-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaoolmodes__define.pro
665 lines (573 loc) · 24.3 KB
/
aoolmodes__define.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
;+
;
; Open Loop Modes (reconstructed from closed-loop data).
;
;-
function AOolmodes::Init, root_obj
if root_obj->operation_mode() ne 'ONSKY' then return,0
if not obj_valid(root_obj->frames_counter()) then begin
message, 'OLmodes cannot be reconstructed: frames counter not available.',/info
return, 0
endif
delay = (root_obj->delay())->frames_delay()
self._totdelay = round(delay)
;self._totdelay = 2L ;Assuming a total of 2 frames delay
self._decimation = (root_obj->frames_counter())->decimation()
self._nnMin = 4L
self._r0 = -1.
if not total(self._decimation eq [0,1,2,3]) then begin
message, 'OLmodes cannot be reconstructed: decimation unknown.',/info
return, 0
endif
if not obj_valid(root_obj->residual_modes()) then begin
message, 'OLmodes cannot be reconstructed: residual modes not available.',/info
return, 0
endif
if not obj_valid(root_obj->modes()) then begin
message, 'OLmodes cannot be reconstructed: integrated modes not available.',/info
return, 0
end
if (self._decimation eq 2) and not obj_valid(root_obj->modalpositions()) then begin
message, 'OLmodes cannot be reconstructed: modal positions not available.',/info
return, 0
end
self._store_fname = filepath(root=root_obj->elabdir(), 'olmodes.sav')
self._store_psd_fname = filepath(root=root_obj->elabdir(), 'olmodes_psd.sav')
self._r0_store_fname = filepath(root=root_obj->elabdir(), 'olmodes_r0.sav')
self._store_peaks_fname = filepath(root=root_obj->elabdir(), 'olmodes_peaks.sav')
if root_obj->recompute() eq 1B then begin
file_delete, self._store_fname, /allow_nonexistent
file_delete, self._store_psd_fname, /allow_nonexistent
file_delete, self._r0_store_fname, /allow_nonexistent
file_delete, self._store_peaks_fname, /allow_nonexisten
endif
if not self->AOtime_series::Init( (root_obj->frames_counter())->deltat(), fftwindow="hamming", nwindows=root_obj->n_periods()) then return,0
self._norm_factor = 1e9 * root_obj->reflcoef() ;nm wf
self._spectra_units = textoidl('nm-wf')
self._plots_title = root_obj->tracknum()
;Keep root_obj to easily retrieve residual_modes(), modes() and modalpositions()
self._root_obj = root_obj
;Initialize WF
if not self->AOwf::Init(self._root_obj, self._root_obj->modeShapes()) then message, 'WF object not available', /info
; initialize help object and add methods and leafs
if not self->AOhelp::Init('AOolmodes', 'Represent reconstructed open loop modes') then return, 0
self->addMethodHelp, "modes()", "reconstructed open loop modes matrix [niter,nmodes]"
self->addMethodHelp, "nmodes()", "number of modes"
self->addMethodHelp, "plotJitter(from_freq=from_freq, to_freq=to_freq, _extra=ex)", ""
self->addMethodHelp, "r0([lambda=lambda] [,/PLOT])", "Estimates r0 @ lambda (default 500nm)"
self->addMethodHelp, "setup_r0_est_options, [remove_noise=r], [outer_scale=o], [change_slope=c], [add_power=a])", "Set options for r0 estimation"
self->addMethodHelp, "seeing()", "Seeing value (@ 500nm)"
self->addMethodHelp, "ide(mode_idx, visu=visu)", "Identifies turbulence, vibrations and noise model for mode_idx mode"
self->addMethodHelp, "findDirections(from_freq=from, to_freq=to, plot=plot, nfr=nfr, fstep=fstep)", $
"return the direction of vibrations (width[Hz]=2*fstep, tip=0°, tilt=90°) between frequencies from_freq and to_freq"
self->AOwf::addHelp, self
self->AOtime_series::addHelp, self
return, 1
end
pro AOolmodes::datiProducer
if file_test(self._store_fname) then begin
restore, self._store_fname
endif else begin
rmodes = (self._root_obj->residual_modes())->modes()
if (self._root_obj->wfs_status())->optg() eq 0 then rmodes *= (self._root_obj->residual_modes())->mistmatch_factor()
imodes = (self._root_obj->modes())->modes()
sz = size(rmodes,/dim)
nframes = sz[0]
nmodes = sz[1]
olmodes = fltarr(nframes,nmodes)
if self._decimation eq 2 then begin
mpos = (self._root_obj->modalpositions())->modalpositions()
mpos = mpos[*,0:nmodes-1]
for ii=0, nmodes-1 do mpos[*,ii] = mpos[*,ii] - mean(mpos[*,ii]) + mean(imodes[*,ii])
olmodes[1:*,*] = rmodes[1:*,*] + 0.5*( mpos[1:*,*] + imodes[0:nframes-2,0:nmodes-1] )
endif else begin
dd = self._totdelay - self._decimation
olmodes[dd:*,*] = rmodes[dd:*,*] + imodes[0:nframes-1-dd,0:nmodes-1]
endelse
save, olmodes, file=self._store_fname
endelse
self._modes = ptr_new(olmodes, /no_copy)
end
function AOolmodes::modes, _extra=ex
return, self->dati(_extra=ex)
end
function AOolmodes::nmodes
return, self->AOtime_series::nseries()
end
pro AOolmodes::plotJitter, from_freq=from_freq, to_freq=to_freq, _extra=ex, overplot=overplot
coeff2arcsec = self._root_obj->reflcoef() * 4 / ao_pupil_diameter() / 4.848d-6
freq = self->freq(from=from_freq, to=to_freq)
tip = self->power(0, from=from_freq, to=to_freq, /cum) * coeff2arcsec^2
tilt = self->power(1, from=from_freq, to=to_freq, /cum) * coeff2arcsec^2
if not keyword_set(overplot) then begin
plot, freq, sqrt(tip + tilt), xticklen=1, yticklen=1, xgridstyle=1, ygridstyle=1, $
title=self._plots_title, xtitle='Freq [Hz]', ytitle='Cumulated PSD [arcsec rms]', _extra=ex
oplot, freq, sqrt(tip), col='0000ff'x
oplot, freq, sqrt(tilt), col='00ff00'x
elab_legend, ['Tilt+Tip', 'Tip', 'Tilt'],linestyle=[0,0,0],colors=[!P.COLOR, '0000ff'x, '00ff00'x]
endif else begin
oplot, freq, sqrt(tip + tilt)
oplot, freq, sqrt(tip), col='0000ff'x
oplot, freq, sqrt(tilt), col='00ff00'x
endelse
end
; to be implemented in AOtime_series subclasses
function AOolmodes::GetDati
if not ptr_valid(self._modes) then self->datiProducer
return, self._modes
end
pro AOolmodes::setup_r0_est_options, remove_noise=remove_noise, outer_scale=outer_scale, $
change_slope=change_slope, add_power=add_power
if n_elements(remove_noise) gt 0 then self._removeNoise4R0Est = remove_noise
if n_elements(outer_scale) gt 0 then self._outerScale4R0Est = outer_scale
if n_elements(change_slope) gt 0 then self._changeTheoVarSlope4R0Est = change_slope
if n_elements(add_power) gt 0 then self._addMissPower4R0Est = add_power
if file_test(self._r0_store_fname) then file_delete, self._r0_store_fname
self->estimate_r0
end
; Estimate r0 from reconstructed open loop data
;-----------------------------------------------------
function AOolmodes::r0, lambda=lambda, PLOT=PLOT
if self._r0 eq -1. then self->retrieve_r0
if keyword_set(PLOT) then begin
olrms = sqrt(self->time_variance()) * self->norm_factor() ;nm wf rms
nmodes = self->nmodes()
modes_idx = (self._root_obj->modal_rec())->modes_idx()
olrms = olrms[modes_idx]
DpupM = ao_pupil_diameter()
theovarfit = (4.*!PI^2) * (DpupM/self._r0)^(5./3.) * diag_matrix(kolm_mcovar(nmodes+1)) ;rad^2 @ 500nm
theorms = sqrt(theovarfit) * 500./(2.*!PI) ; nm wf rms
yrange = minmax([olrms,theorms])
window,/free
plot_oo, modes_idx+1, olrms, psym=-1, symsize=0.8, charsize=1.5, $
ytitle='nm wf rms', xtitle='mode number', title=self._root_obj->tracknum(), yrange=yrange $
, xgridstyle=1, ygridstyle=1, xticklen=1, yticklen=1
oplot, lindgen(nmodes)+1, theorms, color=255L
elab_legend, ['r0 = '+string(self._r0*1e2, format='(f4.1)')+'cm @ 500nm'], /right, charsize=1.5
endif
if n_elements(lambda) ne 0 then return, self._r0*(lambda/500e-9)^(6./5.) else return, self._r0
end
pro AOolmodes::retrieve_r0
if file_test(self._r0_store_fname) then begin
restore, self._r0_store_fname
if n_elements(r0fit) eq 0 then begin
file_delete, self._r0_store_fname
self->estimate_r0
endif else begin
self._r0 = r0fit
self._nnMin = nnMin
endelse
endif else begin
self->estimate_r0
endelse
end
;Estimate r0 @ 500nm
pro AOolmodes::estimate_r0
COMMON olmodes_data, olvarMean, theovar1
nmodes = self->nmodes() ;including maybe some non-reconstructed modes
modes_idx = (self._root_obj->modal_rec())->modes_idx()
if self._removeNoise4R0Est then begin
olvar = fltarr(nmodes)
psd = self->psd() * (self._root_obj->reflcoef()*2.*!PI/500e-9)^2. ;in rad^2 @ 500nm
freq = self->freq()
nPSD = (size(psd,/dim))[0]
fsample = freq[1] - freq[0]
for i=0,nmodes-1 do begin
; -----
; TURBULENCE
;Noise variance is a constant offset in the temporal PSD (temporally uncorrelated), mostly visible at high frequencies
noise_level = mean(psd[round(nPSD/2.):*,i])
olvar[i] = total(psd[*,i]-replicate(noise_level,nPSD)>0)*fsample
if self._addMissPower4R0Est and freq[0] gt 1/30. then olvar[i] += mean(psd[0:9,i])*(freq[0]-1/30.)
endfor
endif else begin
olvar = self->time_variance() * (self._root_obj->reflcoef()*2.*!PI/500e-9)^2. ;in rad^2 @ 500nm
endelse
nnMax = long(sqrt(8L*nmodes-7L)-1L)/2L
nnRange = [self._nnMin,nnMax-1]
if nnRange[1]-nnRange[0]+1 le 0 then begin
message, 'Not enough OLmodes to perform r0 estimation',/info
self._r0 = 0.
return
endif
Zern_number = lindgen(nmodes)+2
nn = long(sqrt(8L*Zern_number-7L)-1L)/2L
nnValues = findgen(nnRange[1]-nnRange[0]+1)+nnRange[0]
norders = n_elements(nnValues)
;Experimental data: the average per radial order of the coeff variances is computed:
olvarMean = fltarr(norders)
nn_count = lonarr(norders)
FOR j=0, norders-1 DO BEGIN
FOR i=0, nmodes-1 DO BEGIN
IF where(modes_idx eq i) eq [-1] then continue
IF nn(i) EQ nnValues[j] THEN BEGIN
olvarMean[j] = olvarMean[j] + olvar[i]
nn_count[j] = nn_count[j] + 1
ENDIF
ENDFOR
;olvarMean[j] = olvarMean[j] / (nnValues(j)+1.)
olvarMean[j] = olvarMean[j] / float(nn_count[j])
ENDFOR
;Theoretical data: a single variance per radial order:
FirstZerns = (nnValues*(nnValues+1)/2)+1 ;Fist zernike of each radial order.
; kolmogorov or von karman spectrum
if self._outerScale4R0Est le 0 then begin
theovar1 = (diag_matrix(kolm_mcovar(nmodes+1)))[FirstZerns-2] ;D/r0=1
endif else begin
theovar1 = dblarr(n_elements(FirstZerns))
DpupM = ao_pupil_diameter()
L0norm = (self._outerScale4R0Est/DpupM)
for i=0,n_elements(FirstZerns)-1 do theovar1[i] = VON_COVAR(FirstZerns[i],FirstZerns[i],L0norm,/double) ;D/r0=1
endelse
; change thoerethic slope
if self._changeTheoVarSlope4R0Est then begin
x = findgen(n_elements(theovar1))+1
tot_theoVar1 = total(theovar1)
if n_elements(theovar1) gt 6 and n_elements(theovar1) le 16 then begin
theovar1 *= x^(-1/16.)
theovar1[0] += (tot_theovar1-total(theovar1))
endif
if n_elements(theoVar) gt 16 then begin
theovar1 *= x^(-1/14.)
theovar1[0] += (tot_theovar1-total(theovar1))
endif
endif
;Find best fit
r0a=0.01 & r0b=1. ;range of r0s in m
minf_bracket, r0a,r0b,r0c, erra,errb, errc, FUNC_NAME='fit_r0_errfunc'
minf_parabolic, r0a,r0b,r0c, r0fit, errmin, FUNC_NAME='fit_r0_errfunc'
;Save results
self._r0 = r0fit
nnMin = self._nnMin
save, r0fit, nnMin, filename=self._r0_store_fname
end
function AOolmodes::seeing
return, 0.5 / (self->r0()*4.85)
end
function AOolmodes::ide, mode_idx, visu=visu, only_noise=only_noise
if not keyword_set(visu) then visu=0
if not keyword_set(only_noise) then only_noise=0
CC = [-1,255.,255.*50,255.*100,255.*150,255.*256,255.*256*50,255.*256*100,255.*256*150,255.*256*256]
fp = self->findpeaks(mode_idx)
frv = fp.(0).fr
idx = where(fp.(0).pw100 ge 1. and fp.(0).fr ge 2.)
nfr = n_elements(idx)
f1 = max([frv[idx[0]]-5d,2])
f2 = min([frv[idx[nfr-1]]+20d,(self->freq())[self->nfreqs()-1]])
if visu eq 1 then plot_oo, self->freq(), (self->psd(mode_idx))
idx1 = closest(f1, self->freq())
idx2 = closest(f2, self->freq())
nm = mean(((self._root_obj->residual_modes())->psd(mode_idx))[idx2:*])
vnm = variance((self->psd(mode_idx))[idx2:*])
fc = 1/self._dt
noise = nm*fc
if only_noise eq 0 then begin
p1 = (self->psd(mode_idx))[idx1]
p2 = (self->psd(mode_idx))[idx2]
f1l = alog10(f1)
f2l = alog10(f2)
p1l = alog10(p1)
p2l = alog10(p2)
frl = alog10((self->freq())[idx1:idx2-2])
pl=interpol([p1l,p2l],[f1l,f2l],frl)
vectemp1 = (self->psd(mode_idx))
vectemp2 = (self->psd(mode_idx))
vectemp1[idx1:idx2-2] = 10.^(pl)
idx3 = where(vectemp2 gt vectemp1+sqrt(vnm))
if total(idx3) ne -1 then vectemp2[idx3] = vectemp1[idx3]+sqrt(vnm)
kkk1 = 5
a = 1.0001d - log_array(1d-4, 5d-1, kkk1)
kkk2 = 5
b = log_array(1d-8*(self->psd(mode_idx))(0),1d0*(self->psd(mode_idx))(0),kkk2)
minvectemp2 = min(vectemp2)
vectemp2 = vectemp2-nm
vectemp2[where(vectemp2 le 0)] = minvectemp2
if visu eq 1 then oplot, self->freq(), vectemp2, col=cc[9]
turbpar = turb_est2(vectemp2, a, b, res=res)
fturb = -alog(turbpar[1:2])*fc/2/!pi
kturb = turbpar[0]
CLT=fltarr(self->nfreqs())
for k=1,self->nfreqs() do begin
z = exp(complex(0, !pi/self->nfreqs()*k))
CP = (1-turbpar(1)*z^(-1))*(1-turbpar(2)*z^(-1))
CLT(k-1) = abs(turbpar(0)/CP)
endfor
if visu eq 1 then oplot, self->freq(), CLT, col=cc[5]
fv=fltarr(nfr)
par=fltarr(nfr,2)
ppp = 50
for j=0,nfr-1 do fv[j]=closest(fp.(0).fr[idx[j]], self->freq())
for i=0,nfr-2 do begin
vecv=fltarr(self->nfreqs())
if i eq 0 then vecv[fv[0]-10:min([mean(fv[0:1]),fv[0]+ppp])]=(self->psd(mode_idx))[fv[0]-10:min([mean(fv[0:1]),fv[0]+ppp])] else $
vecv[max([mean(fv[i-1:i]),fv[i]-ppp]):min([mean(fv[i:i+1]),fv[i]+ppp])]=(self->psd(mode_idx))[max([mean(fv[i-1:i]),fv[i]-ppp]):min([mean(fv[i:i+1]),fv[i]+ppp])]
if visu eq 1 then print, 'vibration #'+strtrim(i,2)+' frequency ='+strtrim(frv[idx[i]],2)
par[i,*]=vib_est(vecv-nm, fp.(0).fr[idx[i]], fc)
CLTv=fltarr(self->nfreqs())
omega=2*!pi*frv[idx[i]]
damp1=par[i,1]*omega
damp2=omega
va1 = -real(2 * exp(- damp1 / fc) * cos( sqrt(complex( omega^2 - damp1^2 )) / fc ))
va2 = exp(- 2 * damp1 / fc)
vb1 = -real(2 * exp(- damp2 / fc) * cos( sqrt(complex( omega^2 - damp2^2 )) / fc ))
vb2 = exp(- 2* damp2 / fc)
for k=1,self->nfreqs() do begin
z = exp(complex(0, !pi/self->nfreqs()*k))
CP1 = POLY(z^(-1), [1d, vb1, vb2])
CP2 = POLY(z^(-1), [1d, va1, va2])
CLTv(k-1) = abs(CP1/CP2)*par[i,0]
endfor
if visu eq 1 then oplot, self->freq(), CLTv, col=cc[1]
endfor
vecv=fltarr(self->nfreqs())
vecv[mean(fv[nfr-2:nfr-1]):min([fv[nfr-1]+ppp,self->nfreqs()])]=(self->psd(mode_idx))[mean(fv[nfr-2:nfr-1]):min([fv[nfr-1]+ppp,self->nfreqs()])]
if visu eq 1 then print, 'vibration #'+strtrim(nfr-1,2)+' frequency ='+strtrim(frv[idx[nfr-1]],2)
par[nfr-1,*]=vib_est(vecv-nm, fp.(0).fr[idx[nfr-1]], fc)
CLTv=fltarr(self->nfreqs())
omega=2*!pi*frv[idx[nfr-1]]
damp1=par[nfr-1,1]*omega
damp2=omega
va1 = -real(2 * exp(- damp1 / fc) * cos( sqrt(complex( omega^2 - damp1^2 )) / fc ))
va2 = exp(- 2 * damp1 / fc)
vb1 = -real(2 * exp(- damp2 / fc) * cos( sqrt(complex( omega^2 - damp2^2 )) / fc ))
vb2 = exp(- 2* damp2 / fc)
for k=1,self->nfreqs() do begin
z = exp(complex(0, !pi/self->nfreqs()*k))
CP1 = POLY(z^(-1), [1d, vb1, vb2])
CP2 = POLY(z^(-1), [1d, va1, va2])
CLTv(k-1) = abs(CP1/CP2)*par[i,0]
endfor
if visu eq 1 then oplot, self->freq(), CLTv, col=cc[1]
model={ $
turb_fr: fturb, $
turb_g: kturb, $
noise: noise, $
vib_fr: fp.(0).fr[idx], $
vib_g: par[*,0], $
vib_damp: par[*,1] $
}
endif else begin
model={ $
turb_fr: -1, $
turb_g: -1, $
noise: noise, $
vib_fr: -1, $
vib_g: -1, $
vib_damp: -1 $
}
endelse
return, model
end
function AOolmodes::finddirections, from_freq=from_freq, to_freq=to_freq, plot=plot, nfr=nfr, fstep=fstep, teldir=teldir
; teldir return the angle in the telescope coordinates
IF not keyword_set(plot) THEN plot=0
IF not keyword_set(fstep) THEN fstep=0.25
IF not keyword_set(nfr) THEN nfr=5
if n_elements(from_freq) eq 0 then from_freq = min(self->freq())
if n_elements(to_freq) eq 0 then to_freq = max(self->freq())
if from_freq ge to_freq then message, "from_freq must be less than to_freq"
if from_freq lt min(self->freq()) then from_freq = min(self->freq())
if from_freq gt max(self->freq()) then from_freq = max(self->freq())
if to_freq lt min(self->freq()) then to_freq = min(self->freq())
if to_freq gt max(self->freq()) then to_freq = max(self->freq())
idx_from = closest(from_freq, self->freq())
idx_to = closest(to_freq, self->freq())
; return vibrations frequency and power
peaks=self->findpeaks([0,1], from_freq=from_freq, to_freq=to_freq)
frtemp=[peaks.(0).fr,peaks.(1).fr]
pwtemp=[peaks.(0).pw,peaks.(1).pw]
flag=0
j=0
cc = [-1,255.,255.*256,255.*256*256,255.*256*100,255.*100]
while flag eq 0 do begin
; joins vibrations with similar frequency
idx=where(abs(frtemp - frtemp[j]) lt 0.6)
if total(idx) ne -1 then begin
for k=0,n_elements(idx)-1 do begin
if idx[k] ne j then begin
if idx[k] lt n_elements(frtemp)-1 then begin
frtemp=[frtemp[0:idx[k]-1],frtemp[idx[k]+1:*]]
pwtemp=[pwtemp[0:idx[k]-1],pwtemp[idx[k]+1:*]]
endif else begin
frtemp=frtemp[0:idx[k]-1]
pwtemp=pwtemp[0:idx[k]-1]
endelse
idx=idx-1
endif
endfor
endif
j+=1
if j gt n_elements(frtemp)-1 then flag=1
endwhile
if n_elements(pwtemp) lt nfr then nnn=n_elements(pwtemp) else nnn=nfr
maxr=dblarr(nnn)
idxmax=dblarr(nnn)
fvibmax=dblarr(nnn)
pow=dblarr(nnn)
rm1=dblarr(self->niter(),nnn)
rm2=dblarr(self->niter(),nnn)
ab=dblarr(2,nnn)
cor=dblarr(nnn)
var=dblarr(nnn)
xy=dblarr(nnn)
plt=0
if total(fvibmax gt 0) then begin
if plot eq 1 then $
window, /free
for ijk = 0, nnn-1 do begin
if ijk eq 0 then pw=pwtemp else pw[idxmax(ijk-1)]=0
; sorts the vibrations
maxr(ijk) = max(pw,idxmaxtemp)
idxmax(ijk) = idxmaxtemp
fvibmax(ijk) = frtemp[idxmax(ijk)]
pow(ijk) = pwtemp[idxmax(ijk)]
; isolates the frequency of the ijk-th vibration
a1t=fft((self->modes())[*,0])
a2t=fft((self->modes())[*,1])
p=self->niter()*(self._root_obj->frames_counter())->deltat()
if p*fstep lt 1 then fstep=1./p
a1t[0:p*(fvibmax(ijk)-fstep)-1]=0
a1t[p*(fvibmax(ijk)+fstep):p*(1./(self._root_obj->frames_counter())->deltat()-fvibmax(ijk)-fstep)-1]=0
a1t[p*(1./(self._root_obj->frames_counter())->deltat()-fvibmax(ijk)+fstep):*]=0
a2t[0:p*(fvibmax(ijk)-fstep)-1]=0
a2t[p*(fvibmax(ijk)+fstep):p*(1./(self._root_obj->frames_counter())->deltat()-fvibmax(ijk)-fstep)-1]=0
a2t[p*(1./(self._root_obj->frames_counter())->deltat()-fvibmax(ijk)+fstep):*]=0
; generates the signal with only the frequency of the ijk-th vibration
rm1[*,ijk]=fft(a1t,1)
rm2[*,ijk]=fft(a2t,1)
; linear fit
ab1 = linfit(rm1[*,ijk],rm2[*,ijk])
ab2 = linfit(rm2[*,ijk],rm1[*,ijk])
; errors variance of the linear fit
cor1 = variance( rm2[*,ijk]-ab1[1]*rm1[*,ijk]-ab1[0] )
cor2 = variance( rm1[*,ijk]-ab2[1]*rm2[*,ijk]-ab2[0] )
; takes the best values
if cor1 lt cor2 then begin
cor[ijk]=cor1
ab[*,ijk]=ab1
var[ijk] = variance( rm2[*,ijk] )
endif else begin
cor[ijk]=cor2
ab[*,ijk]=ab2
xy[ijk]=1
var[ijk] = variance( rm1[*,ijk] )
endelse
if ijk eq 0 then begin
if plot eq 1 then $
plot, 1.1*minmax([rm1[*,ijk],rm2[*,ijk]]), 1.1*minmax([rm1[*,ijk],rm2[*,ijk]]), $
xtitle='direction 0', ytitle='direction 1', title='vibrations from '+strtrim(from_freq,2)+'Hz to '+strtrim(to_freq,2)+'Hz', charsize=1.2, /nodata
if plot eq 1 then $
oplot, rm1[*,ijk], rm2[*,ijk], psym=3
frvib= fvibmax(ijk)
colo=-1
endif else begin
if plot eq 1 then $
oplot, rm1[*,ijk], rm2[*,ijk], psym=3, col=CC[ijk]
frvib=[frvib, fvibmax(ijk)]
colo=[colo,CC[ijk]]
endelse
if plot eq 1 then begin
if fvibmax(ijk) lt to_freq and fvibmax(ijk) gt from_freq then begin
if xy[ijk] eq 0 then oplot, 1.2*minmax(rm1[*,0]), ab[1,ijk]*1.2*minmax(rm1[*,0])+ab[0,ijk], col=CC[ijk] $
else oplot, ab[1,ijk]*1.2*minmax(rm2[*,0])+ab[0,ijk], 1.2*minmax(rm2[*,0]), col=CC[ijk]
endif
endif
endfor
if plot eq 1 then $
elab_legend, strtrim(frvib,2)+'Hz', psym=fltarr(nnn)-1, col=colo
angle=( (-1)^xy*atan(ab[1,*])+xy*!pi/2 )*!CONST.RtoD
; if key then return the angle in the telescope coordinates
if keyword_set(teldir) then begin
ttangle=(self._root_obj->control())->ttdirections()
if (ttangle[1] lt ttangle[0]+95) and (ttangle[1] gt ttangle[0]+85) then stt=1 else stt=-1
att = mean([ttangle[0],ttangle[1]-stt*90.])
angle=att+stt*angle
endif
endif else begin
frvib=-1
pow=-1
cor=-1
var=-1
angle=-1
endelse
directions={$
freq: frvib, $
power: pow, $
error_var: cor, $
signal_var: var, $
angle: angle $
}
return, directions
end
pro AOolmodes::tf, idx, mtf=mtf, theoric=theoric, gain=gain, mtf_theoric=mtf_theoric, smooth_factor=smooth_factor
freq = self->freq()
psd_res = (self._root_obj->residual_modes())->psd()
psd_ol = self->psd()
mtf = sqrt( psd_res / psd_ol )
if n_elements(smooth_factor) gt 0 then for i=0,n_elements(mtf[0,*])-1 do mtf[*,i] = smooth(reform(mtf[*,i]),smooth_factor,/edge_tru)
;window, /free, xs=640, ys=480
;plot_io, findgen(n_elements(mtf[0,*])), mtf[0,*], tit='!3'+(self._root_obj->obj_tracknum())->tracknum()+'!17', xtit='!17mode number!17', ytit='!17amplitude at min. freq.', /xst
window, /free, xs=640, ys=480
plot_oo, freq, mtf[*,idx], tit='!3'+(self._root_obj->obj_tracknum())->tracknum()+'!17 TF (mode '+strtrim(round(idx),2)+')', xtit='!17frequency !4[!17Hz!4]!17', ytit='!17amplitude', /xst
oplot, minmax(freq), [1,1], line=2
if keyword_set(theoric) then begin
if n_elements(gain) eq 0 then gainTF = ((self._root_obj->control())->gain())[idx] else gainTF = gain
ff = 1
fs = ((self._root_obj->wfs_status())->camera())->framerate()
delay = (self._root_obj->delay())->delay()*fs
iir = elab_int_iir([((self._root_obj->control())->gain())[idx],gainTF], ff=ff)
if delay ge 2 then dm_delay = 1. else dm_delay = delay - fix(delay)
wfs_delay = delay - dm_delay
;; DM tf
tf_dm = discrete_delay_tf(dm_delay)
nm = tf_dm[*,0]
dm = tf_dm[*,1]
;; WFS tf
tf_wfs = discrete_delay_tf(wfs_delay)
nw = tf_wfs[*,0]
dw = tf_wfs[*,1]
plot_iir_tf, iir, fs, [0], nm=nm, dm=dm, nw=nw, dw=dw, /no, freq=freq, ytmtf=mtf_theoric0
oplot, freq, mtf_theoric0, col=255l, thick=2
if n_elements(gain) ne 0 then begin
plot_iir_tf, iir, fs, [1], nm=nm, dm=dm, nw=nw, dw=dw, /no, freq=freq, ytmtf=mtf_theoric1
oplot, freq, mtf_theoric1, col=255l*256l, thick=2
mtf_theoric = mtf_theoric1
elab_legend, ['data MTF','theor. MTF','th. MTF (g='+strtrim(string(gainTF,format='(f9.2)'),2)+')'], $
col=[1l,255l,255*256l], linest=[0,0,0], thick=2, /bottom, /right, /clear, charsize=1.5
endif else begin
mtf_theoric = mtf_theoric0
elab_legend, ['data MTF','theor. MTF'], col=[1l,255l], linest=[0,0], thick=2, /bottom, /right, /clear, charsize=1.5
endelse
endif
end
pro AOolmodes::free
if ptr_valid(self._modes) then ptr_free, self._modes
self->AOwf::free
self->AOtime_series::free
end
pro AOolmodes::Cleanup
if ptr_valid(self._modes) then ptr_free, self._modes
self->AOwf::Cleanup
self->AOtime_series::Cleanup
self->AOhelp::Cleanup
end
pro AOolmodes__define
struct = { AOolmodes, $
_root_obj : obj_new() , $
_totdelay : 0L , $ ;total delay of the system in frames.
_decimation : 0L , $
_modes : ptr_new() , $
_store_fname : "" , $
_nnMin : 0L , $ ;minimum radial order used in r0 estimation.
_r0_store_fname : "" , $
_r0 : 0. , $
_wf : obj_new() , $
_removeNoise4R0Est : 0B , $
_outerScale4R0Est : 0. , $
_changeTheoVarSlope4R0Est : 0B , $
_addMissPower4R0Est : 0B , $
INHERITS AOwf , $
INHERITS AOtime_series , $
INHERITS AOhelp $
}
end