Author: Léo-Paul Dagallier
Last update: 2023-08-09
Note: the RevBayes logs have been compressed. To reproduce this
notebook, you will first need to decompress the file
output/RevBayes/monodoreae3_BDSE_RevBayes_logs.zip
.
Prepare the path variables:
- in bash:
path_to_output="outputs/";
cd $path_to_output
mkdir RevBayes
cd RevBayes
- in R:
path_to_tree = c("data/name_MCC_monodoreae3_monod_pruned.newick")
path_to_output = c("outputs/RevBayes/")
data_suffix = c("monodoreae3")
See: https://revbayes.github.io/tutorials/divrate/branch_specific.html.
Prepare several analysis: 6 vs 10 rate categories 1 rate shift, 4 rate shifts, 10 rate shifts
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_1shift_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_4shifts_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_10shifts_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_10RateCat_1shift_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_10RateCat_4shift_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_10RateCat_10shift_monodoreae3.Rev
#2750
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_4shifts_fixed_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_4shifts_free_monodoreae3.Rev
mpirun -np 2 rb-mpi mcmc_BDSE_6RateCat_4shifts_monodoreae3.Rev
library(RevGadgets)
library(phytools)
library(tibble)
library(ggtree)
library(treeio)
library(ggplot2)
library(RColorBrewer)
source(file = "R/plot_branch_rates_tree2.R")
# load the files:
my_tree_file = path_to_tree
my_branch_rates_file = paste0(path_to_output, data_suffix, "_BDSE_6RateCat_1shift_rates.log")
my_branch_rates_files = list.files(path_to_output)[grep("rates.log", list.files(path_to_output))]
# set the colors:
Colors <- colorRampPalette(rev(c('darkred',brewer.pal(n = 8, name = "Spectral"),'darkblue')))(100)
Branch-specific speciation rates:
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=my_branch_rates_file, parameter_name = "lambda", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Speciation rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_", data_suffix, "_BDSE_6RateCat_Speciation_rate.pdf"), width=15, height=15, units="cm")
For all the analyses:
for (f in my_branch_rates_files){
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=paste0(path_to_output, f), parameter_name = "lambda", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Speciation rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_BSDR_Speciation_rate_", gsub(x = f, pattern = ".log", replacement = ""), ".pdf"), width=15, height=15, units="cm")
}
Branch-specific extinction rates:
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=my_branch_rates_file, parameter_name = "mu", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Extinction rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_", data_suffix, "_BDSE_6RateCat_Extinction_rate.pdf"), width=15, height=15, units="cm")
For all the analyses:
for (f in my_branch_rates_files){
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=paste0(path_to_output,f), parameter_name = "mu", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Extinction rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_BSDR_Extinction_rate_", gsub(x = f, pattern = ".log", replacement = ""), ".pdf"), width=15, height=15, units="cm")
}
Branch-specific net diversification rates:
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=my_branch_rates_file, parameter_name = "net_div", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Net Diversification rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_", data_suffix, "_BDSE_6RateCat_Net_Diversification_rate.pdf"), width=15, height=15, units="cm")
For all the analyses:
for (f in my_branch_rates_files){
plot_branch_rates_tree2(tree_file=my_tree_file, branch_rates_file=paste0(path_to_output,f), parameter_name = "net_div", trans = "identity", colors = Colors) + geom_tiplab(color = "black", size = 2) + scale_color_gradientn("Net diversification rate", colors = Colors, trans = "identity") + theme(legend.position=c(0.2,0.85))+ scale_x_continuous(limits = c(0,35))
ggsave(paste0(path_to_output, "RevBayes_BSDR_Net_Diversification_rate_", gsub(x = f, pattern = ".log", replacement = ""), ".pdf"), width=15, height=15, units="cm")
}