 1] => [batch_size, 10]
max_l = tf.reshape(max_l, shape=(cfg.batch_size, -1))
max_r = tf.reshape(max_r, shape=(cfg.batch_size, -1))
# calc T_c: [batch_size, 10]
# T_c = Y, is my understanding correct? Try it.
T_c = self.Y
# [batch_size, 10], element-wise multiply
L_c = T_c * max_l + cfg.lambda_val * (1 - T_c) * max_r
self.margin_loss = tf.reduce_mean(tf.reduce_sum(L_c, axis=1))
# 2. The reconstruction loss
orgin = tf.reshape(self.X, shape=(cfg.batch_size, -1))
squared = tf.square(self.decoded - orgin)
self.reconstruction_err = tf.reduce_mean(squared)
# 3. Total loss
# The paper uses sum of squared error as reconstruction error, but we
# have used reduce_mean in `# 2 The reconstruction loss` to calculate
# mean squared error. In order to keep in line with the paper,the
# regularization scale should be 0.0005*784=0.392
self.total_loss = self.margin_loss + cfg.regularization_scale * self.reconstruction_err
# Summary
def _summary(self):
train_summary = []
train_summary.append(tf.summary.scalar('train/margin_loss', self.margin_loss))
train_summary.append(tf.summary.scalar('train/reconstruction_loss', self.reconstruction_err))
train_summary.append(tf.summary.scalar('train/total_loss', self.total_loss))
recon_img = tf.reshape(self.decoded, shape=(cfg.batch_size, 28, 28, 1))
train_summary.append(tf.summary.image('reconstruction_img', recon_img))
self.train_summary = tf.summary.merge(train_summary)
correct_prediction = tf.equal(tf.to_int32(self.labels), self.argmax_idx)
self.accuracy = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))