Author: Léo-Paul Dagallier
Last update: 2023-08-09
Prepare the output folder:
path_to_output="outputs/";
cd $path_to_output
mkdir RPANDA_BD
Prepare the path variables: - in R:
path_to_tree = c("data/name_MCC_monodoreae3_monod_pruned.newick")
path_to_output = c("outputs/RPANDA_BD/")
data_suffix <- "monodoreae3"
Read the tree:
library(ape)
library(picante)
tree <- read.tree(file = path_to_tree)
tot_time <- max(node.age(tree)$ages)
sampling_fraction <- 88/90
λ = speciation
µ = extinction
λ | µ | Model Acronym |
---|---|---|
constant | 0 | BConst |
variable | 0 | BVar |
constant | constant | BDConst |
variable | constant | BVarDConst |
constant | variable | BConstDVar |
variable | variable | BDVar |
If already run, load the results (to avoid re-running the models every time the rmarkdown is knitted):
load(file = paste0(path_to_output, "time_dep_models"))
Note that unfortunately, the models results objects could not be
published in this repository because the files are to big. You would
thus need to run the models (fit_bd
or fit_env
functions) locally.
Fit the pure birth model (no extinction) with a constant speciation rate.
f.lamb <-function(t,y){y[1]}
f.mu<-function(t,y){0}
lamb_par<-c(0.09)
mu_par<-c()
result_BConst <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,cst.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
result_BConst$model <- "BConst"
t <- seq(0, tot_time, length.out = 100)
plot(-t, result_BConst$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted Net Diverisifcation rate")
Test the sensitivity of the initial parameter:
f.lamb <-function(t,y){y[1]}
f.mu<-function(t,y){0}
lamb_post <- c()
lamb_init <-c()
mu_par<-c()
aicc <- c()
for (i in seq(from = 0.01, to = 1, by = 0.01)){
lamb_par<-c(i)
result_tmp <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,cst.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
lamb_post <- c(lamb_post, result_tmp$lamb_par)
lamb_init <- c(lamb_init, i)
aicc <- c(aicc, result_tmp$aicc)
}
plot(lamb_post, lamb_init)
plot(density(lamb_post))
plot(density(aicc))
Fit the pure birth model (no extinction) with a exponential variation of the speciation rate with time.
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){0}
lamb_par<-c(0.05, 0.01)
mu_par<-c()
result_BVar <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
result_BVar$model <- "BVar"
t <- seq(0, tot_time, length.out = 100)
plot(-t, result_BVar$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted Net Diverisifcation rate")
Test the sensitivity of the initial parameters:
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){0}
lamb_post1 <- c()
lamb_post2 <- c()
lamb_init1 <-c()
lamb_init2 <-c()
mu_par<-c()
for (i in seq(from = 0.01, to = 0.2, by = 0.01)){
for (j in seq(from = 0.01, to = 0.2, by = 0.01))
lamb_par<-c(i, j)
result_tmp <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
lamb_post1 <- c(lamb_post1, result_tmp$lamb_par[1])
lamb_post2 <- c(lamb_post2, result_tmp$lamb_par[2])
lamb_init1 <- c(lamb_init1, i)
lamb_init2 <- c(lamb_init2, i)
}
{par(mfrow = c(2,2))
plot(lamb_post1, lamb_init1)
plot(density(lamb_post1))
plot(lamb_post2, lamb_init2)
plot(density(lamb_post2))
}
Fit the birth-death model with constant rates.
f.lamb <-function(t,y){y[1]}
f.mu<-function(t,y){y[1]}
lamb_par<-c(0.05)
mu_par<-c(0.01)
result_BDConst <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BDConst$model <- "BDConst"
Plot the model:
par(mfrow = c(2,2))
t <- seq(0, tot_time, length.out = 100)
plot(-t, result_BDConst$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted speciation rate")
plot(-t, result_BDConst$f.mu(t), type = "l", xlab = "time", ylab = "extinction rate", main = "Fitted extinction rate")
plot(-t, result_BDConst$f.lamb(t) - result_BDConst$f.mu(t), type = "l", xlab = "time", ylab = "net diversification rate", main = "Fitted net diversification rate")
plot.new()
Fit a birth-death model with exponential variation of the speciation and constant extinction
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){y[1]}
lamb_par<-c(0.5, 0.1)
mu_par<-c(0.01)
result_BVarDConst <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BVarDConst$model <- "BVarDConst"
Plot the model:
t <- seq(0, tot_time, length.out = 100)
par(mfrow = c(2,2))
plot(-t, result_BVarDConst$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted speciation rate")
plot(-t, result_BVarDConst$f.mu(t), type = "l", xlab = "time", ylab = "extinction rate", main = "Fitted extinction rate")
plot(-t, result_BVarDConst$f.lamb(t) - result_BVarDConst$f.mu(t), type = "l", xlab = "time", ylab = "net diversification rate", main = "Fitted net diversification rate")
plot.new()
Fit a birth-death model with constant speciation and exponential variation of the extinction.
f.lamb <-function(t,y){y[1]}
f.mu<-function(t,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.01)
mu_par<-c(0.1, 0.01)
result_BConstDVar <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BConstDVar$model <- "BConstDVar"
Plot the model:
t <- seq(0, tot_time, length.out = 100)
{par(mfrow = c(2,2))
plot(-t, result_BConstDVar$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted speciation rate")
plot(-t, result_BConstDVar$f.mu(t), type = "l", xlab = "time", ylab = "extinction rate", main = "Fitted extinction rate")
plot(-t, result_BConstDVar$f.lamb(t) - result_BConstDVar$f.mu(t), type = "l", xlab = "time", ylab = "net diversification rate", main = "Fitted net diversification rate")
plot.new()
}
Birth Death model with exponential variation of both the speciation and the extinction rates (BDVar)
f.lamb <-function(t,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.5, 0.1)
mu_par<-c(0.4, 0.1)
result_BDVar <- fit_bd(tree,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BDVar$model <- "BDVar"
Plot the model:
t <- seq(0, tot_time, length.out = 100)
par(mfrow = c(2,2))
plot(-t, result_BDVar$f.lamb(t), type = "l", xlab = "time", ylab = "speciation rate", main = "Fitted speciation rate")
plot(-t, result_BDVar$f.mu(t), type = "l", xlab = "time", ylab = "extinction rate", main = "Fitted extinction rate")
plot(-t, result_BDVar$f.lamb(t) - result_BDVar$f.mu(t), type = "l", xlab = "time", ylab = "net diversification rate", main = "Fitted net diversification rate")
plot.new()
models_list <- list(result_BConst, result_BVar, result_BDConst, result_BVarDConst, result_BConstDVar, result_BDVar)
save(models_list, file = paste0(path_to_output, "time_dep_models"))
load(file = paste0(path_to_output, "time_dep_models"))
AICc <- c()
model <- c()
lambda <- c()
alpha <- c()
LH <- c()
mu <- c()
beta <- c()
for (m in models_list){
AICc = c(AICc, m$aicc)
model = c(model, m$model)
LH = c(LH, m$LH)
lambda = c(lambda, m$lamb_par[1])
if (!is.na(m$lamb_par[2])){
alpha = c(alpha, m$lamb_par[2])
} else{alpha = c(alpha, NA)}
if(!is.null(m$mu_par)){
mu = c(mu, m$mu_par[1])
if (!is.na(m$mu_par[2])){
beta = c(beta, m$mu_par[2])
} else{beta = c(beta, NA)}
} else{mu = c(mu, NA)
beta = c(beta, NA)}
}
model_compare <- data.frame(model = model, LH = LH, AICc = AICc, Lambda = lambda, Alpha= alpha, Mu = mu, Beta = beta)
model_compare <- model_compare[order(model_compare$AICc),] # sort on AICc values
model_compare$dAICc <- model_compare$AICc - min(model_compare$AICc)
model_compare
The best fitting model appear to be the Pure Birth model with λ = 0.17495781.
result_BConst$lamb_par
plot_dtt(result_BConst,tot_time,N0=92)
Export the table:
write.csv(model_compare, file = paste0(path_to_output, "time_models_compare.csv"), quote = F)
Temperature from Condamine et al. 2015.
data(InfTemp)
range(InfTemp$Age)
λ = speciation
µ = extinction
λ | µ | Model Acronym |
---|---|---|
constant | 0 | BConst |
time | 0 | BTime |
constant | constant | BDConst |
time | constant | BTimeDConst |
constant | time | BConstDTime |
time | time | BDTime |
temperature | O | BTemp |
temperature | constant | BTempDConst |
constant | temperature | BConstDTemp |
temperature | temperature | BDTemp |
If already run, load the results (to avoid re-running the models every time the rmarkdown is knitted):
load(file = paste0(path_to_output, "temp_models"))
Fit the pure birth model (no extinction) with a constant speciation rate with time.
f.lamb <-function(t,x,y){y[1]+ 0*t}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.1)
mu_par<-c()
result_BConst <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=FALSE,fix.mu=TRUE,dt=1e-3)
result_BConst$model <- "BConst"
Plot the model:
source(file ="R/plot_fit_env2.R")
plot_fit_env2(result_BConst, InfTemp, tot_time = tot_time)
Fit the pure birth model (no extinction) with a exponential variation of the speciation rate with time.
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.1, 0.01)
mu_par<-c()
result_BTime <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
result_BTime$model <- "BTime"
Plot the model:
plot_fit_env2(result_BTime, InfTemp, tot_time = tot_time)
Fit the birth-death model with constant rates.
f.lamb <-function(t,x,y){y[1]+0*x}
f.mu<-function(t,x,y){y[1+0*x]}
lamb_par<-c(0.05)
mu_par<-c(0.01)
result_BDConst <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BDConst$model <- "BDConst"
Plot the model:
plot_fit_env2(result_BDConst, InfTemp, tot_time)
Fit a birth-death model with exponential variation of the speciation and constant extinction
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){y[1]+0*x}
lamb_par<-c(0.5, 0.1)
mu_par<-c(0.01)
result_BTimeDConst <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BTimeDConst$model <- "BTimeDConst"
Plot the model:
plot_fit_env2(result_BTimeDConst, InfTemp, tot_time)
Birth Death model with constant speciation and exponential variation of the extinction (BConstDTime)
Fit a birth-death model with constant speciation and exponential variation of the extinction.
f.lamb <-function(t,x,y){y[1]+0*x}
f.mu<-function(t,x,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.01)
mu_par<-c(0.1, 0.01)
result_BConstDTime <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BConstDTime$model <- "BConstDTime"
plot_fit_env2(result_BConstDTime, InfTemp, tot_time)
Birth Death model with exponential variation of both the speciation and the extinction rates (BDTime)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.1, 0.1)
mu_par<-c(0.01, 0.01)
result_BDTime <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BDTime$model <- "BDTime"
Plot the model:
plot_fit_env2(result_BDTime, InfTemp, tot_time)
Birth Death model with speciation varying as an exponential of temperature and no extinction (Btemp)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.1, 0.01)
mu_par<-c()
result_BTemp <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, fix.mu = TRUE,dt=1e-3)
result_BTemp$model <- "BTemp"
Plot the model:
plot_fit_env2(result_BTemp, InfTemp, tot_time)
Birth Death model with speciation varying as an exponential of temperature and constant extinction (BtempDConst)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){y[1] + 0*x}
lamb_par<-c(0.1, 0.01)
mu_par<-c(0.1)
result_BTempDConst <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BTempDConst$model <- "BTempDConst"
Plot the model:
plot_fit_env2(result_BTempDConst, InfTemp, tot_time)
Birth Death model with speciation constant and extinction varying as an exponential of temperature (BConstDTemp)
f.lamb <-function(t,x,y){y[1] + 0*x}
f.mu<-function(t,x,y){y[1] * exp(y[2] * x)}
lamb_par<-c(0.1)
mu_par<-c(0.1, 0.01)
result_BConstDTemp <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BConstDTemp$model <- "BConstDTemp"
plot_fit_env2(result_BConstDTemp, InfTemp, tot_time)
Birth Death model with both speciation and extinction varying as an exponential of temperature (BDTemp)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){y[1] * exp(y[2] * x)}
lamb_par<-c(0.1, 0.01)
mu_par<-c(0.1, 0.01)
result_BDTemp <- fit_env(tree,InfTemp,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BDTemp$model <- "BDTemp"
Plot the model:
plot_fit_env2(result_BDTemp, InfTemp, tot_time)
models_list <- list(result_BConst, result_BTime, result_BDConst, result_BTimeDConst, result_BConstDTime, result_BDTime, result_BTemp, result_BTempDConst, result_BConstDTemp, result_BDTemp)
save(models_list, file = paste0(path_to_output, "temp_models"))
AICc <- c()
model <- c()
lambda <- c()
alpha <- c()
LH <- c()
mu <- c()
beta <- c()
for (m in models_list){
AICc = c(AICc, m$aicc)
model = c(model, m$model)
LH = c(LH, m$LH)
lambda = c(lambda, m$lamb_par[1])
if (!is.na(m$lamb_par[2])){
alpha = c(alpha, m$lamb_par[2])
} else{alpha = c(alpha, NA)}
if(!is.null(m$mu_par)){
mu = c(mu, m$mu_par[1])
if (!is.na(m$mu_par[2])){
beta = c(beta, m$mu_par[2])
} else{beta = c(beta, NA)}
} else{mu = c(mu, NA)
beta = c(beta, NA)}
}
model_compare <- data.frame(model = model, LH = LH, AICc = AICc, Lambda = lambda, Alpha= alpha, Mu = mu, Beta = beta)
model_compare <- model_compare[order(model_compare$AICc),] # sort on AICc values
model_compare$dAICc <- model_compare$AICc - min(model_compare$AICc)
model_compare
The best fitting model appear to be the Pure Birth model with speciation varying exponentially with temperatures (λ = 0.1255 and α = 0.0829).
result_BTemp$lamb_par
# result_BDTemp$f.lamb(t)
Export the table:
write.csv(model_compare, file = paste0(path_to_output, "temp_models_compare.csv"), quote = F)
tot_time <- max(node.age(tree)$ages)
t <- seq(0, tot_time, length.out = 100)
df <- smooth.spline(InfTemp[, 1], InfTemp[, 2])$df # define the degree of freedom for spline interpolation
spline_result <- pspline::sm.spline(InfTemp[, 1], InfTemp[, 2], df = df)
# plot(-spline_result$x, spline_result$ysmth, type = "l", xlab = "Time", ylab = "Temperature °C")
spline_result_df <- data.frame(time = spline_result$x, temp = spline_result$ysmth)
BTemp_df = data.frame(time = t, lambda = result_BTemp$f.lamb(t))
library(tidyverse)
# spline_result_df$time <- round(spline_result_df$time, digits = 2)
# BTemp_df$time <- round(BTemp_df$time, digits = 2)
full_df <- full_join(spline_result_df, BTemp_df)
# full_df <- arrange(full_df, time)
full_df_trans <- gather(full_df, "lambda", "temp", key = "var", value = "value", na.rm = T)
scale_fact = 50
full_df_trans$value[full_df_trans$var == "lambda"] <- scale_fact * full_df_trans$value[full_df_trans$var == "lambda"]
g <- ggplot(full_df_trans)+
geom_line(aes(x = time, y = value, group = var, color = var), size = 1.5)+
scale_color_manual(values = c(temp = "#e41a1c", lambda = "#7570b3"))+
scale_y_continuous(name="Temperature (°C)", sec.axis=sec_axis(~./scale_fact, name="Fitted speciation rate (event.Myr⁻¹)"))+
scale_x_reverse(limits = c(25, 0), name = "Time before present")+
theme_bw()+
theme(axis.line.y.left = element_line(color = "#e41a1c", size = 1),
axis.ticks.y.left = element_line(color = "#e41a1c", size = 1),
axis.line.y.right = element_line(color = "#7570b3", size = 1),
axis.ticks.y.right = element_line(color = "#7570b3", size = 1),
axis.line.x = element_line(color = "#737373", size = 1),
axis.ticks.x = element_line(color = "#737373", size = 1),
axis.text = element_text(size = 12),
legend.position = "none")
g
ggsave(filename = paste0(path_to_output, "best_temp_model.png"), plot = g)
Elevation from PaleoElevation.RMD.
# paleo_elev_Africa_eq <- read.table("data/PaleoElev_Africa_Eq.txt", h = T)
# paleo_elev_Africa_eq <- read.table("data/PaleoElev_Africa_pts_envelope.txt", h = T)
paleo_elev_Africa_eq <- read.table("data/PaleoElev_Africa_pts_envelope_DF.txt", h = T)
Check that the interpolated elevation data will be correctly interpolated (black line = predicted elevation by the spline interpolation; red dots = known elevation):
env_data <- paleo_elev_Africa_eq
df <- smooth.spline(x = env_data[, 1], env_data[, 2])$df
df = 3
spline_result <- pspline::sm.spline(env_data[, 1], env_data[, 2], df = df)
ages <- seq(from = 0 , to = 30, by = 0.1)
predicted_elev <- predict(spline_result, ages)
{plot(ages , predicted_elev, type = "l", lwd = 2, xlab = "Time before present (My)", ylab = "Elevation (m)")
# plot(ages , predicted_elev, type = "l", lwd = 2, xlab = "Time before present (My)", ylab = "Elevation (m)", ylim = c(-1000,3000))
points(paleo_elev_Africa_eq$time, paleo_elev_Africa_eq$elev, col = "red", pch = 1, lwd = 2)
}
λ = speciation µ = extinction
λ | µ | Model Acronym |
---|---|---|
constant | 0 | BConst |
time | 0 | BTime |
constant | constant | BDConst |
time | constant | BTimeDConst |
constant | time | BConstDTime |
time | time | BDTime |
elevation | 0 | BElev |
elevation | constant | BElevDConst |
constant | elevation | BConstDElev |
elevation | elevation | BDElev |
If already run, load the results (to avoid re-running the models every time the rmarkdown is knitted):
load(file = paste0(path_to_output, "elev_models"))
Fit the pure birth model (no extinction) with a constant speciation rate with time.
source(file ="R/plot_fit_env2.R")
f.lamb <-function(t,x,y){y[1]+ 0*t}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.1)
mu_par<-c()
result_BConst <- fit_env(tree,paleo_elev_Africa_eq, tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=FALSE,fix.mu=TRUE,dt=1e-3)
result_BConst$model <- "BConst"
Plot the model:
plot_fit_env2(result_BConst, paleo_elev_Africa_eq, tot_time = tot_time)
Fit the pure birth model (no extinction) with a exponential variation of the speciation rate with time.
source(file ="R/plot_fit_env2.R")
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){0}
lamb_par<-c(0.1, 0.01)
mu_par<-c()
result_BTime <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,expo.lamb=TRUE,fix.mu=TRUE,dt=1e-3)
result_BTime$model <- "BTime"
Plot the model:
plot_fit_env2(result_BTime, paleo_elev_Africa_eq, tot_time = tot_time)
Fit the birth-death model with constant rates.
f.lamb <-function(t,x,y){y[1]+0*x}
f.mu<-function(t,x,y){y[1+0*x]}
lamb_par<-c(0.05)
mu_par<-c(0.01)
result_BDConst <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BDConst$model <- "BDConst"
Plot the model:
plot_fit_env2(result_BDConst, paleo_elev_Africa_eq, tot_time)
Fit a birth-death model with exponential variation of the speciation and constant extinction
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){y[1]+0*x}
lamb_par<-c(0.5, 0.1)
mu_par<-c(0.01)
result_BTimeDConst <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, cst.mu = TRUE,dt=1e-3)
result_BTimeDConst$model <- "BTimeDConst"
Plot the model:
plot_fit_env2(result_BTimeDConst, paleo_elev_Africa_eq, tot_time)
Birth Death model with constant speciation and exponential variation of the extinction (BConstDTime)
Fit a birth-death model with constant speciation and exponential variation of the extinction.
f.lamb <-function(t,x,y){y[1]+0*x}
f.mu<-function(t,x,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.01)
mu_par<-c(0.1, 0.01)
result_BConstDTime <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, cst.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BConstDTime$model <- "BConstDTime"
Plot the model:
plot_fit_env2(result_BConstDTime, paleo_elev_Africa_eq, tot_time)
Birth Death model with exponential variation of both the speciation and the extinction rates (BDTime)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * t)}
f.mu<-function(t,x,y){y[1] * exp(y[2] * t)}
lamb_par<-c(0.1, 0.1)
mu_par<-c(0.01, 0.01)
result_BDTime <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, expo.lamb = TRUE, expo.mu = TRUE,dt=1e-3)
result_BDTime$model <- "BDTime"
Plot the model:
plot_fit_env2(result_BDTime, paleo_elev_Africa_eq, tot_time)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){0 }
lamb_par<-c(0.2, 0.001)
mu_par<-c()
result_BElev <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction, fix.mu = TRUE,dt=1e-3, df = 3)
result_BElev$model <- "BElev"
Plot the model:
plot_fit_env2(result_BElev, paleo_elev_Africa_eq, tot_time)
Birth Death model with speciation varying as an exponential of elevation and constant extinction (BelevDConst)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){y[1] + 0*x}
lamb_par<-c(0.1, 0.001)
mu_par<-c(0.1)
result_BElevDConst <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BElevDConst$model <- "BElevDConst"
Plot the model:
plot_fit_env2(result_BElevDConst, paleo_elev_Africa_eq, tot_time)
Birth Death model with speciation constant and extinction varying as an exponential of elevation (BConstDElev)
f.lamb <-function(t,x,y){y[1] + 0*x}
f.mu<-function(t,x,y){y[1] * exp(y[2] * x)}
lamb_par<-c(0.1)
mu_par<-c(0.1, 0.001)
result_BConstDElev <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BConstDElev$model <- "BConstDElev"
Plot the model:
plot_fit_env2(result_BConstDElev, paleo_elev_Africa_eq, tot_time)
Birth Death model with both speciation and extinction varying as an exponential of elevation (BDElev)
f.lamb <-function(t,x,y){y[1] * exp(y[2] * x)}
f.mu<-function(t,x,y){y[1] * exp(y[2] * x)}
lamb_par<-c(0.1, 0.01)
mu_par<-c(0.1, 0.01)
result_BDElev <- fit_env(tree,paleo_elev_Africa_eq,tot_time,f.lamb,f.mu,lamb_par,mu_par,
f=sampling_fraction,dt=1e-3)
result_BDElev$model <- "BDElev"
Plot the model:
plot_fit_env2(result_BDElev, paleo_elev_Africa_eq, tot_time)
Save the models.
models_list <- list(result_BConst, result_BTime, result_BDConst, result_BTimeDConst, result_BConstDTime, result_BDTime, result_BElev, result_BElevDConst, result_BConstDElev, result_BDElev)
save(models_list, file = paste0(path_to_output, "elev_models"))
Evaluate the best model.
AICc <- c()
model <- c()
lambda <- c()
alpha <- c()
LH <- c()
mu <- c()
beta <- c()
for (m in models_list){
AICc = c(AICc, m$aicc)
model = c(model, m$model)
LH = c(LH, m$LH)
lambda = c(lambda, m$lamb_par[1])
if (!is.na(m$lamb_par[2])){
alpha = c(alpha, m$lamb_par[2])
} else{alpha = c(alpha, NA)}
if(!is.null(m$mu_par)){
mu = c(mu, m$mu_par[1])
if (!is.na(m$mu_par[2])){
beta = c(beta, m$mu_par[2])
} else{beta = c(beta, NA)}
} else{mu = c(mu, NA)
beta = c(beta, NA)}
}
model_compare <- data.frame(model = model, LH = LH, AICc = AICc, Lambda = lambda, Alpha= alpha, Mu = mu, Beta = beta)
model_compare <- model_compare[order(model_compare$AICc),] # sort on AICc values
model_compare$dAICc <- model_compare$AICc - min(model_compare$AICc)
model_compare
The best fitting model appear to be the Pure Birth model with speciation varying exponentially with elevation (λ = 0.001725 and α = 0.0066).
result_BElev$lamb_par
# result_BDElev$f.lamb(t)
Export the table:
write.csv(model_compare, file = paste0(path_to_output, "elev_models_compare.csv"), quote = F)
tot_time <- max(node.age(tree)$ages)
t <- seq(0, tot_time, length.out = 100)
df <- smooth.spline(paleo_elev_Africa_eq[, 1], paleo_elev_Africa_eq[, 2])$df # define the degree of freedom for spline interpolation
spline_result <- pspline::sm.spline(paleo_elev_Africa_eq[, 1], paleo_elev_Africa_eq[, 2], df = df)
# plot(-spline_result$x, spline_result$ysmth, type = "l", xlab = "Time", ylab = "Elevation °C")
spline_result_df <- data.frame(time = spline_result$x, elev = spline_result$ysmth)
result_BElev = models_list[[7]]
BElev_df = data.frame(time = t, lambda = result_BElev$f.lamb(t))
library(tidyverse)
# spline_result_df$time <- round(spline_result_df$time, digits = 2)
# BElev_df$time <- round(BElev_df$time, digits = 2)
full_df <- full_join(spline_result_df, BElev_df)
# full_df <- arrange(full_df, time)
full_df_trans <- gather(full_df, "lambda", "elev", key = "var", value = "value", na.rm = T)
scale_fact = 2500
full_df_trans$value[full_df_trans$var == "lambda"] <- scale_fact * full_df_trans$value[full_df_trans$var == "lambda"]
g <- ggplot(full_df_trans)+
geom_line(aes(x = time, y = value, group = var, color = var), size = 1.5)+
scale_color_manual(values = c(elev = "#e41a1c", lambda = "#7570b3"))+
scale_y_continuous(name="Elevation (m)", sec.axis=sec_axis(~./scale_fact, name="Fitted speciation rate (event.Myr⁻¹)"))+
scale_x_reverse(limits = c(25, 0), name = "Time before present")+
theme_bw()+
theme(axis.line.y.left = element_line(color = "#e41a1c", size = 1),
axis.ticks.y.left = element_line(color = "#e41a1c", size = 1),
axis.line.y.right = element_line(color = "#7570b3", size = 1),
axis.ticks.y.right = element_line(color = "#7570b3", size = 1),
axis.line.x = element_line(color = "#737373", size = 1),
axis.ticks.x = element_line(color = "#737373", size = 1),
axis.text = element_text(size = 12),
legend.position = "none")
g
Save the plot:
ggsave(filename = paste0(path_to_output, "best_elev_model.png"), plot = g)
Plot with geologicale timescale:
library(deeptime)
GTS <- force(epochs)
lmio <- c("Late Miocene", 11.6300, 5.3330, "L.Mio", "#FFFF66")
mmio <- c("Middle Miocene", 15.9700, 11.6300, "M.Mio", "#FFFF4D")
emio <- c("Early Miocene", 23.0300, 15.9700, "E.Mio", "#FFFF33")
GTS_perso <- rbind(GTS[c(1:3),], lmio, mmio, emio, GTS[5,])
GTS_perso$max_age <- as.numeric(GTS_perso$max_age)
GTS_perso$min_age <- as.numeric(GTS_perso$min_age)
g <- ggplot(full_df_trans)+
geom_line(aes(x = time, y = value, group = var, color = var), size = 1.5)+
scale_color_manual(values = c(elev = "#e41a1c", lambda = "#7570b3"))+
scale_y_continuous(name="Elevation (m)", sec.axis=sec_axis(~./scale_fact, name="Fitted speciation rate (event/Myr)"))+
scale_x_reverse(limits = c(25, 0), name = "Time before present")+
coord_geo(neg = F, pos = "b", dat = GTS_perso, abbrv = F, height = unit(1, "line"), size = 2.5, bord = c("top", "bottom"), skip = c( "Holocene"), expand = T, center_end_labels = T)+
theme_bw()+
theme(axis.line.y.left = element_line(color = "#e41a1c", size = 1),
axis.ticks.y.left = element_line(color = "#e41a1c", size = 1),
axis.line.y.right = element_line(color = "#7570b3", size = 1),
axis.ticks.y.right = element_line(color = "#7570b3", size = 1),
axis.line.x = element_line(color = "#737373", size = 0),
axis.ticks.x = element_line(color = "#737373", size = .5),
axis.text = element_text(size = 12),
axis.title.y.right = element_text(vjust = 1),
legend.position = "none"
)
g
ggsave(filename = paste0(path_to_output, "best_elev_model_GTS.pdf"), plot = g, width = 8.4, height = 8.4, units = "cm", dpi = 300, scale = 2)
See the RPANDA - C4 document.