diff --git a/notebooks/check-g-mag-random.ipynb b/notebooks/check-g-mag-random.ipynb new file mode 100644 index 0000000..9bd5de7 --- /dev/null +++ b/notebooks/check-g-mag-random.ipynb @@ -0,0 +1,170 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "rng = np.random.RandomState(43)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "g1, g2 = rng.normal(size=(2, 1_000_000))*1e-3 + 0.02" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1.00132769e-06, 6.64097921e-10],\n", + " [6.64097921e-10, 9.97662766e-07]])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.cov(g1, g2)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0010006631265643401, 0.000998830200162854, 0.0009997776905801786)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(g1), np.std(g2), np.std(np.sqrt(g1**2 + g2**2)) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.6044601312014296e-09,\n", + " 1.5979783261011428e-09,\n", + " 3.204493672957289e-09,\n", + " 9.995554305818354e-07)" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.var(g1**2), np.var(g2**2), np.var(g1**2 + g2**2)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# g1+= 0.02" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.4332765422958652e-06, 1.4438625190160518e-06, 2.032142858328091e-06)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.019049885896081e-05" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.std(g1**2 + g2**2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "bpd_gpu2", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/check-likelihood-toy1.ipynb b/notebooks/check-likelihood-toy1.ipynb index 310bf3b..3d69b63 100644 --- a/notebooks/check-likelihood-toy1.ipynb +++ b/notebooks/check-likelihood-toy1.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 2, "id": "0042638c-5358-42cc-a2a5-bf27b226783e", "metadata": { "tags": [] @@ -31,15 +31,21 @@ "from jax import random\n", "import matplotlib.pyplot as plt\n", "\n", - "from jax import jit as jjit \n", - "from jax import vmap\n", - "from jax import grad\n", + "from jax import jit, vmap, grad\n", "\n", "from bpd.prior import sample_ellip_prior, shear_transformation, ellip_mag_prior\n", - "from bpd.likelihood import shear_loglikelihood, shear_loglikelihood_unreduced\n", + "from bpd.likelihood import shear_loglikelihood\n", "from bpd.pipelines.toy_ellips import pipeline_toy_ellips_samples\n" ] }, + { + "cell_type": "markdown", + "id": "047469b2", + "metadata": {}, + "source": [ + "## Fisher and likelihood" + ] + }, { "cell_type": "code", "execution_count": 3, @@ -52,7 +58,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-11-25 08:16:25.428298: W external/xla/xla/service/gpu/nvptx_compiler.cc:836] The NVIDIA driver's CUDA version is 12.2 which is older than the PTX compiler version (12.6.20). Because the driver is older than the PTX compiler version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.\n" + "2024-12-03 04:44:33.866694: W external/xla/xla/service/gpu/nvptx_compiler.cc:836] The NVIDIA driver's CUDA version is 12.2 which is older than the PTX compiler version (12.6.20). Because the driver is older than the PTX compiler version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages.\n" ] } ], @@ -70,14 +76,14 @@ }, "outputs": [], "source": [ - "seed = 43\n", + "seed = 42\n", "key = random.key(seed)\n", "k1, k2 = random.split(key, 2)" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 5, "id": "7aef7d7d-8efc-4ada-a5f1-ae2a3100d35c", "metadata": { "tags": [] @@ -90,21 +96,21 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 7, "id": "4114dda7-9858-41c5-94ed-5e57fd285e3e", "metadata": { "tags": [] }, "outputs": [], "source": [ - "pipe = jjit(partial(pipeline_toy_ellips_samples, g1=g1, g2 = g2, sigma_e=sigma_e, sigma_e_int=sigma_e_int, sigma_m=1e-5, n_gals=1000, \n", + "pipe = jit(partial(pipeline_toy_ellips_samples, g1=g1, g2 = g2, sigma_e=sigma_e, sigma_e_int=sigma_e_int, sigma_m=1e-5, n_gals=1000, \n", " n_samples_per_gal=100, )\n", " )" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 8, "id": "eb33b64e-1ad8-47d6-a5cf-7471846f71d7", "metadata": { "tags": [] @@ -116,7 +122,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 11, "id": "7c09a0a2-e496-4195-bb6e-b96686f2aa57", "metadata": { "tags": [] @@ -126,23 +132,24 @@ "data": { "text/plain": [ "(Array(0.00073002, dtype=float64),\n", - " Array(0.00070711, dtype=float64, weak_type=True),\n", - " Array(0.00072945, dtype=float64))" + " Array(0.00072945, dtype=float64),\n", + " Array(0.0007295, dtype=float64),\n", + " Array(0.00070711, dtype=float64, weak_type=True))" ] }, - "execution_count": 40, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# compare std deviations \n", - "e_sheared[:, 0].std(), sigma_e / jnp.sqrt(2), e_obs[:,0].std()" + "e_sheared[:, 0].std(), e_obs[:,0].std(), e_post[:, :, 0].std(), sigma_e / jnp.sqrt(2)" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 13, "id": "d6523b5f-1f70-45da-922f-8c6cc4216eb0", "metadata": { "tags": [] @@ -151,10 +158,10 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 41, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, @@ -178,21 +185,22 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 15, "id": "f92c145f-ba49-4bc2-b62e-e982f18c8a0d", "metadata": { "tags": [] }, "outputs": [], "source": [ - "prior = partial(ellip_mag_prior, sigma=sigma_e)\n", + "prior = ellip_mag_prior\n", "interim_prior = partial(ellip_mag_prior, sigma=sigma_e_int)\n", - "likelihood = jjit(partial(shear_loglikelihood, prior=prior, interim_prior=interim_prior)) " + "_likelihood = jit(partial(shear_loglikelihood, prior=prior, interim_prior=interim_prior, sigma_e=sigma_e))\n", + "likelihood = lambda g, e_post: _likelihood(g, e_post=e_post)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 16, "id": "f1e8015b-6c12-4db1-8e6b-311a856996a8", "metadata": { "tags": [] @@ -201,16 +209,16 @@ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 44, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGdCAYAAAABhTmFAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYU0lEQVR4nO3dd1xT5+IG8CeDJKywhygiiqI4ULAiddVRUWntstYWtdfa+bPD2mG97bW7etvaeTvs0g5bq7faupU6q6IiiiLgHmxQkYQhhCTv7w8gt1St7JPxfD+ffD4aTsLzEiAP57znPTIhhAARERGRHZBLHYCIiIiopbDYEBERkd1gsSEiIiK7wWJDREREdoPFhoiIiOwGiw0RERHZDRYbIiIishssNkRERGQ3lFIHaC1msxl5eXlwd3eHTCaTOg4RERE1gBACpaWlCAoKglze+P0vdlts8vLyEBwcLHUMIiIiaoLs7Gx06NCh0Y+z22Lj7u4OoOYLo9VqJU5DRC2lwmDEgDc3AwD2vTgSLiq7/TVG5JD0ej2Cg4Mt7+ONZbe/EeoOP2m1WhYbIjuiNBghV7sAqPn5ZrEhsk9NnUbCycNERERkN1hsiIiIyG6w2BAREZHdYLEhIiIiu8FiQ0RERHaDxYaIiIjsBosNERER2Q0WGyIiIrIbLDZERERkN1hsiIiIyG6w2BAREZHdYLEhIiIiu8GrxxGR1bhsMCFPdxmFukroLldDX1kN/WUjSiurYTQLmIRAVbXJsv3C7afh4ewEV7UCXi4q+Gs18HdXw9dNDZWSf7cROSIWGyJqU2azQFZxBY4XltbeynDqfBnySi7jUkV1o57rw80nrvmxQK0Gnf1cEepbc+seqEXv9h7wcHFq7hCIyIqx2BBRq6owGJFy7hIOnCvBgaxLSM0uge7ytQuMq0qBdp7O8HJxglbjBK2zE9zUSjgp5JDLAJMQWLTrLADgzn5BMJgEKgwmXCyrQlFpFc6XVsFoFijQV6JAX4ndpy7We/4QHxf0au+BqI5euLGLD8ID3CGXy1rzS0BEbYjFhohalNkskJGvx44T5/HH8QvYf64Y1SZRbxuVUo6u/m7oFuCOrgFu6OrvjmBvZ7TzcIZWo4RMdu2iUWEwWorNG3f0houq/q8xs1ngUoUB54orcOZ8Oc5cKMep82VIz9Mjq7gC5y7W3NYezgcAeLk4YWBnHwzp6odRPfzhr9W07BeEiNoUiw0RNZvJLJBy7hLWpeVjw5ECFOgr6328vacz+nfyQlTHmlv3du5wUrTOHBi5XAYfNzV83NSI6uhV72MlFQYcydXjUE4J9p0pRvLZYlyqqMb6IwVYf6QA/1wJRAZ7YnREAOJ6BiLM361VMhJR62GxIaImy8jTY9n+bKxNy8f50irL/S4qBW7s4oOh3fwwtKsfQnxc/nYvTFvxdFFhcFdfDO7qixnDgWqTGYdzSrD75EVsPlqE1OwSHKq9vbPxGHq398Ad/drj1sgg+LmrpY5PRA3AYkNEjaKrqMaqQ7lYtj8Habk6y/1ajRI3RwRiXO9ADArzhcZJIWHKhnFSyBEd4o3oEG88MbIrivSV+D2zCJsyCrDzxAWk5eqQlqvDm+syMaybHyYP7Ihh3fyh4JwcIqvFYkNEDXKisBTf7DqDFQdyUWU0AwCcFDLcHBGACdEdMDjMz+ZPsfbXanBfTEfcF9MRF8uqsDYtHysO5CI1uwRbjhZhy9EitPd0RsLAjrinfzB83LgXh8jasNgQ0TUJIfDHiQv4eucZbD9+3nJ/90B3TOwfjNv7tYe3q0rChK3Hx02NqbGdMDW2E06fL8NP+7KwbH8Ocksu4+0Nx/DB7ycwsX8HPDykCzr6uEgdl4hqsdgQ0RXMZoFNGYX4cPMJZObrAQAyGRAXEYjpQ0LRP8TLKubMtJXOfm54MT4Cz4wOx+pDefh+zzkcztHhhz1Z+HFvFm6NDMKjw7qgRzut1FGJHB6LDRFZCFFbaH4/gYzaQuOqUmDiDcGYdmOow++Z0DgpcHf/YEyI7oC9Z4rx6bZT2HH8PH5LzcNvqXkYHRGAZ+PC0S3AXeqoRA6LxYaIAAA7jp/H/PVHLYXGTa3EtEGdMH1wKDxd7PNwU1PJZDIM7OyDgZ19cCRXh8+3n8K6tHxsyihEYmYh7ujXHk+P6oZgb8cugkRSYLEhcnDHC0vx1rpMbDtWM4fGVaXAtEGheHAIC01D9Grvgf/cF4UThaVYsOk4NqQXYMWBXKw+lIeEmBDMHNWVX0eiNsRiQ+SgLpRV4f3E4/hpXxbMouYMpykDO+GJEWHwstMJwa2pa4A7Pp8SjdTsEryz8Sh2nbyIxbvP4rfUXDwbF45JN3TkaeJEbYDFhsjBmM0CPyVn4d/rj0JfaQQAjOkZiBfGdkcnX1eJ09m+vsGeWPLgQOw8cQGvrUnH8cIyvLjyCH7cm4VXx/dE/07eUkcksmssNkQOJCNPjxd/TcPBrBIAQM8gLebeEoGYzj7SBrNDg7v6Yt2TQ/D9nnN4L/E40vP0mPB5EiZEd8BL8T14eIqolbDYEDmACoMR7ycexze7zsJkFnBTK/HM6G6YGtuJh0dakVIhx7RBoRgfGYR3Nx3D0uRs/DclB9uOncfrt/XE2N7tpI5IZHdYbIjsXMq5Yjyz7BDOXqwAAIzrHYi5t/REoAevYt1WfNzUmHdnH0yI7oDn/3sYp86X47ElBxDXMwCv39aLVxQnakG2vf45EV1TZbUJ89ZlYsLnSTh7sQLtPDT45h/98WlCNEuNRKJDvLHuqSF4ckQYlHIZNqYXYtR727HqUJ7U0YjsBosNkR1Ky9Hh1o93YuGO0xACuCuqAzbMHIoR3QOkjubw1EoFZo0Ox+onBqN3ew/oK4148qeDePrnVOgrq6WOR2TzWGyI7IjZLPDVH6dx52e7cKKoDL5uanw5tT8WTIyEh7OT1PHoT3q002LF/92IJ0eEQS4DVh7MxdgP/sC+M8VSRyOyaSw2RHaiuNyA6d8m4421mag2CYzpGYhNTw/FzRHcS2OtnBRyzBodjuWPxiLY2xm5JZcx6YskvLfpGExmIXU8IpvEYkNkB/acvoixH+7A1mPnoVLK8cbtvfDZ5Ci7vfK2vYkO8ca6J4dgQnQHmAXw0ZaTmPrNXlwoq5I6GpHNYbEhsmFCCHyy9STu+3IPCvVV6OLnit9mDMLkgSEOdfVte+CuccK7d0fiw0l94eykwK6TFxH/0R9IPstDU0SNwWJDZKPKqoz4vyUH8M7GYzALYEJ0B6x+YjB6tNNKHY2a4ba+7bHq8UEI83dDob4Kk77Ygy93nIYQPDRF1BAsNkQ26MyFctzxyS6sP1IAJ4UMb93RG+/eHQkXFZemsgddA9zx24xBuK1vEExmgTfXZWLmz6morDZJHY3I6rHYENmYLUcLMf4/O3GiqAz+7mosfTgW98V0lDoWtTBXtRIf3NMXr9/WE0q5DL+l5uGehUko0FVKHY3IqrHYENkIIQS+2XkG07/dj9JKI6JDvLDmicGIDvGSOhq1EplMhimxnfD99Bh4uTjhUI4O4/+zE6nZJVJHI7JaLDZENsBoMuPlVel4bU0GhAAm3RCMnx4ayKX4HURsFx/8NmMwwgPcUVRahYkLk/Bbaq7UsYisEosNkZUrqzLioe/247ukcwCAOWO7Y96dvaFS8sfXkXT0ccEv/3cjRvUIgMFoxlNLU/H59lOcVEz0F/zNSGTF8nWXcffnSdh67DzUSjk+S4jCI8O68FRuB+WmVuKLKdF4cHAoAGD++qN4ZVU6F/Mj+pNmFZv58+dDJpNh5syZlvseeeQRdOnSBc7OzvDz88Ntt92Go0eP1ntcVlYW4uPj4eLiAn9/fzz33HMwGo31ttm2bRuioqKgVqsRFhaGxYsXNycqkc05UViKOz7Zjcx8PXzd1Pj5kViM7d1O6lgkMblchpduicC/bomATAZ8m3QO/7ckhWdMEdVqcrFJTk7GwoUL0adPn3r3R0dHY9GiRcjMzMTGjRshhMDo0aNhMtX80JlMJsTHx8NgMGD37t349ttvsXjxYsydO9fyHGfOnEF8fDyGDx+O1NRUzJw5Ew8++CA2btzY1LhENuVg1iXcvTAJBfpKhPm74dcZN6JvsKfUsciKTB8civ/cGwWVUo6N6YW478s9KC43SB2LSHIy0YQDtGVlZYiKisKnn36KN954A3379sUHH3xw1W0PHz6MyMhInDx5El26dMH69etxyy23IC8vDwEBNdew+fzzzzF79mycP38eKpUKs2fPxtq1a3HkyBHL80yaNAklJSXYsGFDgzLq9Xp4eHhAp9NBq+WCZWQ7/jhxHo98n4IKgwl9gz2x6B83wIuXRrCoMBgRMbfmj5yM1+Icfu2efWeK8dB3+6G7XI0wfzcseTAGAZxUTjasue/fTdpjM2PGDMTHx2PUqFF/u115eTkWLVqE0NBQBAcHAwCSkpLQu3dvS6kBgLi4OOj1eqSnp1u2+etzx8XFISkp6Zqfq6qqCnq9vt6NyNasS8vHA4uTUWEwYUhXXyx5MIalhv7WgFBv/PJYLNp5aHCyqAx3f56E7OIKqWMRSabRxWbp0qU4cOAA5s2bd81tPv30U7i5ucHNzQ3r169HYmIiVKqaX84FBQX1Sg0Ay/8LCgr+dhu9Xo/Lly9f9XPOmzcPHh4elltdkSKyFUv3ZWHGjwdQbRKI790OX93fH65qx94bQQ0T5u+OZY/EoqO3C7KKK3D350k4db5M6lhEkmhUscnOzsZTTz2FJUuWQKO59q7OhIQEHDx4ENu3b0e3bt0wceJEVFa27mqZc+bMgU6ns9yys7Nb9fMRtaTvks7ihRVpEAK4L6YjPrq3H9RKhdSxyIYEe7tg+aOx6OrvhgJ9Je5ZmISMPO65JsfTqGKTkpKCoqIiREVFQalUQqlUYvv27fjoo4+gVCotE4Q9PDzQtWtXDB06FP/9739x9OhRrFy5EgAQGBiIwsLCes9b9//AwMC/3Uar1cLZ2fmq2dRqNbRabb0bkS1YtOsM5v5Wcxj2oSGhePP2XlDIeTo3NV6AVoOfH4lFzyAtLpQZMOmLJBzMuiR1LKI21ahiM3LkSKSlpSE1NdVy69+/PxISEpCamgqF4sq/MIUQEEKgqqoKABAbG4u0tDQUFRVZtklMTIRWq0VERIRlm82bN9d7nsTERMTGxjZ6gETW7Ks/TuPV1RkAgEeHdcE/x/XgGjXULN6uKvz40EBEh3hBX2nE1K/34RAvwUAOpFHFxt3dHb169ap3c3V1hY+PD3r16oXTp09j3rx5SElJQVZWFnbv3o27774bzs7OGDduHABg9OjRiIiIwJQpU3Do0CFs3LgRL730EmbMmAG1Wg0AePTRR3H69Gk8//zzOHr0KD799FMsW7YMTz/9dMt/BYgk8sWOU3hjbSYAYMbwLpg9JpylhlqEh7MTvp8+AANCvVFaZcSUr/ciLUcndSyiNtGiKw9rNBr88ccfGDduHMLCwnDPPffA3d0du3fvhr+/PwBAoVBgzZo1UCgUiI2NxeTJkzF16lS89tprlucJDQ3F2rVrkZiYiMjISCxYsABfffUV4uLiWjIukWQWbj+Ft9bVLFz55MiueHY0Sw21LBeVEov+cQP61+65mfz1XqTnsdyQ/WvSOja2gOvYkLX6dvdZvLyqZk7NzFFdMXNUN4kT2RauY9M4ZVVGTP16Lw5klcDLxQk/PjQQPdrxdyJZL0nWsSGiplm2P9tSap4YEcZSQ63OTa3E4gcGIDLYE5cqqpHw1V4cLyyVOhZRq2GxIWojaw/n44VfDgMAHhgUilk3s9RQ29BqnPDdAwPQu70HissNmPzVXmRd5CJ+ZJ9YbIjawJajhXhq6UGYBTDphmD86xae/URtq25CcfdAdxSVVmHKN3tRVNq664sRSYHFhqiV7T51AY/+cABGs8D4yCC8eUdvlhqShKeLCt89MAAdvV1w7mIFpn69D7qKaqljEbUoFhuiVnQkV4eHv0uBwWjGzREBWDAxkovvkaT8tRr8MD0Gfu5qHC0oxQPfJqPCYJQ6FlGLYbEhaiXZxRX4x6JklFUZMbCzNz6+tx+cFPyRI+l19HHB99MHQKtRIuXcJTz2wwEYjGapYxG1CP6WJWoFF8uqMPWbfbhQVoXuge74Ymp/aJx47SeyHt0DtVg0bQCcnRTYfvw8nv/vIdjp6h/kYFhsiFpYhcGIB77djzMXytHe0xnfPjAAWo2T1LGIrhAd4oXPp0RDKZfh19Q8LNh0XOpIRM3GYkPUgqpNZsxYcgCHskvg4eyEbx+4AQFajdSxiK5pWDc/vHVnbwDAf7aexNJ9WRInImoeFhuiFiKEwL9+PYKtx85DrZTjm3/0R5i/u9SxiK5rYv9gPDmyKwDgxV+PYNuxous8gsh6sdgQtZAvdpzG0uRsyGXAx/f2Q3SIt9SRiBrs6VFdcWdUe5jMAjOWHOB1pchmsdgQtYCN6QWYv6HmopYvxUdgdM9AiRMRNY5MJsP8O/tgUJgPyg0mTFuUjNySy1LHImo0FhuiZjqSq8PMpakQApg8sCOmDeokdSSiJlEp5fhscjTCA2pWJ37w2/0or+IaN2RbWGyImqFAV4np3ybjcrUJQ7r64pVbe3JVYbJpWo0Tvpl2A3zd1MjM1+OZZYdgNvM0cLIdLDZETVRhMOLB75JRqK9CV383fJIQBSUX4CM70N7TGQunREOlkGNDegE++J2ngZPt4G9hoiYQQuCZZYdwJFcPb1cVvr7/Bq5VQ3YlOsTLchr4R1tOYvWhPIkTETUMiw1RE3y67RTWHymASiHHF1Oi0dHHRepIRC1uQnQHPDK0MwDg2eWHcDinRNpARA3AYkPUSFuPFuHdTccAAK/d1hP9O/G0brJfz4/pjhHd/VFlNOOh7/ajUF8pdSSiv8ViQ9QIZy6U48mlByEEcF9MR0wa0FHqSEStSiGX4cNJfdHV3w2F+io89kMKL5hJVo3FhqiByqqMePi7/SitNCI6xAuv3NpT6khEbcJd44Qvp/aHu0aJA1kleHNthtSRiK6JxYaoAYQQeHbZIZwoKkOAVo3PEqKgUvLHhxxHJ19XfHBPXwDAt0nnsPJgjrSBiK6Bv5mJGuDTbaewIb1msvBnk6PhzwtbkgMa2SPAck2pOSvSkJGnlzgR0ZVYbIiu448T5+tNFo7q6CVxIiLpPDWyK4Z180NltRmP/pACXUW11JGI6mGxIfobBbpKy+US7h0QzMnC5PDqJhN38HJGVnEFnl6WypWJyaqw2BBdg9FkxhM/HcDFcgMi2mnxMicLEwEAPF1U+HxyNNRKObYcLcLHW05KHYnIgsWG6Bre3XQcyWcvwV2txKcJUdA4KaSORGQ1erX3wJt31KxM/MHm49h98oLEiYhqsNgQXcXmzEJ8vv0UAODtCX3QyddV4kRE1mdCdAdMuiEYQgBP/ZyK86VVUkciYrEh+qucSxWYtewQAGDaoE4Y27udxImIrNfLt/ZEtwA3nC+twizOtyErwGJD9CcGoxkzfjwI3eVqRAZ7Ys7YHlJHIrJqzioFPrkvChonOf44cQGf1e7pJJIKiw3Rn/x7w1Ecyi6Bh7MTPrmvHxfhI2qArgHueO22XgCA9xKPI/lsscSJyJHxtzZRrW3HivD1zjMAgAV3R6KDF6/YTdRQd0d3wB392sNkFnjyp4O4VG6QOhI5KBYbIgDnS6vw7PKaeTX/uLETRkUESJyIyLbIZDK8fnsvdPZ1Rb6uEs8uPwQhON+G2h6LDTk8IQSe++8hXCgzIDzAHS+M7S51JCKb5KZW4uPaQ7ibjxZh8e6zUkciB8RiQw5v0a6z2HbsPNRKOT66tx/XqyFqhp5BHngpvmbS/bz1R3GsoFTiRORoWGzIoWXk6TF//VEAwEvxPRAe6C5xIiLbN2VgCG4K94PBaMZTSw+iymiSOhI5EBYbcliXDSY8ufQgDCYzRvXwx+SBIVJHIrILMpkMb0/oA29XFY4WlOLdjcekjkQOhMWGHNYbazNwsqgM/u5qvD0hEjKZTOpIRHbD312Df9/VBwDw5R9nsIuXXKA2wmJDDmnL0UIs2ZsFAHhvYl94u6okTkRkf26OCMC9AzoCAJ5ZdgglFTwFnFofiw05nEvlBsz+JQ0A8MCgUAzu6itxIiL79a9beiDU1xUF+kq8uPIITwGnVsdiQw7nX78dwfnSKnTxc8XzY8KljkNk11xUSnxwT18o5TKsTcvHigO5UkciO8diQw5l9aE8rDmcD4Vchvcm9uWp3URtIDLYEzNHdQUAvLIqHXkllyVORPaMxYYcRqG+Ev/67QgAYMbwMEQGe0obiMiBPHZTGPp19ERplREvrEjjISlqNSw25BCEEJj9y2GUVFSjV3stnhgRJnUkIoeikMvw7t2RUCvl2HH8PH5OzpY6EtkpFhtyCEuTs7Ht2HmolHK8N7EvnBT81idqa1383PBcXM28tjfWZiLnUoXEicge8bc72b3s4gq8sSYDAPDs6G7oFsDVhYmkMm1QKPqHeKGsyojZvxzmISlqcSw2ZNeEEHhhxWGUG0y4oZMXpg/uLHUkIoemkMvwzt2R0DjJsevkRct6UkQthcWG7NrPydnYdfIiNE5yvDMhEgo5Vxcmklqorytmj+kOAHhrXSayi3lIiloOiw3ZrQJdJd5cmwkAeObmcHTydZU4ERHVuT+2EwaEeqPCYMJz/z0Es5mHpKhlsNiQXRJC4KVf01BaZURksCceGBwqdSQi+hO5XIZ3J0TCRaXAntPF+CmZh6SoZbDYkF1adSgPv2cWwUkhwzsT+vAQFJEV6ujjYjlLav66oyjQVUqciOwBiw3ZnYtlVXh1dc1ZUE+M6MqzoIis2NTYTugbXLNw379+47WkqPlYbMjuvLI6A8XlBnQPdMdjN3WROg4R/Q2FXIa3J/SBk0KGxIxCrD9SIHUksnEsNmRXEjMKsfpQXs0ppRMiuRAfkQ3oFuCOx26qWQ187m/p0FVUS5yIbBl/65PdKK2sxku/pgEAHhrSGb07eEiciIgaasbwLuji54oLZVV4a12m1HHIhrHYkN1YsOk4CvVV6OTjYrmSMBHZBrVSgX/f1QcA8PP+bOw+eUHiRGSrmlVs5s+fD5lMhpkzZwIAiouL8cQTTyA8PBzOzs7o2LEjnnzySeh0unqPy8rKQnx8PFxcXODv74/nnnsORqOx3jbbtm1DVFQU1Go1wsLCsHjx4uZEJTt3OKcE3yadBQC8cXtvaJwU0gYiokbr38kbUwaGAADmrEzDZYNJ4kRki5pcbJKTk7Fw4UL06dPHcl9eXh7y8vLw7rvv4siRI1i8eDE2bNiA6dOnW7YxmUyIj4+HwWDA7t278e2332Lx4sWYO3euZZszZ84gPj4ew4cPR2pqKmbOnIkHH3wQGzdubGpcsmNGkxn/XJkGIYDb+wZhcFdfqSMRURM9PyYcgVoNzl2swIebT0gdh2xQk4pNWVkZEhIS8OWXX8LLy8tyf69evfDLL7/g1ltvRZcuXTBixAi8+eabWL16tWWPzKZNm5CRkYEffvgBffv2xdixY/H666/jk08+gcFgAAB8/vnnCA0NxYIFC9CjRw88/vjjmDBhAt5///0WGDLZm2+TzuFIrh5ajRIvxkdIHYeImsFd44TXb+8FAPjqj9M4XlgqcSKyNU0qNjNmzEB8fDxGjRp13W11Oh20Wi2USiUAICkpCb1790ZAQIBlm7i4OOj1eqSnp1u2+etzx8XFISkp6Zqfp6qqCnq9vt6N7F++7jLe23QMADBnXA/4uaslTkREzXVzRABujgiA0Szw0q9c24Yap9HFZunSpThw4ADmzZt33W0vXLiA119/HQ8//LDlvoKCgnqlBoDl/wUFBX+7jV6vx+XLl6/6uebNmwcPDw/LLTg4uFHjItv0yqp0lBtM6B/ihXv68zUnshcv3xoBZycF9p0pxi8HcqWOQzakUcUmOzsbTz31FJYsWQKNRvO32+r1esTHxyMiIgKvvPJKczI2yJw5c6DT6Sy37OzsVv+cJK3EjEJsTC+EUi7Dm3f0hpyXTSCyGx28XPDkyJqzG+ety0RJhUHiRGQrGlVsUlJSUFRUhKioKCiVSiiVSmzfvh0fffQRlEolTKaaGeylpaUYM2YM3N3dsXLlSjg5OVmeIzAwEIWFhfWet+7/gYGBf7uNVquFs7PzVbOp1Wpotdp6N7Jf5VVGvPzbEQDAQ0M7IzyQl00gsjfTB4eiq78bLpYb8PbGY1LHIRvRqGIzcuRIpKWlITU11XLr378/EhISkJqaCoVCAb1ej9GjR0OlUmHVqlVX7NmJjY1FWloaioqKLPclJiZCq9UiIiLCss3mzZvrPS4xMRGxsbFNHSfZmQ9+P448XSWCvZ3x5AiuWUNkj1RKOd6onUj8074sHMy6JHEisgWNKjbu7u7o1atXvZurqyt8fHzQq1cvS6kpLy/H119/Db1ej4KCAhQUFFj25owePRoRERGYMmUKDh06hI0bN+Kll17CjBkzoFbXTPx89NFHcfr0aTz//PM4evQoPv30UyxbtgxPP/10y38FyOacKCzFol1nAQCv3dYLziquWUNkr2I6++DOqPYQAnhx5REYTWapI5GVa9GVhw8cOIC9e/ciLS0NYWFhaNeuneVWN+dFoVBgzZo1UCgUiI2NxeTJkzF16lS89tprlucJDQ3F2rVrkZiYiMjISCxYsABfffUV4uLiWjIu2SAhBF5elQ6jWWB0RACGh/tLHYmIWtk/x/WAh7MTMvL1+H7POanjkJWTCTs9j06v18PDw8NyujnZh7WH8zHjxwNQK+X4fdYwBHu7SB2J2liFwYiIuTWLdWa8FgcXlVLiRNQWluw9hxdXHoGbWonNzwxDgPbvT2Ah29Xc929eK4psRoXBiDfWZgAAHrupC0sNkQO594aOiAz2RFmVEfN4kUz6Gyw2ZDP+s+Uk8msnDD86rIvUcYioDcnlMrxxWy/IZMCvqXnYf7ZY6khkpVhsyCacPl+GL/84DQCYe0tPXuSSyAH17uBhWYjz5VXpMJntciYFNROLDVk9IQReXZ2BapPATeF+GNWDE4aJHNWzceFw1yiRnqfHsv1ciJWuxGJDVu/3zCJsP34eKoUcL9/aEzIZVxgmclS+bmo8PaobAOCdjcegq6iWOBFZGxYbsmqV1Sa8tqbm4qgPDglFqK+rxImISGpTYkPQ1d8NxeUGvP/7canjkJVhsSGrtnD7aWQXX0Y7Dw0eHxEmdRwisgJOtXtvAeD7PedwrKBU4kRkTVhsyGoV6Crx+fZTAGoW6OJ6JURUZ3BXX8T1DIDJLPDq6nTY6ZJs1AQsNmS13t54FJerTegf4oVb+rSTOg4RWZmX4iOgUsqx+9RFbEwvkDoOWQkWG7JKh7JLsOJALgDgX7dEcMIwEV0h2NsFjw7tDAB4fU0mKqtNEicia8BiQ1ZHCIHX19SsMHxnVHtEBntKG4iIrNZjN4UhyEOD3JLL+HLHaanjkBVgsSGrszYtH/vPXYKzkwLPx3WXOg4RWTFnlQKzx9b8nvhs+ykUlVZKnIikxmJDVqWy2oR5644CAB4d1gWBHrzQHRH9vfGRQYgM9kSFwYT3E3n6t6NjsSGr8vXOM8gtqTm9++HaY+dERH9HJpPhX/E9AAA/J2fz9G8Hx2JDVqNIX4lPt54EAMwe0x3OKl4Piogapn8nb4zrHQizAN7k1b8dGosNWY13Nx1DucGEyGBPjI8MkjoOEdmY2WO6w0khw47j57HtWJHUcUgiLDZkFY7k6rA8JQcAMPeWCMjlPL2biBonxMcV98d2AgC8tS4TRpNZ2kAkCRYbkpwQAvPWZ0II4NbIIESHeEkdiYhs1BMjusLTxQnHC8uwbH+O1HFIAiw2JLkdJy5g18mLUCnkeD4uXOo4RGTDPFyc8NTIrgCA9xKPoazKKHEiamssNiQps1lg/vqa07unxIYg2NtF4kREZOsSYkIQ6uuKC2UGfL7tlNRxqI2x2JCkfk3NRWa+Hu4aJR4fzqt3E1HzqZRyzKldtO/LP04jr+SyxImoLbHYkGQqq01YsKlmMa3/uykMXq4qiRMRkb24OSIAMaHeqDKa8cHvXLTPkbDYkGS+SzprWYxv2qBOUschIjsik8nwQu1em/+m5OBEIRftcxQsNiSJkgoD/rOlZjG+WTd3g8aJi/ERUcvq19ELY3rWLNr39sZjUsehNsJiQ5L4dNsp6CuN6B7ojjujOkgdh4js1HNjwqGQy5CYUYj9Z4uljkNtgMWG2lzOpQos3nUWADB7bHcouBgfEbWSLn5umNi/5o+nf284CiGExImotbHYUJt7b9NxGExm3NjFBzd185M6DhHZuadGdoPGSY7ks5ewOZOXWrB3LDbUpjLy9FiZmgsAmDO2B2Qy7q0hotYV6KHBtEGhAIC3Nx6Fycy9NvaMxYba1IJNxyyXTujdwUPqOETkIB4d1gUezjWXWlhxgJdasGcsNtRmUs4VY/PRIijkMsy6uZvUcYjIgXg4O2HG8C4AgPcTj6Oy2iRxImotLDbUJoQQeKf2dMu7ozsg1NdV4kRE5GimxnZCOw8N8nSV+D7pnNRxqJWw2FCb2HXyIvacLoZKIceTtReoIyJqSxonBZ6u3Vv8ybaT0FdWS5yIWgOLDbW6mr01NRe6TBjYEUGezhInIiJHdVdUB4T5u6Gkohpf/3FG6jjUClhsqNVtyijEoRwdXFQK/N9NvNAlEUnnz3P8vt55BpfKDRInopbGYkOtymQWeK/2QpcPDAqFn7ta4kRE5OjG9AxERDstyqqMWLjjtNRxqIWx2FCrWn0oD8cKS6HVKPHQ0M5SxyEiglwuwzOja/baLN59BkWllRInopbEYkOtptpkxnuJNXtrHqldQ4KIyBqM6O6PvsGeqKw247Ntp6SOQy2IxYZazbL92cgqroCvmwrTBnWSOg4RkYVMJsOzo8MBAEv2ZCGv5LLEiailsNhQq6isNuHjzScBADOGh8FFpZQ4ERFRfYPCfBAT6g2DyYz/bD0pdRxqISw21Cp+2HMOBfpKBHlocF9MR6njEBFdQSaT4ZnavTbLkrORdbFC4kTUElhsqMVVGIz4fHvNMesnR3aFWqmQOBER0dUNCPXG0G5+MJoFPtx8Quo41AJYbKjFLdmThQtlBgR7O+Ou6A5SxyEi+lvP1K5rs/JgDk4WlUmchpqLxYZaVIXBiIU7avbWPDG8K5wU/BYjIusWGeyJmyMCYBbA+78flzoONRPfdahF/bDnHC6UGdDR2wV3RLWXOg4RUYPUrUa8Li0fxwtLJU5DzcFiQy2mwmDEwu01q3g+PiKMe2uIyGb0aKfF2F6BEAL4iHNtbBrfeajF/LDnHC6W1+6t6ce9NURkW54c2RUAsDYtHye418ZmsdhQi+DeGiKydT3aaRHXMwBCAB9v4bo2torvPtQi6vbWhPi44E7urSEiG1W312b14TyeIWWjWGyo2ertrRkeBiX31hCRjeoZ5IFRPWr22nzC1YhtEt+BqNm+T/rf3hrOrSEiW/dU7V6b31Jzcfo899rYGhYbapaadWu4t4aI7EfvDh4Y2d0fZgFeQ8oG8V2ImuX7pHMo5t4aIrIzT1r22uTh7IVyidNQY7DYUJNVGIz4onZvzRMjunJvDRHZjchgT9wU7geTWXCujY3hOxE12U/7si3r1tzeN0jqOERELapurs2Kg7m88rcNYbGhJqkymvBF7TWhHh3WhXtriMju9OvohaHduNfG1jTr3Wj+/PmQyWSYOXOm5b4vvvgCN910E7RaLWQyGUpKSq54XHFxMRISEqDVauHp6Ynp06ejrKz+zPPDhw9jyJAh0Gg0CA4Oxttvv92cqNTCfknJRaG+CoFaDe6K5twaIrJPT40MAwD8ciAH2cXca2MLmlxskpOTsXDhQvTp06fe/RUVFRgzZgz++c9/XvOxCQkJSE9PR2JiItasWYMdO3bg4Ycftnxcr9dj9OjRCAkJQUpKCt555x288sor+OKLL5oal1qQ0WTG59tr9tY8NLQz1EqFxImIiFpHdIg3Bof5wmgWljmFZN2aVGzKysqQkJCAL7/8El5eXvU+NnPmTLzwwgsYOHDgVR+bmZmJDRs24KuvvkJMTAwGDx6Mjz/+GEuXLkVeXh4AYMmSJTAYDPjmm2/Qs2dPTJo0CU8++STee++9psSlFrb6cB6yiivg7arCvQOCpY5DRNSqZgyv2Wvz8/5sFJVWSpyGrqdJxWbGjBmIj4/HqFGjGv3YpKQkeHp6on///pb7Ro0aBblcjr1791q2GTp0KFQqlWWbuLg4HDt2DJcuXbrq81ZVVUGv19e7UcszmwU+3Vqzt2b64FC4qJQSJyIial0DO3sjqqMnDEYzvt55Ruo4dB2NLjZLly7FgQMHMG/evCZ9woKCAvj7+9e7T6lUwtvbGwUFBZZtAgIC6m1T9/+6bf5q3rx58PDwsNyCg7knoTVsyijAiaIyuGuUmBIbInUcIqJWJ5PJ8H831ey1WbInC7qKaokT0d9pVLHJzs7GU089hSVLlkCj0bRWpiaZM2cOdDqd5ZadnS11JLsjhLCswvmPGztBq3GSOBERUdsY0d0f3QPdUVZlxHdJZ6WOQ3+jUcUmJSUFRUVFiIqKglKphFKpxPbt2/HRRx9BqVTCZDJd9zkCAwNRVFRU7z6j0Yji4mIEBgZatiksLKy3Td3/67b5K7VaDa1WW+9GLWv78fM4kquHs5MC0waFSh2HiKjNyOUyPHZTFwDAN7vOoMJglDgRXUujis3IkSORlpaG1NRUy61///5ISEhAamoqFIrrnx0TGxuLkpISpKSkWO7bsmULzGYzYmJiLNvs2LED1dX/292XmJiI8PDwKyYrU9upW8chIaYjvF1V19maiMi+xPduhxAfF1yqqMZP+3hUwFo1qti4u7ujV69e9W6urq7w8fFBr169ANTMgUlNTcXJkzVvgnVFqLi4GADQo0cPjBkzBg899BD27duHXbt24fHHH8ekSZMQFFSzeu19990HlUqF6dOnIz09HT///DM+/PBDzJo1qyXHTo2w9/RFJJ+9BJVCjoeGdpY6DhFRm1Mq5Hh0WM1emy93nEaV8fpHKajttfhysZ9//jn69euHhx56CAAwdOhQ9OvXD6tWrbJss2TJEnTv3h0jR47EuHHjMHjw4Hpr1Hh4eGDTpk04c+YMoqOj8cwzz2Du3Ln11rqhtlU3t+bu/h0QoLWu+VVERG3lzqj2CNCqUaCvxMoDuVLHoauQCSGE1CFag16vh4eHB3Q6HefbNNPhnBKM/88uKOQybHv2JgR7u0gdiRxYhcGIiLkbAQAZr8VxyQFqc1/9cRpvrM1EiI8LNs8axkvKtLDmvn/z1aDrWri9ZrXN2yKDWGqIyOHdO6AjPF2ccO5iBdYdufoSJCQdFhv6W2cvlGP9kXwAwMPDOLeGiMhVrcS0G2vODP1060nY6YEPm8ViQ3/ryz9OwyyA4eF+6B7IQ3pERABw/40hcFUpcLSgFFuOFl3/AdRmWGzoms6XVmF5Sg4AWM4EICIiwNNFhckDa1Zfr7soMFkHFhu6pm93n4XBaEbfYE8MCPWWOg4RkVV5YHAonBQyJJ+9hANZV7+OIbU9Fhu6qvI/LRv+6LAukMlk0gYiIrIyAVoNbu/bHgDwRe1JFiQ9Fhu6qp/2ZUFfaURnX1fcHBFw/QcQETmgh2sXLN2YUYDT58skTkMAiw1dRbXJjK93ngEAPDS0MxRy7q0hIrqargHuGNHdH0IAX9X+3iRpsdjQFVYfykO+rhJ+7mrc0a+91HGIiKxa3V6b/6bk4EJZlcRpiMWG6hFCWBbkmzaoEzRO17+wKRGRI4sJ9UZkBw8YjGZ8t/us1HEcHosN1bPt2HkcKyyFm1qJhJgQqeMQEVk9mUyGR2qXxPhuzzlUGIwSJ3JsLDZUz2e16zHcF9MRHs5OEqchIrINcT0DEeLjgpKKaixLzpY6jkNjsSGLA1mXsO9MMZwUMjwwKFTqOERENkMhl+HBwTW/N7/aeQZGk1niRI6LxYYsvvqj9mKXfdsj0EMjcRoiItsyIToY3q4q5Fy6jPW8OKZkWGwIAJBdXIENtT+IdTP8iYio4ZxVCkyNrZmb+MWO07w4pkRYbAgA8M2uMzALYGg3P3QLcJc6DhGRTZoa2wkaJznScnVIOn1R6jgOicWGoLv8v8ludceIiYio8bxdVbg7OhgALEtnUNtisSH8nJyFcoMJ3QLcMKSrr9RxiIhs2oNDQiGXAduPn8eJwlKp4zgcFhsHV20yY/GuswCABwd35sUuiYiaKcTnf9fY+2YXL7PQ1lhsHNz6IwXI01XC102F8X2DpI5DRGQXpg+uOQljxYFcFJcbJE7jWFhsHJgQwnKK95SBvHwCEVFLuaGTF3q390CV0Ywle85JHcehsNg4sP3nLuFwjg4qpRyTB3aUOg4Rkd2QyWSYXnsyxnd7zqHKaJI4keNgsXFgX+6o2VtzV1R7+LipJU5DRGRfxvVuhwCtGudLq7DmUL7UcRwGi42DOnuhHImZhQBg+auCiIhajkopx9TYTgCAr3ee4YJ9bYTFxkEt2nUGQgDDw/0Q5s8F+YiIWkNCTEdonOTIyNdjz+liqeM4BBYbB6SrqMay/TkAgAeH8PIJREStxdNFhbuiOgCo2WtDrY/FxgH9uC8Ll6tN6B7ojhu7+Egdh4jIrj1Qe7h/89FCnL1QLnEa+8di42CqTWZ8u/ssgJq9NVyQj4iodXXxc8PwcD8IASyu/f1LrYfFxsFsTC9Agb5mQb5bI9tJHYeIyCHULdi3bH82dJerJU5j31hsHEzd5RPuiwmBWskF+YiI2sKgMB90D3RHhcGEn5OzpI5j11hsHEhajg77z12CUi7D5BguyEdE1FZkMhkeGFQz1+bb3edgNJklTmS/WGwcSN2x3fg+7eCv1UgbhojIwYzvGwRfNxVySy5jY3qh1HHsFouNg7hQVoXVh/IAAP+4sZO0YYiIHJDGSYF7B9TsLf826ay0YewYi42DWLovCwaTGZHBnujX0UvqOEREDikhJgRKuQz7zhQjM18vdRy7xGLjAKpNZnxfe3XZadxbQ0QkmUAPDeJ6BQKAZekNalksNg5gw5ECFOqr4OumxrjePMWbiEhKddMBfk3NRUmFQdowdojFxgHUTRpOiOkIlZIvORGRlPqHeCGinRaV1Wb8nJwtdRy7w3c5O5eWo0PKuUtwUsiQwFO8iYgkJ5PJLHttvt9zDiYzr/rdklhs7JzlFO/ePMWbiMhajO8bBC8XJ+RcuozNmTz1uyWx2Nixeqd41y4MRURE0tM4KXDPDTz1uzWw2Nixn/bWnOLdN9gTfYM9pY5DRER/MnlgR8hlwK6TF3GisFTqOHaDxcZO1TvFe1AnacMQEdEVOni5YFSPAADca9OSWGzs1PojBSgqrYKfuxpje/EUbyIia1Q3iXjFgVzoK3nV75bAYmOnvuMp3kREVi+2iw+6BbihwmDCf/fnSB3HLvAdzw5l5OktV/G+bwBP8SYislYymQxTYzsBAL5LOgszT/1uNhYbO/TD3pq5NXG9AnmKNxGRlbujX3u4a5Q4e7EC20+clzqOzWOxsTOlldX49WAuAGDKwBCJ0xAR0fW4qpWY2D8YAK8f1RJYbOzMyoO5qDCY0NXfDTGh3lLHISKiBpgaGwKZDNh27DzOXSyXOo5NY7GxI0IIfJ9Ucxhq8sAQyGQyiRMREVFDhPi4YmhXPwDAj3uzJE5j21hs7MjeM8U4UVQGF5UCd0S1lzoOERE1wuTa6QPL9mejstokcRrbxWJjR+oW5Lu9X3toNU4SpyEiosYY0d0fQR4aXKqoxvoj+VLHsVksNnaiSF+JjUcKAACTYzhpmIjI1ijkMtxbu0THD3t4OKqpWGzsxNLkbBjNAv1DvBARpJU6DhERNcE9NwRDKZch5dwlZObrpY5jk1hs7IDRZLZMNpsSy701RES2yl+rweieNdePWlK7Jhk1DouNHfg9swgF+kr4uKowpleg1HGIiKgZ6qYTrDyQi7Iqo8RpbA+LjR34oXbS8D03BEOtVEichoiImiO2iw86+7mi3GCyLLhKDdesYjN//nzIZDLMnDnTcl9lZSVmzJgBHx8fuLm54a677kJhYWG9x2VlZSE+Ph4uLi7w9/fHc889B6Oxfivdtm0boqKioFarERYWhsWLFzcnqt06fb4MO09egEwGy6QzIiKyXTKZDAm1e21+2HMOQvD6UY3R5GKTnJyMhQsXok+fPvXuf/rpp7F69WosX74c27dvR15eHu68807Lx00mE+Lj42EwGLB79258++23WLx4MebOnWvZ5syZM4iPj8fw4cORmpqKmTNn4sEHH8TGjRubGtduLamdWzMi3B/B3i4SpyEiopYwIaoDNE5yHC0oxYGsS1LHsSlNKjZlZWVISEjAl19+CS8vL8v9Op0OX3/9Nd577z2MGDEC0dHRWLRoEXbv3o09e/YAADZt2oSMjAz88MMP6Nu3L8aOHYvXX38dn3zyCQwGAwDg888/R2hoKBYsWIAePXrg8ccfx4QJE/D++++3wJDtx2WDCcv3ZwMAJnPSMBGR3fBwccKtfYIA8NTvxmpSsZkxYwbi4+MxatSoevenpKSgurq63v3du3dHx44dkZSUBABISkpC7969ERAQYNkmLi4Oer0e6enplm3++txxcXGW57iaqqoq6PX6ejd7t/pQHvSVRgR7O2NY7VLcRERkHxJqVyJeezgfxeUGidPYjkYXm6VLl+LAgQOYN2/eFR8rKCiASqWCp6dnvfsDAgJQUFBg2ebPpabu43Uf+7tt9Ho9Ll++fNVc8+bNg4eHh+UWHBzc2KHZnB/31bT4+waEQC7ndaGIiOxJZAcP9GqvhcFktuydp+trVLHJzs7GU089hSVLlkCj0bRWpiaZM2cOdDqd5Zadbd/fBBl5eqRml8BJIcPd/TtIHYeIiFqYTCaznPr9474smM2cRNwQjSo2KSkpKCoqQlRUFJRKJZRKJbZv346PPvoISqUSAQEBMBgMKCkpqfe4wsJCBAbWrK8SGBh4xVlSdf+/3jZarRbOzs5XzaZWq6HVauvd7NlPtXtrRkcEwtdNLXEaIiJqDeP7BsFdo8S5ixXYefKC1HFsQqOKzciRI5GWlobU1FTLrX///khISLD828nJCZs3b7Y85tixY8jKykJsbCwAIDY2FmlpaSgqKrJsk5iYCK1Wi4iICMs2f36Oum3qnsPRVRiMlrUNeIo3EZH9clEpcVdUzV75ujXL6O8pG7Oxu7s7evXqVe8+V1dX+Pj4WO6fPn06Zs2aBW9vb2i1WjzxxBOIjY3FwIEDAQCjR49GREQEpkyZgrfffhsFBQV46aWXMGPGDKjVNXseHn30UfznP//B888/jwceeABbtmzBsmXLsHbt2pYYs81bczgfpVVGhPi44MYuPlLHISKiVpQQ0xGLd5/F5qNFKNJXwl9rXVNBrE2Lrzz8/vvv45ZbbsFdd92FoUOHIjAwECtWrLB8XKFQYM2aNVAoFIiNjcXkyZMxdepUvPbaa5ZtQkNDsXbtWiQmJiIyMhILFizAV199hbi4uJaOa5PqDkNNuqEjJw0TEdm5rgHuiA7xgskssDwlR+o4Vk8m7HRJQ71eDw8PD+h0Oruab5OZr8fYD/+AUi5D0pyR8HPn/BpyLBUGIyLm1izWmfFaHFxUjdrxTGST/puSg2eXH0KwtzO2Pzvcrv+obe77N68VZWOW1k0a7hnAUkNE5CDie7eDu0aJ7OLL2H3qotRxrBqLjQ25bDBhBScNExE5HGeVArf3bQ/gf9MR6OpYbGzI2rR8lNauNDyoi6/UcYiIqA3V/UG7KaMAF8uqJE5jvVhsbAgnDRMROa6IIC0iO3ig2iTwywFOIr4WFhsbcaygFCnnLkEp50rDRESOalLtXpul+7Jhp+f+NBuLjY2o21tzc0QA/N25hgERkSO6NTIIrioFTl8ox94zxVLHsUosNjbgssGEFbW7HTlpmIjIcbmplRjfNwjA/86SpfpYbGzAurR86CuN6ODljMFhnDRMROTIJt1Q8wfuuiMFKKkwSJzG+rDY2IC6w1D3DuCkYSIiR9engwci2mlhMJqx4kCu1HGsDouNlTtRWIr95y5BIZfh7mhOGiYicnQymQz3DggGACxNzuIk4r9gsbFyPydnAwBGdvfnhc+IiAgAcFu/9tA4yXG8sAwHskqkjmNVWGysmMFotqw0fM8NwRKnISIia6HVOOGWPjWTiLkScX0sNlZsy9FCFJcb4O+uxrBuflLHISIiK1J3OGrN4TzoK6slTmM9WGysWN1hqLuiO0Cp4EtFRET/E9XRC1393VBZbcZvqXlSx7EafLe0UgW6Smw/fh4AMLE/D0MREVF9MpnMshLx8v3ZEqexHiw2VuqXAzkwC2BAJ2+E+rpKHYeIiKzQHf3aw0khw+EcHTLz9VLHsQosNlbIbBZYVtu+J3LSMBERXYO3qwqjegQAAJbv54UxARYbq7T3TDHOXayAm1qJcb0DpY5DRERWrG66wsqDOTAYzRKnkR6LjRWq21tza2Q7uKiUEqchIiJrNqSrLwK0alyqqMbmzEKp40iOxcbK6CursS4tHwAnDRMR0fUpFXLcFVWzMv0yTiJmsbE2q1LzUGU0o1uAG/oGe0odh4iIbMDdtX8Ibz9+HgW6SonTSIvFxspYJg33D4ZMxgteEhHR9YX6uuKGTl4wC2DFQceeRMxiY0Uy8/U4nKODk0KGO/q1lzoOERHZkLq9Nsv35zj0hTFZbKxI3d6aUT0C4OOmljgNERHZkvje7eCiUuDMhXLsP3dJ6jiSYbGxElVGE1bWXvCSk4aJiKixXNVK3NKnHQBgWbLjTiJmsbESv2cUoaSiGoFaDYbygpdERNQEdX8Yr03LR1mVUeI00mCxsRI/1x6GmhDdAQo5Jw0TEVHjRYd4obOvKyoMJqw7nC91HEmw2FiBfN1l/HGi5oKXd/fvIHEaIiKyVTKZDBNq30eWpzjm4SgWGyuw4kAuhAAGhHojxIcXvCQioqa7K6oD5DIg+ewlnD5fJnWcNsdiIzEhBH45ULPmwIQo7q0hIqLmCdBqcFO4PwBgeYrjrWnDYiOx1OwSnD5fDo2THGN5wUsiImoBE2sPR/2SkgOjybEujMliI7G6vTVje7WDu8ZJ4jRERGQPRnQPgLerCkWlVdhRO4fTUbDYSKiy2oRVqXkAYLmAGRERUXOplHLc1jcIAPDLgVyJ07QtFhsJbc4sgr7SiHYeGsR28ZE6DhER2ZG6P5gTMwqhq6iWOE3bYbGRUN1hqDv6tefaNURE1KJ6BmkRHuAOg9GMNWl5UsdpMyw2EikqrcT24zXHPe+K5mEoIiJqWTKZDHdF11xQeYUDHY5isZHIbwfzYDIL9OvoiS5+blLHISIiO3R73/aQy4CUc5dw5kK51HHaBIuNBP68dg0nDRMRUWvx12owpGvN9QdXHnCMNW1YbCSQnqfH0YJSqJRy3NonSOo4RERkx+qmO/xyIBdms5A4TetjsZFA3d6amyMC4OHCtWuIiKj1jI4IgLtaidySy9h7pljqOK2OxaaNGYxm/Fa7dg0voUBERK1N46RAfJ92AIAVDnA4isWmjW07VoTicgP83NUY0tVX6jhEROQA6g5HrUvLR4XBKHGa1sVi08b+vHaNUsEvPxERtb7+IV7o6O2CcoMJG9MLpI7TqvjO2oaKyw3YcrQIAM+GIiKitiOTyXBnlGOsacNi04ZWpeai2iTQu70HwgPdpY5DREQOpO4P6p0nLyBfd1niNK2HxaYN1V2I7K7a1kxERNRWgr1dMCDUG0IAvx6030sssNi0keOFpUjL1cFJIcP4viw2RETU9ur+sP7lQA6EsM81bVhs2sjKgzV7a24K94e3q0riNERE5IjG9W4HtVKOk0VlOJyjkzpOq2CxaQNms8BvtcXmzn7cW0NERNJw1zghrmcgAPtd04bFpg3sO1uMPF0l3DVKDO/uL3UcIiJyYHVr2vx2KA8Go1niNC2PxaYN/Fq7tya+dztonBQSpyEiIkc2OMwX/u5qlFRUY/vx81LHaXEsNq2sstqEtWn5AIDbeRiKiIgkppDLMD6y5gLMdX942xMWm1a29WgRSiuNCPLQYEAnb6njEBERWf7Q/j2zEPrKaonTtCwWm1ZWdzbUbf3aQy6XSZyGiIgI6BmkRZi/G6qMZmw4Yl+XWGCxaUUlFQZsPVZzCYU7eBiKiIishEwms7wv/ZZqX4ejGlVsPvvsM/Tp0wdarRZarRaxsbFYv3695eOnTp3CHXfcAT8/P2i1WkycOBGFhYX1nqO4uBgJCQnQarXw9PTE9OnTUVZWVm+bw4cPY8iQIdBoNAgODsbbb7/djCFKZ21aPqpNAhHttOgWwEsoEBGR9aibZ7P71EUU6ColTtNyGlVsOnTogPnz5yMlJQX79+/HiBEjcNtttyE9PR3l5eUYPXo0ZDIZtmzZgl27dsFgMODWW2+F2fy/08kSEhKQnp6OxMRErFmzBjt27MDDDz9s+bher8fo0aMREhKClJQUvPPOO3jllVfwxRdftNyo28jK2ksocG8NERFZm2BvF9zQyQtCAKsO2c9eG5lo5prK3t7eeOeddxAcHIyxY8fi0qVL0Gq1AACdTgcvLy9s2rQJo0aNQmZmJiIiIpCcnIz+/fsDADZs2IBx48YhJycHQUFB+Oyzz/Diiy+ioKAAKlXNCr0vvPACfv31Vxw9erTBufR6PTw8PKDT6Sx52lLWxQoMfWcrZDJgz5yRCNBq2jwDkT2qMBgRMXcjACDjtTi4qJQSJyKyXUv2nsOLK48gop0W654aInUcAM1//27yHBuTyYSlS5eivLwcsbGxqKqqgkwmg1qttmyj0Wggl8uxc+dOAEBSUhI8PT0tpQYARo0aBblcjr1791q2GTp0qKXUAEBcXByOHTuGS5cuXTNPVVUV9Hp9vZuU6o5ZDuriy1JDRERWKb53OzgpZMjI1+N4YanUcVpEo4tNWloa3NzcoFar8eijj2LlypWIiIjAwIED4erqitmzZ6OiogLl5eV49tlnYTKZkJ9fs45LQUEB/P3rr7yrVCrh7e2NgoICyzYBAQH1tqn7f902VzNv3jx4eHhYbsHBwY0dWosRQmBlbbHh2jVERGStPF1UuCm85n3ZXta0aXSxCQ8PR2pqKvbu3YvHHnsM999/PzIyMuDn54fly5dj9erVcHNzg4eHB0pKShAVFQW5vPVPvpozZw50Op3llp2d3eqf81rScnU4fb4cGic54noGXP8BREREErm9b93ZUXkwm23/it+NPjitUqkQFhYGAIiOjkZycjI+/PBDLFy4EKNHj8apU6dw4cIFKJVKeHp6IjAwEJ07dwYABAYGoqioqN7zGY1GFBcXIzAw0LLNX8+kqvt/3TZXo1ar6x0Gk1Ld2jU3RwTCXeMkcRoiIqJrG9nDH+5qJXJLLmP/uUsYEGrbi8k2e1eK2WxGVVVVvft8fX3h6emJLVu2oKioCOPHjwcAxMbGoqSkBCkpKZZtt2zZArPZjJiYGMs2O3bsQHX1/1ZCTExMRHh4OLy8vJobt9UZTWasPpQHgFfyJiIi66dxUmBMr5odByvt4HBUo4rNnDlzsGPHDpw9exZpaWmYM2cOtm3bhoSEBADAokWLsGfPHpw6dQo//PAD7r77bjz99NMIDw8HAPTo0QNjxozBQw89hH379mHXrl14/PHHMWnSJAQF1ZxPf99990GlUmH69OlIT0/Hzz//jA8//BCzZs1q4aG3jp0nL+BCmQE+rioM7uordRwiIqLrqluWZO3hPFQZTRKnaZ5GHYoqKirC1KlTkZ+fDw8PD/Tp0wcbN27EzTffDAA4duwY5syZg+LiYnTq1Akvvvginn766XrPsWTJEjz++OMYOXIk5HI57rrrLnz00UeWj3t4eGDTpk2YMWMGoqOj4evri7lz59Zb68aa1U2+ujUyCE4KLuxMRETWL6azDwK0ahTqq7Dt2HnE9bz21A9r1+x1bKyVFOvYlFcZ0f+N33G52oRfZwxC32DPNvm8RI6E69gQtY631mXiix2nMbZXID6bHC1ZDsnWsaErbcoowOVqE0J9XRHZwUPqOERERA1Wd3bU5qNF0F223St+s9i0oN9SayYNj48MgkzGK3kTEZHt6NHOHd0C3GAwmrHhSL7UcZqMxaaFFJcbsPPEBQDA+L5BEqchIiJqHJlMZllU9teDeRKnaToWmxayLi0fRrNAr/ZadPFzkzoOERFRo9Vd8XvPmYvIK7kscZqmYbFpIasO/e8wFBERkS3q4OWCAaHeEAJYc9g299qw2LSAfN1lJJ8tBgDc0ofFhoiIbFfdH+irD9nmPBsWmxaw5lA+hAAGdPJGkKez1HGIiIiabGyvQCjkMqTl6nDmQrnUcRqNxaYF1B2GupWThomIyMb5uKkxOKxm5fxVqbZ3OIrFpplOny9DWq4OCrkM43rZ7kqNREREdW6tPRy16lAubG0dXxabZqrbWzM4zBc+btZxdXEiIqLmiOsZAJVSjlPny5GZXyp1nEZhsWkGIQTPhiIiIrvjrnHCiHB/AMBqGzs7isWmGdLz9Dh9vhxqpRyjewZIHYeIiKjF3Go5OyrPpg5Hsdg0w+ravTUjuvvDXeMkcRoiIqKWM6K7P1xVCuRcuoyD2SVSx2kwFpsmMpuFpdjwMBQREdkbZ5UCN0fUHI2wpbOjWGyaKCXrEvJ0lXBTKzG8u7/UcYiIiFpc3bUP16blw2S2jcNRLDZNVNdeR/cMgMZJIXEaIiKiljc4zA8ezk44X1qFvacvSh2nQVhsmsBoMmNdWs1S0zwMRURE9kqllGNc75o12mzl7CgWmybYdeoiLpYb4O2qwqDa1RmJiIjs0a2110Bcl1YAg9EscZrrY7FpgrrDUON6B8JJwS8hERHZr5jOPvB3V0N3uRp/nDgvdZzr4rtyI1VWm7ApvQAAMD6yvcRpiIiIWpdCLkN8n3YA/rfMiTVjsWmkbceKUFplRJCHBv1DvKSOQ0RE1OrqFuvblFGIywaTxGn+HotNI1mu5B0ZBLlcJnEaIiKi1tcv2BMdvJxRYTBhy9EiqeP8LRabRhra1Q/9Q7ws7ZWIiMjeyWSyelf8tmYsNo00aUBH/PexG9GrvYfUUYiIiNpM3fImW4+dh76yWuI018ZiQ0RERNfVPdAdYf5uMBjN2JReKHWca2KxISIiouuSyWSWvTZrrHixPhYbIiIiapC60753nriAS+UGidNcHYsNERERNUgXPzf0aKeF0SywsXZNN2vDYkNEREQNdkvtXps1h/MlTnJ1LDZERETUYHXXjtp96gIullVJnOZKLDZERETUYB19XNCngwfMAlh/xPoORymlDkBERES2ZWpsJ2RdLMegMF+po1yBxYaIiIgaZUJ0B6kjXBMPRREREZHdYLEhIiIiu8FiQ0RERHaDxYaIiIjsBosNERER2Q0WGyIiIrIbLDZERERkN1hsiIiIyG6w2BAREZHdYLEhIiIiu8FiQ0RERHaDxYaIiIjsBosNERER2Q27vbq3EAIAoNfrJU5CRC2pwmCEuaoCQM3Pt1Flt7/GiBxS3ft23ft4Y8lEUx9p5XJychAcHCx1DCIiImqC7OxsdOjQodGPs9tiYzabkZeXB3d3d8hkshZ7Xr1ej+DgYGRnZ0Or1bbY81oTex8jx2f77H2M9j4+wP7HyPE1nRACpaWlCAoKglze+BkzdrsPVy6XN6npNZRWq7XLb9Y/s/cxcny2z97HaO/jA+x/jBxf03h4eDT5sZw8TERERHaDxYaIiIjsBotNI6nVarz88stQq9VSR2k19j5Gjs/22fsY7X18gP2PkeOTjt1OHiYiIiLHwz02REREZDdYbIiIiMhusNgQERGR3WCxISIiIrthd8Xmk08+QadOnaDRaBATE4N9+/b97fbLly9H9+7dodFo0Lt3b6xbt67ex1esWIHRo0fDx8cHMpkMqampVzzHqVOncMcdd8DPzw9arRYTJ05EYWFhvW2Ki4uRkJAArVYLT09PTJ8+HWVlZfW2OXz4MIYMGQKNRoPg4GC8/fbbNjG+s2fPYvr06QgNDYWzszO6dOmCl19+GQaDod42MpnsituePXusfnwA0KlTpyuyz58/v942DXn9rHWM27Ztu+rrI5PJkJycDECa17C6uhqzZ89G79694erqiqCgIEydOhV5eXn1nqOlfr6u97W25jFu27YNt912G9q1awdXV1f07dsXS5YsqfccixcvvuL102g0NjG+hn7/NeQ1tMbxvfLKK1cdn6urq2Wbhr5+Uo3xzTffxI033ggXFxd4enpe9fNkZWUhPj4eLi4u8Pf3x3PPPQej0Vhvm23btiEqKgpqtRphYWFYvHjx32a/grAjS5cuFSqVSnzzzTciPT1dPPTQQ8LT01MUFhZedftdu3YJhUIh3n77bZGRkSFeeukl4eTkJNLS0izbfPfdd+LVV18VX375pQAgDh48WO85ysrKROfOncUdd9whDh8+LA4fPixuu+02ccMNNwiTyWTZbsyYMSIyMlLs2bNH/PHHHyIsLEzce++9lo/rdDoREBAgEhISxJEjR8RPP/0knJ2dxcKFC61+fOvXrxf/+Mc/xMaNG8WpU6fEb7/9Jvz9/cUzzzxjeZ4zZ84IAOL3338X+fn5lpvBYLD68QkhREhIiHjttdfqZS8rK2vU62fNY6yqqqo3tvz8fPHggw+K0NBQYTabJXsNS0pKxKhRo8TPP/8sjh49KpKSksSAAQNEdHR0vedpiZ+vhnytrXmMb775pnjppZfErl27xMmTJ8UHH3wg5HK5WL16tWWbRYsWCa1WW+/1KygosInxNeT7ryGvobWOr7S09IqfwYiICHH//fc36vWTcoxz584V7733npg1a5bw8PC44vMYjUbRq1cvMWrUKHHw4EGxbt064evrK+bMmWPZ5vTp08LFxUXMmjVLZGRkiI8//lgoFAqxYcOGq2a/GrsqNgMGDBAzZsyw/N9kMomgoCAxb968q24/ceJEER8fX+++mJgY8cgjj1yxbd0P1V/fNDZu3CjkcrnQ6XSW+0pKSoRMJhOJiYlCCCEyMjIEAJGcnGzZZv369UImk4nc3FwhhBCffvqp8PLyElVVVZZtZs+eLcLDw61+fFfz9ttvi9DQ0Os+/59Z8/hCQkLE+++/f83sDXn9rH2Mf2YwGISfn5947bXXrvv8bTW+Ovv27RMAxLlz54QQLffz1dAs1jrGqxk3bpyYNm2a5f+LFi266huOLYyvId9/DclireP7q9TUVAFA7Nixw3JfQ14/qcb4Z9fKuW7dOiGXy+uVsc8++0xotVrLz+bzzz8vevbsWe9x99xzj4iLi7tmlr+ym0NRBoMBKSkpGDVqlOU+uVyOUaNGISkp6aqPSUpKqrc9AMTFxV1z+6upqqqCTCart0iRRqOBXC7Hzp07LZ/H09MT/fv3t2wzatQoyOVy7N2717LN0KFDoVKp6mU5duwYLl26ZNXjuxqdTgdvb+8r7h8/fjz8/f0xePBgrFq1ynK/LYxv/vz58PHxQb9+/fDOO+/U2316vdfPVsZYZ9WqVbh48SKmTZt2xcekfg11Oh1kMpllV3dL/Hw1NIs1j/Faz/PXn8OysjKEhIQgODgYt912G9LT021qfNf6/mtIFlsYX52vvvoK3bp1w5AhQ+rd/3evn5RjbIikpCT07t0bAQEB9T6PXq+3jKMlfufZTbG5cOECTCZTvS8YAAQEBKCgoOCqjykoKGjU9lczcOBAuLq6Yvbs2aioqEB5eTmeffZZmEwm5OfnWz6Pv79/vccplUp4e3tbPte1stR9zJrH91cnT57Exx9/jEceecRyn5ubGxYsWIDly5dj7dq1GDx4MG6//XbLLyZrH9+TTz6JpUuXYuvWrXjkkUfw1ltv4fnnn79ulrqP2cIY/+zrr79GXFxcvQvJWsNrWFlZidmzZ+Pee++1XHivJX6+GprFmsf4V8uWLUNycnK9choeHo5vvvkGv/32G3744QeYzWbceOONyMnJsfrxXe/7ryFZrHl8f32OJUuWYPr06fXuv97rJ+UYG6I5P4d6vR6XL19u0Oexm2IjFT8/PyxfvhyrV6+Gm5sbPDw8UFJSgqioqCZdbt3aNHZ8ubm5GDNmDO6++2489NBDlvt9fX0xa9YsxMTE4IYbbsD8+fMxefJkvPPOO205nCs0dHyzZs3CTTfdhD59+uDRRx/FggUL8PHHH6OqqkrC9A3T2NcwJycHGzduvOKXqtSvYXV1NSZOnAghBD777LM2+ZxtraXGuHXrVkybNg1ffvklevbsabk/NjYWU6dORd++fTFs2DCsWLECfn5+WLhwYUvEv67mjE/q77+GaKnXb+XKlSgtLcX9999f736pXz/ANn4OlVIHaCm+vr5QKBRXnM1SWFiIwMDAqz4mMDCwUdtfy+jRo3Hq1ClcuHABSqUSnp6eCAwMROfOnS2fp6ioqN5jjEYjiouLLZ/rWlnqPubq6mq146uTl5eH4cOH48Ybb8QXX3xx3eeNiYlBYmIiAOt+/a6V3Wg04uzZswgPD7/u62dLY1y0aBF8fHwwfvz46z5vW72Gdb9Mz507hy1bttT7K7Elfr4amsWax1hn+/btuPXWW/H+++9j6tSpV81Ux8nJCf369cPJkydtZnx/9ufvv4ZksZXxffXVV7jllluu2HPxV399/aQcY0MEBgZecXZWQ38OtVotnJ2dG/R5bH+XQi2VSoXo6Ghs3rzZcp/ZbMbmzZsRGxt71cfExsbW2x4AEhMTr7n99fj6+sLT0xNbtmxBUVGR5Y0hNjYWJSUlSElJsWy7ZcsWmM1mxMTEWLbZsWMHqqur62UJDw+Hl5eXVY8PqNlTc9NNNyE6OhqLFi1q0N6q1NRUtGvXDoB1v37Xyi6Xyy27l6/3+tnKGIUQWLRoEaZOnQonJ6frPl9bvIZ1v0xPnDiB33//HT4+Plc8R3N/vhqaxZrHCNScJhsfH49///vfePjhh6+a589MJhPS0tJs4jW8mj9//zUkiy2M78yZM9i6desVe0yv5q+vn5RjbIjY2FikpaXVK3mJiYnQarWIiIhocJbravA0YxuwdOlSoVarxeLFi0VGRoZ4+OGHhaenp2UG9pQpU8QLL7xg2X7Xrl1CqVSKd999V2RmZoqXX375ilMDL168KA4ePCjWrl0rAIilS5eKgwcPivz8fMs233zzjUhKShInT54U33//vfD29hazZs2ql23MmDGiX79+Yu/evWLnzp2ia9eu9U71KykpEQEBAWLKlCniyJEjYunSpcLFxeWK072tcXw5OTkiLCxMjBw5UuTk5NQ7FbHO4sWLxY8//igyMzNFZmamePPNN4VcLhfffPON1Y9v9+7d4v333xepqani1KlT4ocffhB+fn5i6tSpjXr9rHmMdX7//XcBQGRmZl7xMSleQ4PBIMaPHy86dOggUlNT631v/fkMp5b4+WrI19qax7hlyxbh4uIi5syZU+85Ll68aNnm1VdftSzLkJKSIiZNmiQ0Go1IT0+3+vE15PuvIa+htY6vzksvvSSCgoKE0Wi84mMNef2kHOO5c+fEwYMHxauvvirc3NzEwYMHxcGDB0VpaakQ4n+ne48ePVqkpqaKDRs2CD8/v6ue7v3cc8+JzMxM8cknnzj26d5CCPHxxx+Ljh07CpVKJQYMGCD27Nlj+diwYcPqrQkghBDLli0T3bp1EyqVSvTs2VOsXbu23scXLVokAFxxe/nlly3bzJ49WwQEBAgnJyfRtWtXsWDBAsvaH3UuXrwo7r33XuHm5ia0Wq2YNm2a5cWuc+jQITF48GChVqtF+/btxfz5821ifNd6jj/35sWLF4sePXoIFxcXodVqxYABA8Ty5cttYnwpKSkiJiZGeHh4CI1GI3r06CHeeustUVlZWe9zNeT1s9Yx1rn33nvFjTfeeNXcUryGdaf4Xu22detWy3Yt9fN1va+1NY/x/vvvv+pzDBs2zLLNzJkzLbkDAgLEuHHjxIEDB2xifA39/mvIa2iN4xOi5rTsDh06iH/+859XZBai4a+fVGO81vfgn7c5e/asGDt2rHB2dha+vr7imWeeEdXV1fWybN26VfTt21eoVCrRuXNnsWjRoquO8VpkQgjR8P07RERERNbLbubYEBEREbHYEBERkd1gsSEiIiK7wWJDREREdoPFhoiIiOwGiw0RERHZDRYbIiIishssNkRERGQ3WGyIiIjIbrDYEBERkd1gsSEiIiK7wWJDREREduP/AZPrLZd4B/vJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAGdCAYAAAABhTmFAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZCElEQVR4nO3deViU5cIG8HsWhmGbYQcRBNxQzFwwCXOpNNe0VbNMS03rHKtTtn+nbD+WpS22l1tpuZS7pqKmpqEiiiIibsi+qAjDIgwz83x/DExNagIC7yz377rmunTmZbgfBpibd3kemRBCgIiIiMgByKUOQERERNRUWGyIiIjIYbDYEBERkcNgsSEiIiKHwWJDREREDoPFhoiIiBwGiw0RERE5DBYbIiIichhKqQM0F5PJhLy8PHh5eUEmk0kdh4iIiOpBCIGysjKEhIRALm/4/heHLTZ5eXkICwuTOgYRERE1QnZ2NkJDQxv8cQ5bbLy8vACYvzAajUbiNETUVCr1BvR+dxsAYP9/B8Jd5bC/xoickk6nQ1hYmOV9vKEc9jdC3eEnjUbDYkPkQJR6A+Su7gDMP98sNkSOqbGnkfDkYSIiInIYLDZERETkMFhsiIiIyGGw2BAREZHDYLEhIiIih8FiQ0RERA6DxYaIiIgcBosNEREROQwWGyIiInIYLDZERETkMFhsiIiIyGGw2BAREZHD4OpxRGQzLumNyCu9hMLSKpReqoGuqga6SwaUVdXAYBIwCoHqGqNl+693noHWzQUergr4uKsQqFEj0MsV/p6uUCn5dxuRM2KxIaIWZTIJZBVX4kRhWe2tHKfPlSOv5BIuVtY06Lk+2Xbyqo8Fa9RoG+CBSH/zrVOwBl1ba6F1d7neIRCRDWOxIaJmVak3ICnzIg5mluBg1kUkZ5eg9NLVC4yHSoFW3m7wcXeBRu0CjZsLPF2VcFHIIZcBRiGwYM9ZAMC9PUKgNwpU6o24UF6NorJqnCurhsEkUKCrQoGuCn+cvmD1/OF+7rihtRY92/igTzs/RAV5QS6XNeeXgIhaEIsNETUpk0ngWL4Ou06ew+8nzuNAZjFqjMJqG5VSjg6BnugY5IUOQZ7oEOiFMF83tNK6QaNWQia7etGo1Bssxeade7rCXWX9a8xkErhYqUdmcSUyzlUg43wFTp8rR2qeDlnFlci8YL5tOJIPAPBxd8HNbf3Qr0MABnUORKBG3bRfECJqUSw2RHTdjCaBpMyL2JiSj01HC1Cgq7J6vLW3G3pF+KBnG/OtUysvuCia5xwYuVwGP09X+Hm6omcbH6vHSir1OJqrw+GcEuzPKEbi2WJcrKzBr0cL8OvRAvzfKqBbmDcGRwdhSJdgtA/0bJaMRNR8WGyIqNGO5emw/EA2NqTk41xZteV+d5UCfdr5oX/HAPTvEIBwP/d/3AvTUrzdVejbwR99O/hj2m1AjdGEIzkl+OPUBWw7XoTk7BIcrr19sDkdXVtrcU+P1hjZLQQBXq5SxyeiemCxIaIGKa2swdrDuVh+IAcpuaWW+zVqJe6IDsbwrsG4pb0/1C4KCVPWj4tCjphwX8SE++KpgR1QpKvC1rQibDlWgN0nzyMltxQpuaV4d2MaBnQMwMM3t8GAjoFQ8JwcIpvFYkNE9XKysAzz92Rg5cFcVBtMAAAXhQx3RAfh/phQ9G0fYPeXWAdq1Hgotg0eim2DC+XV2JCSj5UHc5GcXYLtx4uw/XgRWnu7YdzNbfBArzD4eXIvDpGtYbEhoqsSQuD3k+cxb3cGdp44Z7m/U7AXxvQKw909WsPXQyVhwubj5+mKCXERmBAXgTPnyvHT/iwsP5CD3JJLmLUpHR9vPYkxvUIxtV87tPFzlzouEdVisSGiy5hMAluOFeKTbSeRlq8DAMhkwJDoYEzuF4le4T42cc5MS2kb4In/jojGc4OjsO5wHn7Ym4kjOaVYvDcLP+7LwshuIXhiQDt0bqWROiqR02OxISILIWoLzdaTOFZbaDxUCoy5KQwT+0Q6/Z4JtYsCo3uF4f6YUOzLKMYXO05j14lzWJOchzXJeRgcHYTnh0ShY5CX1FGJnBaLDREBAHadOIf3fj1uKTSerkpMvCUCk/tGwtvdMQ83NZZMJsPNbf1wc1s/HM0txVc7T2NjSj62HCtEfFoh7unRGs8O6ogwX+cugkRSYLEhcnInCsvw7oY0yzk0HioFJt4Sicf6sdDUxw2ttfjsoZ44WViG2VtOYFNqAVYezMW6w3kYFxuOZwZ14NeRqAWx2BA5qfPl1ZgTfwJL92fBJMxXOI2/OQJP3d4ePg56QnBz6hDkha/GxyA5uwQfbD6OPacuYOEfZ7EmORfPD4nC2Jva8DJxohbAYkPkZEwmgR/3Z+H9TcdRVmUAAAztEoyXh3VChL+HxOnsX/cwbyx57GbsPnkeb61PxYnCcvx31VH8uC8Lb47qgl4RvlJHJHJoLDZETuRYng7/tyoFydklAIAuIRrMuDMasW39pA3mgPp28MfGp/vhh72ZmBN/Aql5Otz/VQLujwnFqyM68/AUUTNhsSFyApV6Az6KP4H5e87CaBLwdFXiucEdMSEugodHmpFSIcfEWyIxqlsIPtySjqWJ2fg5KQc70s/h7bu6YFjXVlJHJHI4LDZEDi4psxjPLT+MsxcqAQDDuwZjxp1dEKzlKtYtxc/TFTPvvRH3x4TixZ+P4PS5CvxryUEM6RKEt++6gSuKEzUh+57/nIiuqqrGiJkb03D/Vwk4e6ESrbRqzH+0F74YF8NSI5GYcF9s/E8/PH17eyjlMmxOLcSgOTux9nCe1NGIHAaLDZEDSskpxci5u/H1rjMQArivZyg2PdMft3cKkjqa03NVKjB9cBTWPdUXXVtroasy4OmfDuHZZcnQVdVIHY/I7rHYEDkQk0ngu9/P4N4v9+BkUTn8PV3x7YRemD2mG7RuLlLHo7/o3EqDlf/ug6dvbw+5DFh1KBfDPv4d+zOKpY5GZNcaVGyMRiNee+01REZGws3NDe3atcPbb78NIYRlGyEEZsyYgVatWsHNzQ2DBg3CyZMnrZ6nuLgY48aNg0ajgbe3NyZPnozy8nKrbY4cOYJ+/fpBrVYjLCwMs2bNuo5hEjm+4go9Ji9KxDsb0lBjFBjaJRhbnu2PO6K5l8ZWuSjkmD44CiueiEOYrxtySy5h7DcJmLMlHUaTuPYTENFlGlRs3n//fXz55Zf47LPPkJaWhvfffx+zZs3C3LlzLdvMmjULn376Kb766ivs27cPHh4eGDJkCKqqqizbjBs3DqmpqYiPj8f69euxa9cuTJ061fK4TqfD4MGDER4ejqSkJHzwwQd444038M033zTBkIkcz94zFzDsk134Lf0cVEo53rn7Bnz5cE+HXXnb0cSE+2Lj0/1wf0woTAL4dPspTJi/D+fLq6WORmR3ZOKvu1uu4c4770RQUBDmzZtnue++++6Dm5sbFi9eDCEEQkJC8Nxzz+H5558HAJSWliIoKAgLFy7E2LFjkZaWhujoaCQmJqJXr14AgE2bNmH48OHIyclBSEgIvvzyS/z3v/9FQUEBVCrzL+aXX34Zq1evxvHjx+uVVafTQavVorS0FBoNV9wlxySEwBc7TmP2lnSYBNAuwAOfPdTToVeZrtQbED1jMwDg2FtD4K5yrIs71yTn4uVfUnCpxoggjSs+e6gnbuKkfuRErvf9u0F7bPr06YNt27bhxIkTAIDDhw9j9+7dGDZsGAAgIyMDBQUFGDRokOVjtFotYmNjkZCQAABISEiAt7e3pdQAwKBBgyCXy7Fv3z7LNv3797eUGgAYMmQI0tPTcfHixQYPksgRlVcb8O8lB/HBZnOpuT8mFOue6uvQpcYZ3NW9NdY+eQvaB3qiUFeNsd/sxbe7zqABf4MSObUG/anz8ssvQ6fToVOnTlAoFDAajXj33Xcxbtw4AEBBQQEAICjI+ph+UFCQ5bGCggIEBgZah1Aq4evra7VNZGTkZc9R95iPj89l2aqrq1Fd/eduW51O15ChEdmVjPMVmPr9AZwsKoeLQoY3R92Ah2LbSB2LmkiHIC+smXYL/m9VCtYk5+HdjWk4mleK9++7EWoXhdTxiGxag/bYLF++HEuWLMGPP/6IgwcPYtGiRfjwww+xaNGi5spXbzNnzoRWq7XcwsLCpI5E1Cy2Hy/EqM9242RROQK9XLF0ahxLjQPycFXi4we64+27ukApl2FNch4e+DoBBaVV1/5gIifWoGLzwgsv4OWXX8bYsWPRtWtXjB8/Hs8++yxmzpwJAAgODgYAFBYWWn1cYWGh5bHg4GAUFRVZPW4wGFBcXGy1zZWe46+f4+9eeeUVlJaWWm7Z2dkNGRqRzRNCYP7uDExedABlVQbEhPtg/VN9ERN++R5McgwymQzj4yLww+RY+Li74HBOKUZ9ttuy1hcRXa5BxaayshJyufWHKBQKmEwmAEBkZCSCg4Oxbds2y+M6nQ779u1DXFwcACAuLg4lJSVISkqybLN9+3aYTCbExsZattm1axdqav6crCo+Ph5RUVFXPAwFAK6urtBoNFY3IkdhMJrw+tpUvLX+GIQAxt4Uhp+m3Myp+J1EXDs/rJnWF1FBXigqq8aYrxOwJjlX6lhENqlBxWbkyJF49913sWHDBpw9exarVq3CnDlzcM899wAw/3XxzDPP4J133sHatWuRkpKCCRMmICQkBHfffTcAoHPnzhg6dCimTJmC/fv3Y8+ePXjyyScxduxYhISEAAAeeughqFQqTJ48GampqVi2bBk++eQTTJ8+vWlHT2QHyqsNmPL9AXyfkAkAeGVYJ8y8tytUSs6v6Uza+Lnjl3/3waDOQdAbTPjP0mR8tfM0Tyom+psGnTw8d+5cvPbaa/j3v/+NoqIihISE4PHHH8eMGTMs27z44ouoqKjA1KlTUVJSgr59+2LTpk1Qq//8y3LJkiV48sknMXDgQMjlctx333349NNPLY9rtVps2bIF06ZNQ0xMDPz9/TFjxgyruW6InEF+6SVMWngAafk6uCrl+PiB7lwR2ol5uirxzfgY/G9jGr7bnYH3fj2O/JJLmDGyC1dpJ6rVoHls7AnnsSF7d7KwDOPn7UeBrgr+nq747pFe6B7mLXUsyTn6PDb1NW93Bt7ZYD40OaRLED4Z24NXTJFDaNF5bIioZRzKuojRXyegQFeF9oGeWD2tD0sNWZncNxKfPdgTKqUcm1ML8dC3e1FcoZc6FpHkWGyIbMzvJ89h3Hf7UFJZg+5h3ljxeBxCfdyljkU2aMSNrbB4ciy0bi44mFWCMV8noFDHy8HJubHYENmQjSn5mLQwEZV6I/p18MeSx2Lhw/We6B/0jvTFL/+KQyutGqeKyjH6qwRkF1dKHYtIMiw2RDZi6f4sTPvxIGqMAiO6tsJ3j/SCh6tznj9CDdM+0AvLH49DG193ZBVXYvRXCTh9rlzqWESSYLEhsgHfJ5zFyytTIATwUGwbfPpgD7gqeSIo1V+YrztWPBGHDoGeKNBV4YGvE3Asj0vLkPNhsSGS2II9GZixJhUAMKVfJN69+wZeukuNEqRRY9njcegSosH5cj3GfpOAQ1lcOJicC4sNkYS++/0M3lx3DADwxIB2+L/hnSGTsdRQ4/l6qPDjlJsRE+4DXZUBE+btx2EuwUBOhMWGSCLf7DqNdzakAQCm3dYOLw2NYqmhJqF1c8EPk3ujd6QvyqoNGD9vH1JySqWORdQiWGyIJPD1ztP438bjAICnB3bA84NZaqhpuauUWPDoTehVu+fm4Xn7kJrHckOOj8WGqIUt+uMsZv5qLjXPDOqA6Xd0ZKmhZuHhqsTCSb3Rs403Si/V4OHv9iEtnycUk2NjsSFqQcsPZOP1teYThZ+6vT2eGdRR4kTk6Dxry023MG9crKzBuO/24URhmdSxiJoNiw1RC9lwJB8v/3IEADDplkhMv4OlhlqGRu2C7yf1RtfWWhRX6PHwd/uQdYGT+JFjYrEhagHbjxfiP0sPwSSAsTeF4bU7efUTtay6E4o7BXuhqKwa4+fvQ1EZl18gx8NiQ9TM/jh9Hk8sPgiDSWBUtxC8e09XlhqShLe7Ct9P6o02vu7IvFCJCfP2o7SyRupYRE2KxYaoGR3NLcXU75OgN5hwR3QQZo/pxsn3SFKBGjUWT45FgJcrjheUYdKiRFTqDVLHImoyLDZEzSS7uBKPLkhEebUBN7f1xdwHe8BFwR85kl4bP3f8MLk3NGolkjIv4l+LD0JvMEkdi6hJ8LcsUTO4UF6NCfP343x5NToFe+GbCb2gduHaT2Q7OgVrsGBib7i5KLDzxDm8+PNhCCGkjkV03VhsiJpYpd6ASYsOION8BVp7u2HRpN7QqF2kjkV0mZhwH3w1PgZKuQyrk/Mwe8sJqSMRXTcWG6ImVGM0YdqSgzicXQKtmwsWTboJQRq11LGIrmpAxwD8796uAIDPfjuFpfuzJE5EdH1YbIiaiBACr60+it/Sz8FVKcf8R3uhfaCX1LGIrmlMrzA8PbADAOC/q49iR3qRxImIGo/FhqiJfLPrDJYmZkMuA+Y+2AMx4b5SRyKqt2cHdcC9PVvDaBKYtuQg15Uiu8ViQ9QENqcW4L1N5vWfXh0RjcFdgiVORNQwMpkM7917I25p74cKvRETFyQit+SS1LGIGozFhug6Hc0txTNLkyEE8PDNbTDxlgipIxE1ikopx5cPxyAqyDw78WOLDqCimnPckH1hsSG6DgWlVZi8KBGXaozo18Efb4zswlmFya5p1C6YP/Em+Hu6Ii1fh+eWH4bJxMvAyX6w2BA1UqXegMe+T0ShrhodAj3x+bieUHICPnIArb3d8PX4GKgUcmxKLcDHW3kZONkP/hYmagQhBJ5bfhhHc3Xw9VBh3iM3ca4acigx4T6Wy8A/3X4K6w7nSZyIqH5YbIga4Ysdp/Hr0QKoFHJ8Mz4GbfzcpY5E1OTujwnF4/3bAgCeX3EYR3JKpA1EVA8sNkQN9NvxIny4JR0A8NZdXdArgpd1k+N6cWgn3N4pENUGE6Z8fwCFuiqpIxH9IxYbogbIOF+Bp5ceghDAQ7FtMLZ3G6kjETUrhVyGT8Z2R4dATxTqqvGvxUlcMJNsGosNUT2VVxsw9fsDKKsyICbcB2+M7CJ1JKIW4aV2wbcTesFLrcTBrBK8u+GY1JGIrorFhqgehBB4fvlhnCwqR5DGFV+O6wmVkj8+5Dwi/D3w8QPdAQCLEjKx6lCOtIGIroK/mYnq4Ysdp7Ep1Xyy8JcPxyCQC1uSExrYOciyptQrK1NwLE8ncSKiy7HYEF3D7yfPWZ0s3LONj8SJiKTzn4EdMKBjAKpqTHhicRJKK2ukjkRkhcWG6B8UlFZZlkt4sHcYTxYmp1d3MnGojxuyiivx7PJkzkxMNoXFhugqDEYTnvrpIC5U6BHdSoPXebIwEQDA212Frx6OgatSju3HizB3+ympIxFZsNgQXcWHW04g8exFeLkq8cW4nlC7KKSORGQzbmitxbv3mGcm/njbCfxx6rzEiYjMWGyIrmBbWiG+2nkaADDr/hsR4e8hcSIi23N/TCjG3hQGIYD/LEvGubJqqSMRsdgQ/V3OxUpMX34YADDxlggM69pK4kREtuv1kV3QMcgT58qqMZ3n25ANYLEh+gu9wYRpPx5C6aUadAvzxivDOksdicimuakU+PyhnlC7yPH7yfP4snZPJ5FUWGyI/uL9TcdxOLsEWjcXfP5QD07CR1QPHYK88NZdNwAA5sSfQOLZYokTkTPjb22iWjvSizBvdwYAYPbobgj14YrdRPU1OiYU9/RoDaNJ4OmfDuFihV7qSOSkWGyIAJwrq8bzK8zn1TzaJwKDooMkTkRkX2QyGd6++wa09fdAfmkVnl9xGELwfBtqeSw25PSEEHjh58M4X65HVJAXXh7WSepIRHbJ01WJubWHcLcdL8LCP85KHYmcEIsNOb0Fe85iR/o5uCrl+PTBHpyvhug6dAnR4tUR5pPuZ/56HOkFZRInImfDYkNO7VieDu/9ehwA8OqIzogK9pI4EZH9G39zOG6NCoDeYMJ/lh5CtcEodSRyIiw25LQu6Y14eukh6I0mDOociIdvDpc6EpFDkMlkmHX/jfD1UOF4QRk+3JwudSRyIiw25LTe2XAMp4rKEejliln3d4NMJpM6EpHDCPRS4/37bgQAfPt7BvZwyQVqISw25JS2Hy/Ekn1ZAIA5Y7rD10MlcSIix3NHdBAe7N0GAPDc8sMoqeQl4NT8WGzI6Vys0OOlX1IAAJNuiUTfDv4SJyJyXK/d2RmR/h4o0FXhv6uO8hJwanYsNuR0XltzFOfKqtE+0BMvDo2SOg6RQ3NXKfHxA92hlMuwISUfKw/mSh2JHByLDTmVdYfzsP5IPhRyGeaM6cZLu4laQLcwbzwzqAMA4I21qcgruSRxInJkLDbkNAp1VXhtzVEAwLTb2uPGUG9pAxE5kX/d2h492nijrNqAl1em8JAUNRsWG3IKQgi89MsRlFTW4IbWGjx1e3upIxE5FYVchg9Hd4OrUo5dJ85hWWK21JHIQbHYkFNYmpiNHennoFLKMWdMd7go+K1P1NLaBXjihSHm89re2ZCGnIuVEiciR8Tf7uTwsosr8c76YwCA5wd3RMcgzi5MJJWJt0SiV7gPyqsNeOmXIzwkRU2OxYYcmhACL688ggq9ETdF+GBy37ZSRyJyagq5DB+M7ga1ixx7Tl2wzCdF1FQaVGwiIiIgk8kuu02bNg0AcPr0adxzzz0ICAiARqPBmDFjUFhYaPUcxcXFGDduHDQaDby9vTF58mSUl5dbbXPkyBH069cParUaYWFhmDVr1nUOk5zVssRs7Dl1AWoXOT64vxsUcs4uTCS1SH8PvDS0EwDgfxvTkF3MQ1LUdBpUbBITE5Gfn2+5xcfHAwBGjx6NiooKDB48GDKZDNu3b8eePXug1+sxcuRImEwmy3OMGzcOqampiI+Px/r167Fr1y5MnTrV8rhOp8PgwYMRHh6OpKQkfPDBB3jjjTfwzTffNNGQyVkUlFbh3Q1pAIDn7ohChL+HxImIqM4jcRHoHemLSr0RL/x8GCYTD0lR01A2ZOOAgACr/7/33nto164dBgwYgPj4eJw9exaHDh2CRqMBACxatAg+Pj7Yvn07Bg0ahLS0NGzatAmJiYno1asXAGDu3LkYPnw4PvzwQ4SEhGDJkiXQ6/WYP38+VCoVunTpguTkZMyZM8eqABH9EyEEXl2dgrJqA7qFeWNS30ipIxHRX8jlMnx4fzcM/WQX9p4pxk+JWRgXy4Vo6fo1+hwbvV6PxYsXY9KkSZDJZKiuroZMJoOrq6tlG7VaDblcjt27dwMAEhIS4O3tbSk1ADBo0CDI5XLs27fPsk3//v2hUv25ds+QIUOQnp6OixcvXjVPdXU1dDqd1Y2c19rDediaVgQXhQwf3H8jD0ER2aA2fu6Wq6Te23gcBaVVEiciR9DoYrN69WqUlJTg0UcfBQDcfPPN8PDwwEsvvYTKykpUVFTg+eefh9FoRH5+PgCgoKAAgYGBVs+jVCrh6+uLgoICyzZBQUFW29T9v26bK5k5cya0Wq3lFhYW1tihkZ27UF6NN9eZr4J66vYOvAqKyIZNiItA9zDzxH2vreFaUnT9Gl1s5s2bh2HDhiEkJASA+TDVihUrsG7dOnh6ekKr1aKkpAQ9e/aEXN78F1+98sorKC0ttdyyszn5k7N6Y90xFFfo0SnYC/+6tZ3UcYjoHyjkMsy6/0a4KGSIP1aIX49e/Q9Yovpo0Dk2dTIzM7F161asXLnS6v7Bgwfj9OnTOH/+PJRKJby9vREcHIy2bc2X2AYHB6OoqMjqYwwGA4qLixEcHGzZ5u9XUtX9v26bK3F1dbU6DEbOKf5YIdYdzjNfUnp/N07ER2QHOgZ54V+3tsen205ixppU3NLOH1p3F6ljkZ1q1G/9BQsWIDAwECNGjLji4/7+/vD29sb27dtRVFSEUaNGAQDi4uJQUlKCpKQky7bbt2+HyWRCbGysZZtdu3ahpqbGsk18fDyioqLg4+PTmLjkJMqqavDq6hQAwJR+bdE1VCtxIiKqr2m3tUO7AA+cL6/G/zamSR2H7FiDi43JZMKCBQvwyCOPQKm03uGzYMEC7N27F6dPn8bixYsxevRoPPvss4iKMp8c1rlzZwwdOhRTpkzB/v37sWfPHjz55JMYO3as5ZDWQw89BJVKhcmTJyM1NRXLli3DJ598gunTpzfBcMmRzd5yAoW6akT4uVtWEiYi++CqVOD9+24EACw7kI0/Tp2XOBHZqwYXm61btyIrKwuTJk267LH09HTcfffd6Ny5M9566y3897//xYcffmi1zZIlS9CpUycMHDgQw4cPR9++fa3mqNFqtdiyZQsyMjIQExOD5557DjNmzOCl3vSPjuSUYFHCWQDAO3d3hdpFIW0gImqwXhG+GH+z+ZLvV1al4JLeKHEiskcy4aCnoOt0Omi1WpSWllrm1SHHZDCacPcXe3A0V4e7u4fg47E9pI5EzahSb0D0jM0AgGNvDYG7qlGnCpKNKquqwR1zdqFAV4UnBrTDy8M6SR2JWtj1vn/zzEqye4sSMnE0VweNWon/joiWOg4RXQcvtQvevvsGAMB3v5/BicIyiRORvWGxIbuWX3oJc7akAwBeGd4ZAV68Mo7I3t0RHYQ7ooNgMAm8uppz21DDsNiQXXtjbSoq9Eb0CvfBA704KSORo3h9ZDTcXBTYn1GMXw7mSh2H7AiLDdmt+GOF2JxaCKVchnfv6Qo5l00gchihPu54eqD56saZG9NQUqmXOBHZCxYbsksV1Qa8vuYoAGBK/7aICuayCUSOZnLfSHQI9MSFCj1mbU6XOg7ZCRYbsksfbz2BvNIqhPm64enbOWcNkSNSKeV4p/ZE4p/2Z+FQ1tUXQiaqw2JDdudkYRkW7DkLAHjrrhvgpuKcNUSOKratH+7t2RpCAP9ddRQGo0nqSGTjWGzIrggh8PraVBhMAoOjg3BbVOC1P4iI7Nr/De8MrZsLjuXr8MPeTKnjkI1jsSG7sjGlAH+cvgBXpRyv3ck5a4icgb+nK14cal6ax7x0SpXEiciWsdiQ3ajUG/DOhmMAgH/d2g5hvu4SJyKilvLgTW3QLcwb5dUGzOQimfQPWGzIbny2/RTya08YfmJAO6njEFELkstleOeuGyCTAauT83DgbLHUkchGsdiQXThzrhzf/n4GADDjzi5c5JLICXUN1Vom4nx9bSqMJs5ITJdjsSGbJ4TAm+uOocYocGtUAAZ15gnDRM7q+SFR8FIrkZqnw/ID2VLHIRvEYkM2b2taEXaeOAeVQo7XR3aBTMYZhomclb+nK54d1BEA8MHmdJRW1kiciGwNiw3ZtKoaI95anwoAeKxfJCL9PSRORERSGx8Xjg6Bniiu0OOjrSekjkM2hsWGbNrXO88gu/gSWmnVePL29lLHISIb4FK79xYAftibifSCMokTkS1hsSGbVVBaha92ngZgnqDLXaWUOBER2Yq+HfwxpEsQjCaBN9elQgieSExmLDZks2ZtPo5LNUb0CvfBnTe2kjoOEdmYV0dEQ6WU44/TF7A5tUDqOGQjWGzIJh3OLsHKg7kAgNfujOYJw0R0mTBfdzzRvy0A4O31aaiqMUqciGwBiw3ZHCEE3l5vnmH43p6t0S3MW9pARGSz/nVre4Ro1cgtuYRvd52ROg7ZABYbsjkbUvJxIPMi3FwUeHFIJ6njEJENc1Mp8NIw8++JL3eeRlEZ15Fydiw2ZFOqaoyYufE4AOCJAe0QrFVLnIiIbN2obiHoFuaNSr0RH8Xz8m9nx2JDNmXe7gzklpgv755ae+yciOifyGQyvDaiMwBgWWI2L/92ciw2ZDOKdFX44rdTAICXhnaCm4rrQRFR/fSK8MXwrsEwCeBdrv7t1FhsyGZ8uCUdFXojuoV5Y1S3EKnjEJGdeWloJ7goZNh14hx2pBdJHYckwmJDNuFobilWJOUAAGbcGQ25nJd3E1HDhPt54JG4CADA/zamwWA0SRuIJMFiQ5ITQmDmr2kQAhjZLQQx4T5SRyIiO/XU7R3g7e6CE4XlWH4gR+o4JAEWG5LcrpPnsefUBagUcrw4JErqOERkx7TuLvjPwA4AgDnx6SivNkiciFoaiw1JymQSeO9X8+Xd4+PCEebrLnEiIrJ342LDEenvgfPleny147TUcaiFsdiQpFYn5yItXwcvtRJP3sbVu4no+qmUcrxSO2nft7+fQV7JJYkTUUtisSHJVNUYMXuLeTKtf9/aHj4eKokTEZGjuCM6CLGRvqg2mPDxVk7a50xYbEgy3yectUzGN/GWCKnjEJEDkclkeLl2r83PSTk4WchJ+5wFiw1JoqRSj8+2myfjm35HR6hdOBkfETWtHm18MLSLedK+WZvTpY5DLYTFhiTxxY7T0FUZ0CnYC/f2DJU6DhE5qBeGRkEhlyH+WCEOnC2WOg61ABYbanE5FyuxcM9ZAMBLwzpBwcn4iKiZtAvwxJhe5j+e3t90HEIIiRNRc2OxoRY3Z8sJ6I0m9Gnnh1s7Bkgdh4gc3H8GdoTaRY7EsxexLY1LLTg6FhtqUcfydFiVnAsAeGVYZ8hk3FtDRM0rWKvGxFsiAQCzNh+H0cS9No6MxYZa1Owt6ZalE7qGaqWOQ0RO4okB7aB1My+1sPIgl1pwZCw21GKSMoux7XgRFHIZpt/RUeo4ROREtG4umHZbOwDAR/EnUFVjlDgRNRcWG2oRQgh8UHu55eiYUET6e0iciIiczYS4CLTSqpFXWoUfEjKljkPNhMWGWsSeUxew90wxVAo5nq5doI6IqCWpXRR4tnZv8ec7TkFXVSNxImoOLDbU7Mx7a8wLXY67uQ1CvN0kTkREzuq+nqFoH+iJksoazPs9Q+o41AxYbKjZbTlWiMM5pXBXKfDvW7nQJRFJ56/n+M3bnYGLFXqJE1FTY7GhZmU0CcypXehy0i2RCPBylTgRETm7oV2CEd1Kg/JqA77edUbqONTEWGyoWa07nIf0wjJo1EpM6d9W6jhERJDLZXhusHmvzcI/MlBUViVxImpKLDbUbGqMJsyJN++tebx2DgkiIltwe6dAdA/zRlWNCV/uOC11HGpCLDbUbJYfyEZWcSX8PVWYeEuE1HGIiCxkMhmeHxwFAFiyNwt5JZckTkRNhcWGmkVVjRFzt50CAEy7rT3cVUqJExERWbulvR9iI32hN5rw2W+npI5DTYTFhprF4r2ZKNBVIUSrxkOxbaSOQ0R0GZlMhudq99osT8xG1oVKiRNRU2CxoSZXqTfgq53mY9ZPD+wAV6VC4kRERFfWO9IX/TsGwGAS+GTbSanjUBNgsaEmt2RvFs6X6xHm64b7YkKljkNE9I+eq53XZtWhHJwqKpc4DV0vFhtqUpV6A77eZd5b89RtHeCi4LcYEdm2bmHeuCM6CCYBfLT1hNRx6DrxXYea1OK9mThfrkcbX3fc07O11HGIiOqlbjbijSn5OFFYJnEauh4sNtRkKvUGfL3TPIvnk7e3594aIrIbnVtpMOyGYAgBfMpzbewa33moySzem4kLFbV7a3pwbw0R2ZenB3YAAGxIycdJ7rWxWw0qNhEREZDJZJfdpk2bBgAoKCjA+PHjERwcDA8PD/Ts2RO//PKL1XMUFxdj3Lhx0Gg08Pb2xuTJk1Febn2y1pEjR9CvXz+o1WqEhYVh1qxZ1zlMam7cW0NE9q5zKw2GdAmCEMDc7ZzXxl416N0nMTER+fn5llt8fDwAYPTo0QCACRMmID09HWvXrkVKSgruvfdejBkzBocOHbI8x7hx45Camor4+HisX78eu3btwtSpUy2P63Q6DB48GOHh4UhKSsIHH3yAN954A998801TjJeaSd3emnA/d9zLvTVEZKfq9tqsO5LHK6TsVIOKTUBAAIKDgy239evXo127dhgwYAAA4I8//sBTTz2F3r17o23btnj11Vfh7e2NpKQkAEBaWho2bdqE7777DrGxsejbty/mzp2LpUuXIi8vDwCwZMkS6PV6zJ8/H126dMHYsWPx9NNPY86cOU08dGoqVntrbmsPJffWEJGd6hKixaDO5r02n3M2YrvU6HcgvV6PxYsXY9KkSZDJZACAPn36YNmyZSguLobJZMLSpUtRVVWFW2+9FQCQkJAAb29v9OrVy/I8gwYNglwux759+yzb9O/fHyqVyrLNkCFDkJ6ejosXL141T3V1NXQ6ndWNWsYPCX/ureG5NURk7/5Tu9dmTXIuzpzjXht70+his3r1apSUlODRRx+13Ld8+XLU1NTAz88Prq6uePzxx7Fq1Sq0b98egPkcnMDAQKvnUSqV8PX1RUFBgWWboKAgq23q/l+3zZXMnDkTWq3WcgsLC2vs0KgBzPPWcG8NETmOrqFaDOwUCJMA15CyQ41+F5o3bx6GDRuGkJAQy32vvfYaSkpKsHXrVhw4cADTp0/HmDFjkJKS0iRh/8krr7yC0tJSyy07O7vZPyeZ99YUc28NETmYpy17bfJw9nyFxGmoIRq15HJmZia2bt2KlStXWu47ffo0PvvsMxw9ehRdunQBAHTr1g2///47Pv/8c3z11VcIDg5GUVGR1XMZDAYUFxcjODgYABAcHIzCwkKrber+X7fNlbi6usLV1bUxw6FGqtQb8E3t3pqnbu/AvTVE5DC6hXnj1qgA7Eg/h89/O4UPRneTOhLVU6PeiRYsWIDAwECMGDHCcl9lpXlVVLnc+ikVCgVMJhMAIC4uDiUlJZaTiQFg+/btMJlMiI2NtWyza9cu1NTUWLaJj49HVFQUfHx8GhOXmslP+7Mt89bc3T3k2h9ARGRH6s61WXkolyt/25EGFxuTyYQFCxbgkUcegVL55w6fTp06oX379nj88cexf/9+nD59GrNnz0Z8fDzuvvtuAEDnzp0xdOhQTJkyBfv378eePXvw5JNPYuzYsZZDWg899BBUKhUmT56M1NRULFu2DJ988gmmT5/eNCOmJlFtMOKb2jWhnhjQjntriMjh9Gjjg/4dA2A0CV4hZUca/G60detWZGVlYdKkSVb3u7i4YOPGjQgICMDIkSNx44034vvvv8eiRYswfPhwy3ZLlixBp06dMHDgQAwfPhx9+/a1mqNGq9Viy5YtyMjIQExMDJ577jnMmDHDaq4bkt4vSbko1FUjWKPGfTE8t4aIHNN/BpovfvnlYA6yi7nXxh7IhBBC6hDNQafTQavVorS0FBqNRuo4DsVgNOH22TuRVVyJ1+6MxuS+kVJHIidSqTcgesZmAMCxt4bAXdWoUwWJ6u3h7/Zh96nzGH9zON6++wap4zi8633/5vEDarB1R/KQVVwJXw8VHuzNy+qJyLFNu82812bZgWwUlVVJnIauhcWGGsRkEvjiN/O5NZP7RvKvZSJyeDe39UXPNt7QG0yYtztD6jh0DSw21CBbjhXgZFE5vNRKjI8LlzoOEVGzk8lk+Pet5r02S/ZmobSy5hofQVJisaF6E0JYZuF8tE8ENGoXiRMREbWM2zsFolOwF8qrDfg+4azUcegfsNhQve08cQ5Hc3Vwc1Fg4i08YZiInIdcLsO/bm0HAJi/JwOVeoPEiehqWGyo3urmcRgX2wa+HqprbE1E5FhGdG2FcD93XKyswU/7uWyPrWKxoXrZd+YCEs9ehEohx5T+baWOQ0TU4pQKOZ4YYN5r8+2uM6g2GCVORFfCYkP1UnduzeheoQjSqCVOQ0QkjXt7tkaQxhUFuiqsOpgrdRy6AhYbuqYjOSX4/eR5KOQyy18rRETOyFWpwJR+5r3WX+48DYPRJHEi+jsWG7qmr3eaV/C+q1sIwnzdJU5DRCStB3u3gbe7CzIvVGLj0QKp49DfsNjQPzp7vgK/Hs0HAEwdwHNriIg8XJWY2Md8ZegXv52Cg65MZLdYbOgfffv7GZgEcFtUADoFc80tIiIAeKRPODxUChwvKMP240VSx6G/YLGhqzpXVo0VSTkAwHNriIj+wttdhYdvNs++/tXO0xKnob9isaGrWvTHWegNJnQP80bvSF+p4xAR2ZRJfSPhopAh8exFHMy6KHUcqsViQ1dU8Zdpw58Y0A4ymUzaQERENiZIo8bd3VsDAL6pvciCpMdiQ1f00/4s6KoMaOvvgTuig6SOQ0Rkk6bWTli6+VgBzpwrlzgNASw2dAU1RhPm7c4AAEzp3xYKOffWEBFdSYcgL9zeKRBCAN/V/t4kabHY0GXWHc5DfmkVArxccU+P1lLHISKyaXV7bX5OysH58mqJ0xCLDVkRQlgm5Jt4SwTULgqJExER2bbYSF90C9VCbzDh+z/OSh3H6bHYkJUd6eeQXlgGT1clxsWGSx2HiMjmyWQyPF47Jcb3ezNRqTdInMi5sdiQlS9r52N4KLYNtG4uEqchIrIPQ7oEI9zPHSWVNViemC11HKfGYkMWB7MuYn9GMVwUMky6JVLqOEREdkMhl+Gxvubfm9/tzuDimBJisSGL736vXeyye2sEa9USpyEisi/3x4TB10OFnIuX8CsXx5QMiw0BALKLK7Gp9gex7gx/IiKqPzeVAhPizOcmfrPrDBfHlAiLDQEA5u/JgEkA/TsGoGOQl9RxiIjs0oS4CKhd5EjJLUXCmQtSx3FKLDaE0kt/nuxWd4yYiIgaztdDhdExYQBgmTqDWhaLDWFZYhYq9EZ0DPJEvw7+UschIrJrj/WLhFwG7DxxDicLy6SO43RYbJxcjdGEhXvOAgAe69uWi10SEV2ncL8/19ibv4fLLLQ0Fhsn9+vRAuSVVsHfU4VR3UOkjkNE5BAm9zVfhLHyYC6KK/QSp3EuLDZOTAhhucR7/M1cPoGIqKncFOGDrq21qDaYsGRvptRxnAqLjRM7kHkRR3JKoVLK8fDNbaSOQ0TkMGQyGSbXXozx/d5MVBuMEidyHiw2TuzbXea9Nff1bA0/T1eJ0xAROZbhXVshSOOKc2XVWH84X+o4ToPFxkmdPV+B+LRCALD8VUFERE1HpZRjQlwEAGDe7gxO2NdCWGyc1II9GRACuC0qAO0DOSEfEVFzGBfbBmoXOY7l67D3TLHUcZwCi40TKq2swfIDOQCAx/px+QQioubi7a7CfT1DAZj32lDzY7FxQj/uz8KlGiM6BXuhTzs/qeMQETm0SbWH+7cdL8TZ8xUSp3F8LDZOpsZowqI/zgIw763hhHxERM2rXYAnbosKgBDAwtrfv9R8WGyczObUAhTozBPyjezWSuo4REROoW7CvuUHslF6qUbiNI6NxcbJ1C2f8FBsOFyVnJCPiKgl3NLeD52CvVCpN2JZYpbUcRwai40TSckpxYHMi1DKZXg4lhPyERG1FJlMhkm3mM+1WfRHJgxGk8SJHBeLjROpO7Y74sZWCNSopQ1DRORkRnUPgb+nCrkll7A5tVDqOA6LxcZJnC+vxrrDeQCAR/tESBuGiMgJqV0UeLC3eW/5ooSz0oZxYCw2TmLp/izojSZ0C/NGjzY+UschInJK42LDoZTLsD+jGGn5OqnjOCQWGydQYzThh9rVZSdybw0RkWSCtWoMuSEYACxTb1DTYrFxApuOFqBQVw1/T1cM78pLvImIpFR3OsDq5FyUVOqlDeOAWGycQN1Jw+Ni20Cl5EtORCSlXuE+iG6lQVWNCcsSs6WO43D4LufgUnJKkZR5ES4KGcbxEm8iIsnJZDLLXpsf9mbCaOKq302JxcbBWS7x7spLvImIbMWo7iHwcXdBzsVL2JbGS7+bEouNA7O6xLt2YigiIpKe2kWBB27ipd/NgcXGgf20z3yJd/cwb3QP85Y6DhER/cXDN7eBXAbsOXUBJwvLpI7jMFhsHJTVJd63REgbhoiILhPq445BnYMAcK9NU2KxcVC/Hi1AUVk1ArxcMewGXuJNRGSL6k4iXnkwF7oqrvrdFFhsHNT3vMSbiMjmxbXzQ8cgT1Tqjfj5QI7UcRwC3/Ec0LE8nWUV74d68xJvIiJbJZPJMCEuAgDwfcJZmHjp93VjsXFAi/eZz60ZckMwL/EmIrJx9/RoDS+1EmcvVGLnyXNSx7F7DSo2ERERkMlkl92mTZuGs2fPXvExmUyGFStWWJ4jKysLI0aMgLu7OwIDA/HCCy/AYDBYfZ4dO3agZ8+ecHV1Rfv27bFw4cImGawzKKuqwepDuQCA8TeHS5yGiIiuxcNViTG9wgBw/aim0KBik5iYiPz8fMstPj4eADB69GiEhYVZPZafn48333wTnp6eGDZsGADAaDRixIgR0Ov1+OOPP7Bo0SIsXLgQM2bMsHyOjIwMjBgxArfddhuSk5PxzDPP4LHHHsPmzZubcNiOa9WhXFTqjegQ6InYSF+p4xARUT1MiAuHTAbsSD+HzAsVUsexaw0qNgEBAQgODrbc1q9fj3bt2mHAgAFQKBRWjwUHB2PVqlUYM2YMPD09AQBbtmzBsWPHsHjxYnTv3h3Dhg3D22+/jc8//xx6vXkhsK+++gqRkZGYPXs2OnfujCeffBL3338/Pvroo6YfvYMRQuCHBPNhqIdvDodMJpM4ERER1Ue4nwf6dwgAAPy4L0viNPat0efY6PV6LF68GJMmTbriG2hSUhKSk5MxefJky30JCQno2rUrgoKCLPcNGTIEOp0Oqamplm0GDRpk9VxDhgxBQkLCP+aprq6GTqezujmbfRnFOFlUDneVAvf0bC11HCIiaoCHa08fWH4gG1U1RonT2K9GF5vVq1ejpKQEjz766BUfnzdvHjp37ow+ffpY7isoKLAqNQAs/y8oKPjHbXQ6HS5dunTVPDNnzoRWq7XcwsLCGjMsu1Y3Id/dPVpDo3aROA0RETXE7Z0CEaJV42JlDX49mi91HLvV6GIzb948DBs2DCEhIZc9dunSJfz4449We2ua2yuvvILS0lLLLTvbuZaCL9JVYfNRczl8OJYnDRMR2RuFXIYHa6foWLyXh6Maq1HFJjMzE1u3bsVjjz12xcd//vlnVFZWYsKECVb3BwcHo7DQehXTuv8HBwf/4zYajQZubm5XzeTq6gqNRmN1cyZLE7NhMAn0CvdBdIhzjZ2IyFE8cFMYlHIZkjIvIi3f+U6paAqNKjYLFixAYGAgRowYccXH582bh1GjRiEgIMDq/ri4OKSkpKCoqMhyX3x8PDQaDaKjoy3bbNu2zerj4uPjERcX15ioTsFgNFlONhsfx701RET2KlCjxuAu5tMxltTOSUYN0+BiYzKZsGDBAjzyyCNQKpWXPX7q1Cns2rXrintzBg8ejOjoaIwfPx6HDx/G5s2b8eqrr2LatGlwdXUFADzxxBM4c+YMXnzxRRw/fhxffPEFli9fjmeffbYRw3MOW9OKUKCrgp+HCkNvCJY6DhERXYe60wlWHcxFebXhGlvT3zW42GzduhVZWVmYNGnSFR+fP38+QkNDMXjw4MseUygUWL9+PRQKBeLi4vDwww9jwoQJeOuttyzbREZGYsOGDYiPj0e3bt0we/ZsfPfddxgyZEhDozqNxbUnDT9wUxhclQqJ0xAR0fWIa+eHtgEeqNAbLROuUv3JhBAOuTCFTqeDVqtFaWmpQ59vc+ZcOW6fvRMyGbDrhdsQ5usudSSiZlWpNyB6hnnCzmNvDYG76vI9x0T2bt7uDLy9/hg6BXvh1//0c6p5ya73/ZtrRdm5JbXn1tweFchSQ0TkIO7vGQq1ixzHC8pwMOui1HHsCouNHbukN2LFAfNl7Q/zpGEiIoehdXfByBvN06nw0u+GYbGxY+sO50FXZUCYrxsGdAi49gcQEZHdGFc7E/GGI/kortBLnMZ+sNjYsR/3m1v8Q73DIZc7z/FXIiJn0C1Uixtaa6A3mix75+naWGzs1LE8HZKzS+CikGF0r1Cp4xARUROTyWSWS79/3J8Fk8khr/Vpciw2duqn2r01g6OD4e/pKnEaIiJqDqO6h8BLrUTmhUrsPnVe6jh2gcXGDlXqDZa5DerWFSEiIsfjrlLivp7mvfJ1c5bRP2OxsUPrj+SjrNqAcD939GnnJ3UcIiJqRuNizX/AbjtehCJdlcRpbB+LjR2qOww19qY2PGmYiMjBdQjyQky4D4wmgRVJOVLHsXksNnYmLV+HQ1klUMpluD+GJw0TETmDutMOlibyJOJrYbGxM0vrThruEoQAL540TETkDEZ0bQUvtRLZxZfwx+kLUsexaSw2duSS3oiVPGmYiMjpuKkUuLt7awB/no5AV8ZiY0c2pOSjrHam4Vva+Usdh4iIWlDdH7RbjhXgQnm1xGlsF4uNHeFJw0REzis6RINuoVrUGAV+OciTiK+GxcZOpBeUISnzIpRyzjRMROSsxtadRLw/G0LwJOIrYbGxE3V7a+6IDkKgl1riNEREJIWR3ULgoVLgzPkK7MsoljqOTWKxsQOX9EasrN3tyJOGiYicl6erEqO6hwD48ypZssZiYwc2puRDV2VAqI8b+rbnScNERM5s7E3mP3A3Hi1ASaVe4jS2h8XGDtQdhnqwN08aJiJydjeGahHdSgO9wYSVB3OljmNzWGxs3MnCMhzIvAiFXIbRnGmYiMjpyWQyPNg7DIB5JmKeRGyNxcbGLUvMBgAM7BSIQA1PGiYiIuCuHq2hdpHjRGE5DmaVSB3HprDY2DC9wWSZafiBm8IkTkNERLZCo3bBnTeaTyLmTMTWWGxs2PbjhSiu0CPQyxUDOgZIHYeIiGxI3eGo9UfyoKuqkTiN7WCxsWF1h6HuiwmFUsGXioiI/tSzjQ86BHqiqsaENcl5UsexGXy3tFEFpVXYeeIcAGBMLx6GIiIiazKZzDIT8YoD2RKnsR0sNjbql4M5MAmgd4QvIv09pI5DREQ26J4ereGikOFITinS8nVSx7EJLDY2yGQSWF7bvsfwpGEiIroKXw8VBnUOAgCsOMCFMQEWG5u0L6MYmRcq4emqxPCuwVLHISIiG1Z3usKqQznQG0wSp5Eei40NqttbM7JbK7irlBKnISIiW9avgz+CNK64WFmDbWmFUseRHIuNjdFV1WBjSj4AnjRMRETXplTIcV9P88z0y3kSMYuNrVmbnIdqgwkdgzzRPcxb6jhERGQHRtf+IbzzxDkUlFZJnEZaLDY2xnLScK8wyGRc8JKIiK4t0t8DN0X4wCSAlYec+yRiFhsbkpavw5GcUrgoZLinR2up4xARkR2p22uz4kCOUy+MyWJjQ+r21gzqHAQ/T1eJ0xARkT0Z0bUV3FUKZJyvwIHMi1LHkQyLjY2oNhixqnbBS540TEREDeXhqsSdN7YCACxPdN6TiFlsbMTWY0UoqaxBsEaN/lzwkoiIGqHuD+MNKfkorzZInEYaLDY2YlntYaj7Y0KhkPOkYSIiariYcB+09fdApd6IjUfypY4jCRYbG5Bfegm/nzQveDm6V6jEaYiIyF7JZDLcX/s+siLJOQ9HsdjYgJUHcyEE0DvSF+F+XPCSiIga776eoZDLgMSzF3HmXLnUcVoci43EhBD45aB5zoH7e3JvDRERXZ8gjRq3RgUCAFYkOd+cNiw2EkvOLsGZcxVQu8gxjAteEhFRExhTezjql6QcGIzOtTAmi43E6vbWDLuhFbzULhKnISIiR3B7pyD4eqhQVFaNXbXncDoLFhsJVdUYsTY5DwAsC5gRERFdL5VSjru6hwAAfjmYK3GalsViI6FtaUXQVRnQSqtGXDs/qeMQEZEDqfuDOf5YIUorayRO03JYbCRUdxjqnh6tOXcNERE1qS4hGkQFeUFvMGF9Sp7UcVoMi41EisqqsPOE+bjnfTE8DEVERE1LJpPhvhjzgsornehwFIuNRNYcyoPRJNCjjTfaBXhKHYeIiBzQ3d1bQy4DkjIvIuN8hdRxWgSLjQT+OncNTxomIqLmEqhRo18H8/qDqw46x5w2LDYSSM3T4XhBGVRKOUbeGCJ1HCIicmB1pzv8cjAXJpOQOE3zY7GRQN3emjuig6B159w1RETUfAZHB8HLVYnckkvYl1EsdZxmx2LTwvQGE9bUzl3DJRSIiKi5qV0UGHFjKwDASic4HMVi08J2pBehuEKPAC9X9OvgL3UcIiJyAnWHozam5KNSb5A4TfNisWlhf527Rqngl5+IiJpfr3AftPF1R4XeiM2pBVLHaVZ8Z21BxRV6bD9eBIBXQxERUcuRyWS4t6dzzGnDYtOC1ibnosYo0LW1FlHBXlLHISIiJ1L3B/XuU+eRX3pJ4jTNp0HFJiIiAjKZ7LLbtGnTLNskJCTg9ttvh4eHBzQaDfr3749Ll/78AhYXF2PcuHHQaDTw9vbG5MmTUV5ebvV5jhw5gn79+kGtViMsLAyzZs26zmHahrqFyO6rbc1EREQtJczXHb0jfSEEsPqQ4y6x0KBik5iYiPz8fMstPj4eADB69GgA5lIzdOhQDB48GPv370diYiKefPJJyOV/fppx48YhNTUV8fHxWL9+PXbt2oWpU6daHtfpdBg8eDDCw8ORlJSEDz74AG+88Qa++eabphivZE4UliEltxQuChlGdWexISKillf3h/UvB3MghGPOaaNsyMYBAQFW/3/vvffQrl07DBgwAADw7LPP4umnn8bLL79s2SYqKsry77S0NGzatAmJiYno1asXAGDu3LkYPnw4PvzwQ4SEhGDJkiXQ6/WYP38+VCoVunTpguTkZMyZM8eqANmbVYfMe2tujQqEr4dK4jREROSMhndthRlrUnGqqBxHckrRLcxb6khNrtHn2Oj1eixevBiTJk2CTCZDUVER9u3bh8DAQPTp0wdBQUEYMGAAdu/ebfmYhIQEeHt7W0oNAAwaNAhyuRz79u2zbNO/f3+oVH+++Q8ZMgTp6em4ePHiVfNUV1dDp9NZ3WyFySSwprbY3NuDe2uIiEgaXmoXDOkSDMBx57RpdLFZvXo1SkpK8OijjwIAzpw5AwB44403MGXKFGzatAk9e/bEwIEDcfLkSQBAQUEBAgMDrZ5HqVTC19cXBQUFlm2CgoKstqn7f902VzJz5kxotVrLLSwsrLFDa3L7zxYjr7QKXmolbusUeO0PICIiaiZ1c9qsOZwHvcEkcZqm1+hiM2/ePAwbNgwhIea1jkwm8xfn8ccfx8SJE9GjRw989NFHiIqKwvz585sm7T945ZVXUFpaarllZ2c3++esr9W1e2tGdG0FtYtC4jREROTM+rb3R6CXK0oqa7DzxDmp4zS5RhWbzMxMbN26FY899pjlvlatzNM1R0dHW23buXNnZGVlAQCCg4NRVFRk9bjBYEBxcTGCg4Mt2xQWFlptU/f/um2uxNXVFRqNxupmC6pqjNiQkg8AuJuHoYiISGIKuQyjupl3StT94e1IGlVsFixYgMDAQIwYMcJyX0REBEJCQpCenm617YkTJxAeHg4AiIuLQ0lJCZKSkiyPb9++HSaTCbGxsZZtdu3ahZqaGss28fHxiIqKgo+PT2PiSuq340UoqzIgRKtG7whfqeMQERFZ/tDemlYIXVXNNba2Lw0uNiaTCQsWLMAjjzwCpfLPi6pkMhleeOEFfPrpp/j5559x6tQpvPbaazh+/DgmT54MwLz3ZujQoZgyZQr279+PPXv24Mknn8TYsWMth7QeeughqFQqTJ48GampqVi2bBk++eQTTJ8+vYmG3LLqroa6q0dryOUyidMQEREBXUI0aB/oiWqDCZuOOtYSCw263BsAtm7diqysLEyaNOmyx5555hlUVVXh2WefRXFxMbp164b4+Hi0a9fOss2SJUvw5JNPYuDAgZDL5bjvvvvw6aefWh7XarXYsmULpk2bhpiYGPj7+2PGjBl2ean3xQo9fks3H3q7h4ehiIjIRshkMtzTozU+2JyONcm5GNPLdi64uV4y4aAz9Oh0Omi1WpSWlkp2vs3ivZl4dfVRRLfSYON/+kmSgcjRVOoNiJ6xGQBw7K0hcFc1+O8zIgKQXVyJfrN+g0wGJLw8EMFatdSRAFz/+zfXimpGdSdlcW8NERHZmjBfd9wU4QMhgLWHHeckYhabZpJ1oRIHMi9CJgNGdQ+ROg4REdFl6k4idqS1o1hsmsmaZHP7vaWdP4I0trF7j4iI6K9GdG0FF4UMx/J1OFFYJnWcJsFi0wyEEFhVW2w4dw0REdkqb3cVbo0yz4jvKHPasNg0g5TcUpw5VwG1ixxDugRd+wOIiIgkcnd38x/ga5LzYDLZ//VELDbNoG7umjuig+GldpE4DRER0dUN7BwIL1clcksu4UDm1RebthcsNk3MYDRh3WHzSVhcyZuIiGyd2kWBoTeYlyxa5QCHo1hsmtjuU+dxvlwPPw8V+nbwlzoOERHRNdVNS7LhSB6qDUaJ01wfFpsmVtd2R3YLgYuCX14iIrJ9sW39EKRxha7KgB3p9r3iN995m1B5tQGbU81rbvBqKCIishcKuQx3da+b08a+D0ex2DShLakFqKoxIdLfA91CtVLHISIiqre6q6O2HS9C6SX7XfGbxaYJra09aXhUtxDIZFzJm4iI7EfnVl7oGOQJvcGETUfzpY7TaCw2TaS4Qo/dJ88D4BIKRERkf2QymUMsscBi00Q2puTDYBK4obUG7QI8pY5DRETUYKO6mf8w35txAXkllyRO0zgsNk3kr4ehiIiI7FGojzt6R/pCCGD9Efvca8Ni0wTySi5hf0YxAODOG1lsiIjIftX9gb7usH2eZ8Ni0wTqWm3vCF+EeLtJnIaIiKjxht0QDIVchpTcUmScr5A6ToOx2DSBusNQI3nSMBER2Tk/T1f0bW+eOX9tsv0djmKxuU5nzpXjaK4OCrkMw2vX2iAiIrJnI2sPR609nAsh7GvFbxab61S3t6Zve3/4ebpKnIaIiOj6DekSBJVSjtPnKpCWXyZ1nAZhsbkOQgheDUVERA7HS+2C26MCAQDr7OzqKBab65Cap8OZcxVwVcoxuEuQ1HGIiIiazEjL1VF5dnU4isXmOqyr3Vtze6dAeKldJE5DRETUdG7vFAgPlQI5Fy/hUHaJ1HHqjcWmkUwmYSk2PAxFRESOxk2lwB3R5qMR9nR1FItNIyVlXUReaRU8XZW4rVOg1HGIiIiaXN3ahxtS8mE02cfhKBabRqprr4O7BEHtopA4DRERUdPr2z4AWjcXnCurxr4zF6SOUy8sNo1gMJqwMcU81TQPQxERkaNSKeUY3tU8R5u9XB3FYtMIe05fwIUKPXw9VLildnZGIiIiRzSydg3EjSkF0BtMEqe5NhabRqg7DDW8azBcFPwSEhGR44pt64dAL1eUXqrB7yfPSR3nmviu3EBVNUZsSS0AAIzq1lriNERERM1LIZdhxI2tAPw5zYktY7FpoB3pRSirNiBEq0avcB+p4xARETW7usn6thwrxCW9UeI0/4zFpoEsK3l3C4FcLpM4DRERUfPrEeaNUB83VOqN2H68SOo4/4jFpoH6dwhAr3AfS3slIiJydDKZzGrFb1vGYtNAY3u3wc//6oMbWmuljkJERNRi6qY3+S39HHRVNRKnuToWGyIiIrqmTsFeaB/oCb3BhC2phVLHuSoWGyIiIrommUxm2Wuz3oYn62OxISIionqpu+x798nzuFihlzjNlbHYEBERUb20C/BE51YaGEwCm2vndLM1LDZERERUb3fW7rVZfyRf4iRXxmJDRERE9Va3dtQfp8/jQnm1xGkux2JDRERE9dbGzx03hmphEsCvR23vcJRS6gBERERkXybERSDrQgVuae8vdZTLsNgQERFRg9wfEyp1hKvioSgiIiJyGCw2RERE5DBYbIiIiMhhsNgQERGRw2CxISIiIofBYkNEREQOg8WGiIiIHAaLDRERETkMFhsiIiJyGCw2RERE5DBYbIiIiMhhsNgQERGRw2CxISIiIofhsKt7CyEAADqdTuIkRNSUKvUGmKorAZh/vg0qh/01RuSU6t63697HG0omGvuRNi4nJwdhYWFSxyAiIqJGyM7ORmhoaIM/zmGLjclkQl5eHry8vCCTyZrseXU6HcLCwpCdnQ2NRtNkz2tLHH2MHJ/9c/QxOvr4AMcfI8fXeEIIlJWVISQkBHJ5w8+Ycdh9uHK5vFFNr740Go1DfrP+laOPkeOzf44+RkcfH+D4Y+T4Gker1Tb6Y3nyMBERETkMFhsiIiJyGCw2DeTq6orXX38drq6uUkdpNo4+Ro7P/jn6GB19fIDjj5Hjk47DnjxMREREzod7bIiIiMhhsNgQERGRw2CxISIiIofBYkNEREQOw+GKzeeff46IiAio1WrExsZi//79/7j9ihUr0KlTJ6jVanTt2hUbN260enzlypUYPHgw/Pz8IJPJkJycfNlznD59Gvfccw8CAgKg0WgwZswYFBYWWm1TXFyMcePGQaPRwNvbG5MnT0Z5ebnVNkeOHEG/fv2gVqsRFhaGWbNm2cX4zp49i8mTJyMyMhJubm5o164dXn/9dej1eqttZDLZZbe9e/fa/PgAICIi4rLs7733ntU29Xn9bHWMO3bsuOLrI5PJkJiYCECa17CmpgYvvfQSunbtCg8PD4SEhGDChAnIy8uzeo6m+vm61tfalse4Y8cO3HXXXWjVqhU8PDzQvXt3LFmyxOo5Fi5ceNnrp1ar7WJ89f3+q89raIvje+ONN644Pg8PD8s29X39pBrju+++iz59+sDd3R3e3t5X/DxZWVkYMWIE3N3dERgYiBdeeAEGg8Fqmx07dqBnz55wdXVF+/btsXDhwn/MfhnhQJYuXSpUKpWYP3++SE1NFVOmTBHe3t6isLDwitvv2bNHKBQKMWvWLHHs2DHx6quvChcXF5GSkmLZ5vvvvxdvvvmm+PbbbwUAcejQIavnKC8vF23bthX33HOPOHLkiDhy5Ii46667xE033SSMRqNlu6FDh4pu3bqJvXv3it9//120b99ePPjgg5bHS0tLRVBQkBg3bpw4evSo+Omnn4Sbm5v4+uuvbX58v/76q3j00UfF5s2bxenTp8WaNWtEYGCgeO655yzPk5GRIQCIrVu3ivz8fMtNr9fb/PiEECI8PFy89dZbVtnLy8sb9PrZ8hirq6utxpafny8ee+wxERkZKUwmk2SvYUlJiRg0aJBYtmyZOH78uEhISBC9e/cWMTExVs/TFD9f9fla2/IY3333XfHqq6+KPXv2iFOnTomPP/5YyOVysW7dOss2CxYsEBqNxur1KygosIvx1ef7rz6voa2Or6ys7LKfwejoaPHII4806PWTcowzZswQc+bMEdOnTxdarfayz2MwGMQNN9wgBg0aJA4dOiQ2btwo/P39xSuvvGLZ5syZM8Ld3V1Mnz5dHDt2TMydO1coFAqxadOmK2a/EocqNr179xbTpk2z/N9oNIqQkBAxc+bMK24/ZswYMWLECKv7YmNjxeOPP37ZtnU/VH9/09i8ebOQy+WitLTUcl9JSYmQyWQiPj5eCCHEsWPHBACRmJho2ebXX38VMplM5ObmCiGE+OKLL4SPj4+orq62bPPSSy+JqKgomx/flcyaNUtERkZe8/n/ypbHFx4eLj766KOrZq/P62frY/wrvV4vAgICxFtvvXXN52+p8dXZv3+/ACAyMzOFEE3381XfLLY6xisZPny4mDhxouX/CxYsuOIbjj2Mrz7ff/XJYqvj+7vk5GQBQOzatctyX31eP6nG+FdXy7lx40Yhl8utytiXX34pNBqN5WfzxRdfFF26dLH6uAceeEAMGTLkqln+zmEORen1eiQlJWHQoEGW++RyOQYNGoSEhIQrfkxCQoLV9gAwZMiQq25/JdXV1ZDJZFaTFKnVasjlcuzevdvyeby9vdGrVy/LNoMGDYJcLse+ffss2/Tv3x8qlcoqS3p6Oi5evGjT47uS0tJS+Pr6Xnb/qFGjEBgYiL59+2Lt2rWW++1hfO+99x78/PzQo0cPfPDBB1a7T6/1+tnLGOusXbsWFy5cwMSJEy97TOrXsLS0FDKZzLKruyl+vuqbxZbHeLXn+fvPYXl5OcLDwxEWFoa77roLqampdjW+q33/1SeLPYyvznfffYeOHTuiX79+Vvf/0+sn5RjrIyEhAV27dkVQUJDV59HpdJZxNMXvPIcpNufPn4fRaLT6ggFAUFAQCgoKrvgxBQUFDdr+Sm6++WZ4eHjgpZdeQmVlJSoqKvD888/DaDQiPz/f8nkCAwOtPk6pVMLX19fyua6Wpe4xWx7f3506dQpz587F448/brnP09MTs2fPxooVK7Bhwwb07dsXd999t+UXk62P7+mnn8bSpUvx22+/4fHHH8f//vc/vPjii9fMUveYPYzxr+bNm4chQ4ZYLSRrC69hVVUVXnrpJTz44IOWhfea4uervllseYx/t3z5ciQmJlqV06ioKMyfPx9r1qzB4sWLYTKZ0KdPH+Tk5Nj8+K71/VefLLY8vr8/x5IlSzB58mSr+6/1+kk5xvq4np9DnU6HS5cu1evzOEyxkUpAQABWrFiBdevWwdPTE1qtFiUlJejZs2ejllu3NQ0dX25uLoYOHYrRo0djypQplvv9/f0xffp0xMbG4qabbsJ7772Hhx9+GB988EFLDucy9R3f9OnTceutt+LGG2/EE088gdmzZ2Pu3Lmorq6WMH39NPQ1zMnJwebNmy/7pSr1a1hTU4MxY8ZACIEvv/yyRT5nS2uqMf7222+YOHEivv32W3Tp0sVyf1xcHCZMmIDu3btjwIABWLlyJQICAvD11183Rfxrup7xSf39Vx9N9fqtWrUKZWVleOSRR6zul/r1A+zj51ApdYCm4u/vD4VCcdnVLIWFhQgODr7ixwQHBzdo+6sZPHgwTp8+jfPnz0OpVMLb2xvBwcFo27at5fMUFRVZfYzBYEBxcbHlc10tS91jHh4eNju+Onl5ebjtttvQp08ffPPNN9d83tjYWMTHxwOw7dfvatkNBgPOnj2LqKioa75+9jTGBQsWwM/PD6NGjbrm87bUa1j3yzQzMxPbt2+3+iuxKX6+6pvFlsdYZ+fOnRg5ciQ++ugjTJgw4YqZ6ri4uKBHjx44deqU3Yzvr/76/VefLPYyvu+++w533nnnZXsu/u7vr5+UY6yP4ODgy67Oqu/PoUajgZubW70+j/3vUqilUqkQExODbdu2We4zmUzYtm0b4uLirvgxcXFxVtsDQHx8/FW3vxZ/f394e3tj+/btKCoqsrwxxMXFoaSkBElJSZZtt2/fDpPJhNjYWMs2u3btQk1NjVWWqKgo+Pj42PT4APOemltvvRUxMTFYsGBBvfZWJScno1WrVgBs+/W7Wna5XG7ZvXyt189exiiEwIIFCzBhwgS4uLhc8/la4jWs+2V68uRJbN26FX5+fpc9x/X+fNU3iy2PETBfJjtixAi8//77mDp16hXz/JXRaERKSopdvIZX8tfvv/pksYfxZWRk4Lfffrtsj+mV/P31k3KM9REXF4eUlBSrkhcfHw+NRoPo6Oh6Z7mmep9mbAeWLl0qXF1dxcKFC8WxY8fE1KlThbe3t+UM7PHjx4uXX37Zsv2ePXuEUqkUH374oUhLSxOvv/76ZZcGXrhwQRw6dEhs2LBBABBLly4Vhw4dEvn5+ZZt5s+fLxISEsSpU6fEDz/8IHx9fcX06dOtsg0dOlT06NFD7Nu3T+zevVt06NDB6lK/kpISERQUJMaPHy+OHj0qli5dKtzd3S+73NsWx5eTkyPat28vBg4cKHJycqwuRayzcOFC8eOPP4q0tDSRlpYm3n33XSGXy8X8+fNtfnx//PGH+Oijj0RycrI4ffq0WLx4sQgICBATJkxo0Otny2Oss3XrVgFApKWlXfaYFK+hXq8Xo0aNEqGhoSI5Odnqe+uvVzg1xc9Xfb7WtjzG7du3C3d3d/HKK69YPceFCxcs27z55puWaRmSkpLE2LFjhVqtFqmpqTY/vvp8/9XnNbTV8dV59dVXRUhIiDAYDJc9Vp/XT8oxZmZmikOHDok333xTeHp6ikOHDolDhw6JsrIyIcSfl3sPHjxYJCcni02bNomAgIArXu79wgsviLS0NPH555879+XeQggxd+5c0aZNG6FSqUTv3r3F3r17LY8NGDDAak4AIYRYvny56Nixo1CpVKJLly5iw4YNVo8vWLBAALjs9vrrr1u2eemll0RQUJBwcXERHTp0ELNnz7bM/VHnwoUL4sEHHxSenp5Co9GIiRMnWl7sOocPHxZ9+/YVrq6uonXr1uK9996zi/Fd7Tn+2psXLlwoOnfuLNzd3YVGoxG9e/cWK1assIvxJSUlidjYWKHVaoVarRadO3cW//vf/0RVVZXV56rP62erY6zz4IMPij59+lwxtxSvYd0lvle6/fbbb5btmurn61pfa1se4yOPPHLF5xgwYIBlm2eeecaSOygoSAwfPlwcPHjQLsZX3++/+ryGtjg+IcyXZYeGhor/+7//uyyzEPV//aQa49W+B/+6zdmzZ8WwYcOEm5ub8Pf3F88995yoqamxyvLbb7+J7t27C5VKJdq2bSsWLFhwxTFejUwIIeq/f4eIiIjIdjnMOTZERERELDZERETkMFhsiIiIyGGw2BAREZHDYLEhIiIih8FiQ0RERA6DxYaIiIgcBosNEREROQwWGyIiInIYLDZERETkMFhsiIiIyGGw2BAREZHD+H9fXkGrvUXp3gAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -229,7 +237,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 17, "id": "7e115c8e-9f61-47d1-b1e2-d9635215d42c", "metadata": { "tags": [] @@ -238,10 +246,10 @@ { "data": { "text/plain": [ - "Array([ -6663.24033264, -21048.73974422], dtype=float64)" + "Array([ -6663.44839376, -21045.23239405], dtype=float64)" ] }, - "execution_count": 45, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -253,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 34, "id": "06d5056f-dca0-4954-b68f-18e4903b172d", "metadata": { "tags": [] @@ -265,7 +273,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 35, "id": "2e3380ae-4cfe-44dc-b7fe-47343aaeb6e9", "metadata": { "tags": [] @@ -279,7 +287,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 36, "id": "dce148d4-e691-4245-969e-11597faff1f4", "metadata": { "tags": [] @@ -292,7 +300,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 37, "id": "66298526-34a7-4039-ac26-7eac52ff281c", "metadata": { "tags": [] @@ -305,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 38, "id": "9e3da837-fcc7-4fc7-8cbf-c129b690412f", "metadata": { "tags": [] @@ -314,13 +322,13 @@ { "data": { "text/plain": [ - "(Array([[ 1.00150751e+09, -3.15040615e+01],\n", - " [-3.15040615e+01, 1.00150998e+09]], dtype=float64),\n", - " Array([[9.98494764e-10, 3.14092132e-17],\n", - " [3.14092132e-17, 9.98492299e-10]], dtype=float64))" + "(Array([[1.00150753e+09, 4.93783690e-01],\n", + " [4.93783691e-01, 1.00150995e+09]], dtype=float64),\n", + " Array([[ 9.98494743e-10, -4.92297073e-19],\n", + " [-4.92297074e-19, 9.98492322e-10]], dtype=float64))" ] }, - "execution_count": 50, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -331,7 +339,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 39, "id": "9e8acaf0-50df-4b8c-8155-cb6ea8448a2f", "metadata": { "tags": [] @@ -341,11 +349,11 @@ "data": { "text/plain": [ "(Array(3.16227766e-05, dtype=float64, weak_type=True),\n", - " Array(3.15989678e-05, dtype=float64),\n", - " Array(3.15989288e-05, dtype=float64))" + " Array(3.15989674e-05, dtype=float64),\n", + " Array(3.15989291e-05, dtype=float64))" ] }, - "execution_count": 51, + "execution_count": 39, "metadata": {}, "output_type": "execute_result" } @@ -359,12 +367,12 @@ "id": "933dd466-32b3-41f1-bcdd-f1e5a54def41", "metadata": {}, "source": [ - "## Plot as a function of number of galaxies" + "### Plot as a function of number of galaxies" ] }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 73, "id": "9a468422-abe3-4182-bebd-a18999bc1e0c", "metadata": { "tags": [] @@ -372,10 +380,10 @@ "outputs": [], "source": [ "def get_fisher_cov(e_post, true_g, likelihood_fnc):\n", - " grad1 = lambda g, e: grad(likelihood_fnc)(g, e)[0]\n", - " grad2 = lambda g, e: grad(likelihood_fnc)(g, e)[1]\n", - " i11, i12 = - grad(grad1)(true_g, e_post)\n", - " i21, i22 = - grad(grad2)(true_g, e_post)\n", + " grad1 = lambda g:grad(likelihood_fnc)(g, e_post=e_post)[0]\n", + " grad2 = lambda g: grad(likelihood_fnc)(g, e_post=e_post)[1]\n", + " i11, i12 = - grad(grad1)(true_g)\n", + " i21, i22 = - grad(grad2)(true_g)\n", " inf_mat = jnp.array([[i11, i12], [i21, i22]])\n", " cov = jnp.linalg.inv(inf_mat)\n", " return cov" @@ -383,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 74, "id": "b10c69eb-895d-4d1a-a1a4-e71c522dcb30", "metadata": { "tags": [] @@ -397,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 75, "id": "b2f255eb-05f0-4ec5-8a74-aa19ffee90e1", "metadata": { "tags": [] @@ -410,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 76, "id": "e6d1d8bb-ef31-448b-b856-26a18340c502", "metadata": { "tags": [] @@ -424,14 +432,14 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 77, "id": "d8c15e9f-ad89-4360-beac-eb0ddc11a83e", "metadata": { "tags": [] }, "outputs": [], "source": [ - "pipe = jjit(partial(pipeline_toy_ellips_samples, g1=g1, g2 = g2, \n", + "pipe = jit(partial(pipeline_toy_ellips_samples, g1=g1, g2 = g2, \n", " sigma_e=sigma_e, \n", " sigma_e_int=sigma_e_int, \n", " sigma_m=sigma_m, \n", @@ -444,7 +452,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 78, "id": "7ef485d3-3bbc-4a17-b8b9-c86268533bc0", "metadata": { "tags": [] @@ -454,38 +462,18 @@ "name": "stderr", "output_type": "stream", "text": [ - " 86%|████████▌ | 6/7 [00:08<00:01, 1.52s/it]2024-11-25 09:40:30.432411: W external/xla/xla/service/hlo_rematerialization.cc:3005] Can't reduce memory use below -27.33GiB (-29341580634 bytes) by rematerialization; only reduced to 62.04GiB (66610000568 bytes), down from 62.78GiB (67410000568 bytes) originally\n", - "2024-11-25 09:40:40.971126: W external/xla/xla/tsl/framework/bfc_allocator.cc:482] Allocator (GPU_0_bfc) ran out of memory trying to allocate 1.49GiB (rounded to 1600000000)requested by op \n", - "2024-11-25 09:40:40.971649: W external/xla/xla/tsl/framework/bfc_allocator.cc:494] *************************************************************************************************___\n", - "E1125 09:40:40.971670 2296355 pjrt_stream_executor_client.cc:3067] Execution of replica 0 failed: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 1600000000 bytes.\n", - " 86%|████████▌ | 6/7 [00:19<00:03, 3.21s/it]\n" - ] - }, - { - "ename": "XlaRuntimeError", - "evalue": "RESOURCE_EXHAUSTED: Out of memory while trying to allocate 1600000000 bytes.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mXlaRuntimeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[164], line 11\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m ii \u001b[38;5;129;01min\u001b[39;00m tqdm(n_galaxies):\n\u001b[1;32m 10\u001b[0m e_samples \u001b[38;5;241m=\u001b[39m e_post[:ii]\n\u001b[0;32m---> 11\u001b[0m cov \u001b[38;5;241m=\u001b[39m \u001b[43mget_fisher_cov\u001b[49m\u001b[43m(\u001b[49m\u001b[43me_samples\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrue_g\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlikelihood_fnc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 12\u001b[0m covs\u001b[38;5;241m.\u001b[39mappend(cov)\n", - "Cell \u001b[0;32mIn[99], line 4\u001b[0m, in \u001b[0;36mget_fisher_cov\u001b[0;34m(e_post, true_g, likelihood_fnc)\u001b[0m\n\u001b[1;32m 2\u001b[0m grad1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m g, e: grad(likelihood_fnc)(g, e)[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 3\u001b[0m grad2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m g, e: grad(likelihood_fnc)(g, e)[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m----> 4\u001b[0m i11, i12 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m \u001b[43mgrad\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgrad1\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrue_g\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43me_post\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m i21, i22 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m grad(grad2)(true_g, e_post)\n\u001b[1;32m 6\u001b[0m inf_mat \u001b[38;5;241m=\u001b[39m jnp\u001b[38;5;241m.\u001b[39marray([[i11, i12], [i21, i22]])\n", - " \u001b[0;31m[... skipping hidden 10 frame]\u001b[0m\n", - "Cell \u001b[0;32mIn[99], line 2\u001b[0m, in \u001b[0;36mget_fisher_cov..\u001b[0;34m(g, e)\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_fisher_cov\u001b[39m(e_post, true_g, likelihood_fnc):\n\u001b[0;32m----> 2\u001b[0m grad1 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m g, e: \u001b[43mgrad\u001b[49m\u001b[43m(\u001b[49m\u001b[43mlikelihood_fnc\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43me\u001b[49m\u001b[43m)\u001b[49m[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 3\u001b[0m grad2 \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mlambda\u001b[39;00m g, e: grad(likelihood_fnc)(g, e)[\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 4\u001b[0m i11, i12 \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m grad(grad1)(true_g, e_post)\n", - " \u001b[0;31m[... skipping hidden 36 frame]\u001b[0m\n", - "File \u001b[0;32m/pscratch/sd/i/imendoza/miniconda3/envs/bpd_gpu2/lib/python3.10/site-packages/jax/_src/interpreters/pxla.py:1248\u001b[0m, in \u001b[0;36mExecuteReplicated.__call__\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 1246\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_handle_token_bufs(result_token_bufs, sharded_runtime_token)\n\u001b[1;32m 1247\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1248\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mxla_executable\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute_sharded\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_bufs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dispatch\u001b[38;5;241m.\u001b[39mneeds_check_special():\n\u001b[1;32m 1251\u001b[0m out_arrays \u001b[38;5;241m=\u001b[39m results\u001b[38;5;241m.\u001b[39mdisassemble_into_single_device_arrays()\n", - "\u001b[0;31mXlaRuntimeError\u001b[0m: RESOURCE_EXHAUSTED: Out of memory while trying to allocate 1600000000 bytes." + "100%|██████████| 6/6 [00:08<00:00, 1.38s/it]\n" ] } ], "source": [ "covs = []\n", "\n", - "prior = partial(ellip_mag_prior, sigma=sigma_e)\n", + "prior = ellip_mag_prior\n", "interim_prior = partial(ellip_mag_prior, sigma=sigma_e_int)\n", - "likelihood_fnc = jjit(partial(shear_loglikelihood, prior=prior, interim_prior=interim_prior)) \n", + "likelihood_fnc = jit(partial(shear_loglikelihood, sigma_e=sigma_e, prior=prior, interim_prior=interim_prior)) \n", "\n", - "n_galaxies = (1, 10, 100, 1000, 10_000, 100_000, 1_000_000)\n", + "n_galaxies = (1, 10, 100, 1000, 10_000, 100_000)\n", "\n", "for ii in tqdm(n_galaxies):\n", " e_samples = e_post[:ii]\n", @@ -496,30 +484,7 @@ }, { "cell_type": "code", - "execution_count": 147, - "id": "1cd5a7ce-f5a4-487f-b346-d93a5fe008a5", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "text/plain": [ - "Array(0.00070525, dtype=float64)" - ] - }, - "execution_count": 147, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "e_sheared[:, 0].std()" - ] - }, - { - "cell_type": "code", - "execution_count": 148, + "execution_count": 79, "id": "c635d4f8-94a0-4ef9-ac2a-9b2187b8ad82", "metadata": { "tags": [] @@ -532,7 +497,7 @@ " Array(0.00070711, dtype=float64, weak_type=True))" ] }, - "execution_count": 148, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -546,7 +511,7 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 80, "id": "5ed49df5-54a4-4549-948b-9b69905a52cf", "metadata": { "tags": [] @@ -558,7 +523,7 @@ "Text(0, 0.5, 'Sigma on g1')" ] }, - "execution_count": 149, + "execution_count": 80, "metadata": {}, "output_type": "execute_result" }, @@ -584,6 +549,7 @@ "\n", "plt.plot(n_galaxies, sigma_e / jnp.sqrt(2 * jnp.array(n_galaxies)), '-o', label='$\\sigma_{e} / \\sqrt{2N}$')\n", "plt.plot(n_galaxies, ellips_unsheared[:, 0].std() / jnp.sqrt(jnp.array(n_galaxies)), '--o', label='$\\sigma_{e_{1}} / \\sqrt{N}$')\n", + "# plt.plot(n_galaxies, jnp.sqrt(e_sheared[:, 0]**2 + e_sheared[:,1]**2).std() * jnp.sqrt(2) / jnp.sqrt(jnp.array(n_galaxies)), '-.o', label='$\\sigma_{e^{s}} \\sqrt{2}/ \\sqrt{N}$')\n", "\n", "\n", "plt.yscale('log')\n", @@ -594,21 +560,8 @@ }, { "cell_type": "code", - "execution_count": 150, - "id": "e35ecc39-bfdd-4570-b78b-df239aaec982", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "# likelihood_fnc = jjit(partial(shear_loglikelihood, prior=prior, interim_prior=interim_prior)) \n", - "grad_likelihood = grad(likelihood_fnc)" - ] - }, - { - "cell_type": "code", - "execution_count": 151, - "id": "d946c160-cd7f-4acd-b7ce-450741103979", + "execution_count": 81, + "id": "e21e00eb-d592-4c81-a075-35243b1e8936", "metadata": { "tags": [] }, @@ -616,21 +569,57 @@ { "data": { "text/plain": [ - "Array([ 40162.93106463, -263162.55777767], dtype=float64)" + "Text(0, 0.5, 'Absolute fractional difference')" ] }, - "execution_count": 151, + "execution_count": 81, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAJeCAYAAADslV6qAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUU0lEQVR4nOzdeVxU5f4H8M/MsAwiDKKyKSHmirilSZhmJYXmRnk1vZbmRe129ZaXVru5tVxK62ZaNzMy66eZLeZCarkVmoQKEptrIgoyoOIMm8My8/z+wBkdGWAGBw7L5/16zUt5znfO+TJuX59zvs8jE0IIEBERERHZQC51AkRERETU/LCIJCIiIiKbsYgkIiIiIpuxiCQiIiIim7GIJCIiIiKbsYgkIiIiIpuxiCQiIiIimzlInQDVzmAw4OLFi3Bzc4NMJpM6HSIiImrhhBAoKiqCn58f5PKa5xtZRDZxFy9ehL+/v9RpEBERUStz4cIFdO7cucbjLCKbODc3NwBVv5Du7u4SZ0NEREQtXWFhIfz9/U01SE1YRDZxxlvY7u7uLCKJiIio0dT1GB0ba4iIiIjIZiwiiYiIiMhmLCKJiIiIyGZ8JpKIiMjO9Ho9KioqpE6DyCJHR0coFIrbPg+LSCIiIjsRQkCtVkOj0UidClGtPDw84OPjc1trULOIJCIishNjAenl5YU2bdpwkwhqcoQQKC0tRX5+PgDA19e33udiEUlERGQHer3eVEC2b99e6nSIauTi4gIAyM/Ph5eXV71vbbOxhoiIyA6Mz0C2adNG4kyI6mb8fXo7z+6yiCQiIrIj3sKm5sAev09ZRBIRERGRzVhEEhEREZHNWEQSERERkc3YnU1ERET10hKf/xRCSJ1Cs8GZSCIiIrJZWVkZXnnlFQghWtSLrMcikoiIiGy2b98+PPDAA1KnQRJiEUlEREQ2+/XXX3H//fc3yrUeffRRtGvXDn/5y18a5XpSWr9+PWQy2W29GguLSCIiIrJZeXk5nJycGuVazz33HL788stGuZbUNBpNs7klzyKSqAnQGwTi/7yCrck5iP/zCvQGPpdDRE1XYmIi7rrrrka73v333w83N7dGu55UTp8+jZ49e0qdhtVYRBJJbFdaLoa9sw9TP/0dz32djKmf/o5h7+zDrrRcqVMjolbkypUr8PLywrlz5+qM3blzJx555JHbOoc9TJkyBe+9916jXKsx7N+//7YfEWjMz4RFJJGEdqXl4pn1ScjV6szG1VodnlmfxEKSqBWS6s7EW2+9hQkTJqBLly51xhYUFMDT09Pqc4wYMaLac3sKhQLFxcUAgAEDBiA4OLja6+LFi7Xm8dprr+Gtt96CVqu1+vuU2syZM/Haa69ZPFZeXg5HR8dq48bPb+PGjWbjq1atgp+fn9lYY34mXCeSSCJ6g8DS7Rmw9M+DACADsHR7Bh4K8oFC3vLWYiOi6nal5WLp9gyz/1j6qpRYPC4Io4J9G+y6paWl+Oyzz/DTTz/VGZudnY3OnTtbfQ4hBI4dO4Z3330X06ZNM43L5XK0bdsWAJCcnFyvvIODg3HnnXdi/fr1mDt3br3O0Zj0ej1iY2Px448/VjuWnZ2NO+64o9q48fPz9fXF999/j6lTp5qOWXqsoDE/E85EEknkcGZBtRnImwkAuVodDmcWNF5SRCQZKe9M7NixA87OzrjnnnvMxg8dOoRr166ZjW3fvh3jxo2z+hynT59GUVER7rvvPvj4+JheXl5edsl93Lhx+Prrr+1yrrr8/vvvGDlyJNq3b19tZrWwsLDO9x86dAiOjo64++67ceLECZw6dcp07Oeff8ZDDz1U7T3Gz++1117Dzp07UVpaajqWlJSEQYMGVXtPY30mLCKJJJJfVHMBWZ84Imp6hBAoLa+s81Wkq8Dibek13pkAgCXbMlCkq7DqfLZ26B44cKBaMfL9999j9OjR2LNnj9n4qVOn0L17d6vOAVTNljk4OKBfv3425XSzsLAwTJo0CTt27EDnzp0RHx9vOjZkyBAcPnwYZWVl9T6/Nf744w/cf//9GDhwIA4cOIBdu3bB09MTI0eOxKZNm+Du7l7nObZt24Zx48ahoqICW7ZsQUxMjOlYaWkpXFxcqr0nMTERSqUSs2bNgru7O3bu3AkA0Ol0OH78uMUGp8b6THg7m0giXm5Ku8YRUdNzrUKPoEV13yKuiwCgLtSh75KfrYrPeD0cbZys/yc+Kyur2rN1EydOxLlz57B161bTzGNxcXGNxZKlcwBVs2V6vR7t27c3jfXv3x+//fab1fndWsjezM/PD+Xl5VCr1QgICAAAxMbG4vnnn4fBYMDLL7+MWbNm1TpujWeffRaPPfYY3n33XQBAUFAQpk6disTEREyePNmqc2zduhXvv/8+nJyc8PLLL2PEiBEAgEuXLtU4M5uUlIR+/frByckJjz76KL777jtMnDgRf/zxByorKy0WkZY+k4bAIpJIIkMCPeGrUkKt1VmcfQCqnoUaElj94XUiInu6du0alMrq/2F97LHHEBoaCoPBALlcjp9++gkPP/ywTedISkrC1KlTsXTpUtOYq6ur3XI3zt4Zb/NWVlYiKioK+/fvh0qlwqBBg/Doo49CpVJZHL+5uK1JXl4eDh48iF9//dVs3NXV1erFvY8fP46LFy9i5MiRAKr2He/Xrx+Sk5ORmpqKCRMmWHxfUlKSqVB87LHH8Nhjj6GsrAxJSUno2LEj/P396/xMGgqLSCKJKOQyLB4XhGfWJ9UYs3BMEJtqiJoxF0cFMl4PrzPucGYBnvr8SJ1x62bebdV/LF0cFVblZ9ShQwdcvXq12nhgYCA6duyIhIQEhIaG4vfff8c777xj0zmSkpIQHR2Nbt262ZSTtQoKqp4b79ixIwDg8OHD6NOnDzp16gQAGD16NH7++WcEBARYHL+5UaUmiYmJMBgM6N+/f7XxwYMHm74+ffo05s+fD7VaDVdXV3z33XemGcZt27bhoYceMiu0J06ciO+//x7e3t41zvAai3Cgar1MR0dH/PTTT7Wu1XnrZ9JQ+EwkkYRGBfvi4yfugpOD+R9FY9l4paRhn2chooYlk8nQxsmhztfw7h3hq1Kipv8yylB1Z2J4945Wnc/Wre8GDhyIjIwMi8fGjx+Pbdu2Qa/XQyaTQS63XDpYOsfZs2eh0WgwcOBAm/KxRVpaGjp37owOHToAAC5evGgqFAGgU6dOyMnJqXHcGgaDAQBQUlJiGktJSUFcXBz++te/AgDKysrwj3/8A5988gkSExPx17/+FWvWrDHFb926tdps43333Yeff/4ZKpXK4nWNn5+xWHRwcMD48ePx/fff19hUY+kzaSgsIokkFt7HBy6OVX8Un3+4BzbOvgdLxgcBAN79+RQKSsqlTI+IGoHxzgSAaoWk8evF4xruzkR4eDjS09MtziSOHz8eW7duxaFDhxAaGmrTORITE6FQKG6rqaYuBw4cqPEWu72EhITAxcUFL774Ik6cOIEff/wR48ePx9y5c03d6Fu2bEF6ejrGjh2LAQMG4IMPPjCt+Zifn4+jR49i7NixZudVKBQYOHAgRo0aZfG6iYmJcHJyQnBwsGls4sSJ2LZtG9LT02uciWyMzwRgEUkkueyr16C9VglHhQxz7uuK0Dvb44l7uiDI1x3aaxVY/tNJqVMkokZgvDPhozJ/rtBHpcTHT9zVoOtE9u3bF3fddRe++eabaseGDBkCjUaD//3vf7UWJpbOkZSUhF69elnsOrYHnU6HLVu2YPbs2aYxPz8/sxnGnJwc+Pn51Th+s3Xr1lmcxe3YsSO++eYbHD58GP369cNzzz2HefPmme0Mk5qaivfeew/JyclITk7G8ePH8fLLLwOoWhZpyJAhFmcGV61aVeNt56SkJAQHB5vtUf7QQw9Br9ejvLzcYhFp6TNpMIKaNK1WKwAIrVYrdSrUQH5MuSgCXo4VY1ceMBs/nHlFBLwcK7q8Eiv+uHBVmuSIyGrXrl0TGRkZ4tq1a7d1nkq9QRw6c1lsOZYtDp25LCr1BjtlWLvY2FjRu3dvodfrqx2bPXu2eOSRR27rHA3hf//7n3jooYfMxioqKkS3bt1Edna2KCoqEj169BCXL1+ucfxmixYtEiNGjKhXLqtWrRIzZswwff3HH3+Yfj5u3Djxzjvv1Ou8trL0mVhS2+9Xa2sPNtYQSSwlu2prquBO5s/E3N3FExED/LAl+SIWb0vH938fCjmbbIhaPIVchtA76+4YtrcxY8bg9OnTyMnJqdbx++ijj1r1/GBt52gIjo6OWLVqldmYg4MD3nvvPTzwwAMwGAx46aWXTB3YNY0b7dy5Ex9++GG9cpk5cyb27NmDXr16wdnZGeHh4Vi2bBkAYNiwYVY18NiDpc+kociEsHFFUmpUhYWFUKlU0Gq1Vi1kSs3PEzEJOHjmMqIf64upQ8y3vMor1OHBd39BSbke707qj78Mqr7VGBE1DTqdDpmZmQgMDLS41A1RU1Lb71draw8+E0kkISEEUnOqZiL7dqreneftrsSzI6t2hnh753EU6ioaNT8iIqKasIgkktCFgmvQXquAk0KOHt5uFmNm3huIrh1dcbm4HB/sOd3IGRIREVnGIpJIQik5GgBAL1+3amtFGjk5yLFkXB8AwLpD53Aqr6ix0iMiIqoRi0giCdV2K/tm9/XoiIeDvKE3CCzZlg4+ykxERFJjEUkkodRs64pIAFg4NgjODnIc+vMKdqapGzo1Iqon/iePmgN7/D5lEUkkEbOmms51F5H+nm3w9xF3AgDejM1AaXllg+ZHRLYx7k5SWloqcSZEdTP+PjX+vq0PrhNJJJGsK6Uo0lXCyaHmpppbPXP/nfg+KRvZV6/h41/+xPMP92zgLInIWgqFAh4eHsjPzwcAtGnTxuY9rIkamhACpaWlyM/Ph4eHBxQKRb3PxSKSSCIp12che/u6w1Fh3U0BpaMCr40Jwt/XJ+KTX8/iL4M6I6C9a0OmSUQ28PHxAQBTIUnUVHl4eJh+v9YXi0giiaSZmmpsW0Q+vI83hnfvgAOnL+ON2AzEzLi7IdIjonqQyWTw9fWFl5cXKiq4ris1TY6Ojrc1A2nEIpJIIinZGgBAv04eNr1PJpNh8bg+GLUiDnuO52P/iXw80MvL/gkSUb0pFAq7/CNN1JSxsYZIAgaDQHpOIYDqe2Zbo5tXW/xtWCAAYOn2dJRV6u2aHxERUV1YRBJJ4NyVEhSVVcLZQY7u3m3rdY5/PtgNXm7OOHelFJ8dzLRzhkRERLVjEUkkAePSPkF+1jfV3MpN6YgFj/QCAKzaewa52mt2y4+IiKguLCKJJGDLIuO1iRjQCXd3aYdrFXr8Z8cJe6RGRERkFRaRRBKwdrvDushkMiwZ3wdyGbD9j4uI//OKPdIjIiKqE4tIokZmMAikX6xqqrFmp5q69PFT4a8hdwCoarKp1Btu+5xERER1YRFJ1Mgyr5SguKwSSkc5unWsX1PNrV54uCfatXHECXUR1v+eZZdzEhER1YZFJFEjMz4PGeTrDod6NtXcyqONE14Ir9oC8b3dp3C5uMwu5yUiIqoJi0iiRmZ8HrJfZw+7nnfK3XcguJM7inSVWL7rpF3PTUREdCsWkUSNzDgTWZ9FxmujkMuwdHwwAGDT0QtIvqCx6/mJiIhu1iSKyI8++ghdunSBUqlESEgIDh8+XGv8t99+i169ekGpVKJv377YsWOH2XEhBBYtWgRfX1+4uLggLCwMp0+fNospKCjAtGnT4O7uDg8PD0RGRqK4uNh0fMmSJZDJZNVerq6upph169ZVO65UKs2uY+kcMpkMy5cvr+/HRc2Y3iCQftE4E2nfIhIABgW0w2N3dQIALN6aBoNB2P0aREREQBMoIjdt2oSoqCgsXrwYSUlJ6N+/P8LDw5Gfn28x/tChQ5g6dSoiIyNx7NgxREREICIiAmlpaaaYZcuWYeXKlVi9ejUSEhLg6uqK8PBw6HQ6U8y0adOQnp6O3bt3IzY2FnFxcZgzZ47p+AsvvIDc3FyzV1BQECZNmmSWj7u7u1lMVpZ5U8Ot51i7di1kMhkmTpxoj4+PmpnMy8UoKdfDxVGBO+3UVHOrV0b3QltnB/yRrcW3iRca5BpEREQQEhsyZIiYO3eu6Wu9Xi/8/PxEdHS0xfjJkyeLMWPGmI2FhISIp59+WgghhMFgED4+PmL58uWm4xqNRjg7O4uNGzcKIYTIyMgQAMSRI0dMMTt37hQymUzk5ORYvG5ycrIAIOLi4kxjn3/+uVCpVDZ9vxMmTBAPPvig1fFarVYAEFqt1qbrUNP0feIFEfByrJj4v98a9Dqfxv0pAl6OFXe9/rPQlJY36LWIiKhlsbb2kHQmsry8HImJiQgLCzONyeVyhIWFIT4+3uJ74uPjzeIBIDw83BSfmZkJtVptFqNSqRASEmKKiY+Ph4eHBwYPHmyKCQsLg1wuR0JCgsXrxsTEoEePHhg+fLjZeHFxMQICAuDv748JEyYgPT29xu83Ly8PP/74IyIjI2uMKSsrQ2FhodmLWg5jU429n4e81YyhXdDNqy2ulJTj/d2nGvRaRETUOklaRF6+fBl6vR7e3t5m497e3lCr1Rbfo1ara403/lhXjJeXl9lxBwcHeHp6WryuTqfDhg0bqhV/PXv2xNq1a7F161asX78eBoMBQ4cORXZ2tsXcv/jiC7i5ueGxxx6zeBwAoqOjoVKpTC9/f/8aY6n5MTbVNMTzkDdzVMixdHwfAMD//Z6FE2r+Z4SIiOxL8mcim4MffvgBRUVFmDFjhtl4aGgopk+fjgEDBmDEiBHYvHkzOnbsiE8++cTiedauXYtp06ZVa7652YIFC6DVak2vCxf4TFtLob95p5oGnokEgHu7dcDoYB/oDQKLt6ZDCDbZEBGR/UhaRHbo0AEKhQJ5eXlm43l5efDx8bH4Hh8fn1rjjT/WFXNr405lZSUKCgosXjcmJgZjx46tNrt5K0dHRwwcOBBnzpypduzAgQM4efIkZs2aVes5nJ2d4e7ubvailuHPS8W4VqFHGycFujZQU82t/j2mN5SOciRkFmB7Sm6jXJOIiFoHSYtIJycnDBo0CHv37jWNGQwG7N27F6GhoRbfExoaahYPALt37zbFBwYGwsfHxyymsLAQCQkJppjQ0FBoNBokJiaaYvbt2weDwYCQkBCzc2dmZmL//v21PsdopNfrkZqaCl9f32rHPvvsMwwaNAj9+/ev8zzUMhlvZffxc4dCLmuUa3Zu1wb/uL8bAOA/Px5HSVllo1yXiIhaPslvZ0dFReHTTz/FF198gePHj+OZZ55BSUkJZs6cCQCYPn06FixYYIp/7rnnsGvXLrz33ns4ceIElixZgqNHj2LevHkAqtZlnD9/Pt58801s27YNqampmD59Ovz8/BAREQEA6N27N0aNGoXZs2fj8OHD+O233zBv3jxMmTIFfn5+ZvmtXbsWvr6+GD16dLXcX3/9dfz88884e/YskpKS8MQTTyArK6vabGNhYSG+/fbbOmchqWUzNtX07eTRqNedc19X3OHZBupCHT7aX32WnIiIqD4cpE7g8ccfx6VLl7Bo0SKo1WoMGDAAu3btMt06Pn/+POTyG7Xu0KFD8dVXX+G1117Dq6++iu7du2PLli0IDg42xbz00ksoKSnBnDlzoNFoMGzYMOzatcvsWcQNGzZg3rx5GDlyJORyOSZOnIiVK1ea5WYwGLBu3To89dRTUCgU1XK/evUqZs+eDbVajXbt2mHQoEE4dOgQgoKCzOK+/vprCCEwdepUu3xm1Dzd2O6w4Z+HvJnSUYGFY4Mw+8uj+PTAWUwa7I/ADq51v5GIiKgWMsGn7Zu0wsJCqFQqaLVaPh/ZjFXqDQhe8hN0FQbsiRqBbl6N80ykkRACT31+BL+euoT7e3bE50/dDZmscW6pExFR82Jt7SH57Wyi1uDPSyXQVRjg6qRAVwlmAWUyGRaPC4KjQoZfTl7C3uOWd4QiIiKyFotIokaQkq0BAPTppIK8kZpqbtW1Y1tEDusKAHg9NgO6Cr0keRARUcvAIpKoEaQZn4dshPUha/PPB7vB290Z5wtKEXPgrKS5EBFR88YikqgRpBg7sxu5qeZWrs4OePWR3gCAD/efQY7mmqT5EBFR88UikqiBVeoNyGjEnWrqMr6/H4YEekJXYcB/fjwudTpERNRMsYgkamCn84tRVmlAW2cHdGkv/dI6MpkMS8f3gVwG/Jiai9/OXJY6JSIiaoZYRBI1MOP6kMGd3CVrqrlVb193PHlPAABgybZ0VOgNEmdERETNDYtIogZm3O6wKdzKvlnUQz3h6eqE0/nF+OLQOanTISKiZoZFJFEDu9FU4yFtIrdQtXHES+E9AQAf7DmNS0VlEmdERETNCYtIogZUoTfgeG7Taaq51eTB/ujfWYWiskq8s+uE1OkQEVEzwiKSqAGdyitCeaUBbkoHBHi2kTqdauRyGZaM7wMA+C4xG4lZVyXOiIiImgsWkUQNyLjIeLCfdDvV1GXgHe0waVBnAFVNNnqDkDgjIiJqDlhEEjWglOtNNf0kXmS8Li+N6gU3pQNSc7TYdOSC1OkQEVEzwCKSqAGlNZGdaurS0c0Z/wrrAQBY/tMJaErLJc6IiIiaOhaRRA2kvNKA47lFAJpmU82tpocGoKe3G66WVuC/u09JnQ4RETVxLCKJGsipvCKU6w1wVzrgjibYVHMrB4Xc1GSz/vcs01aNRERElrCIJGogqTfdypbJmmZTza1C72yPMf18YRDA4m1pEIJNNkREZBmLSKIGYioiO3lIm4iN/v1Ib7g4KnDk3FVsTb4odTpERNREsYgkaiBNdbvDuvh5uGDeg90AAP/ZcRzFZZUSZ0RERE0Ri0iiBlBWqccJddUzhU19eR9LZg0PRJf2bZBfVIZV+05LnQ4RETVBLCKJGsApdTEq9AIqF0d0bucidTo2c3ZQYNG4IADA2oOZ+PNSscQZERFRU8MikqgBGJ+H7NeMmmpu9WAvbzzYywsVeoEl29LZZENERGZYRBI1gNQcDQAguJk9D3mrRWOD4KSQ48Dpy/g5I0/qdIiIqAlhEUnUAEzbHTbzIrJLB1fMvi8QAPBGbAZ0FXqJMyIioqaCRSSRnekq9DiVV7VTTXOfiQSAuQ90g69Kieyr17D61z+lToeIiJoIFpFEdnZSXYQKvUC7Ns2zqeZWbZwc8O8xvQEAH//yJy4UlEqcERERNQUsIonszNhUE9yp+TbV3GpMX1+Edm2PskoD3vrxuNTpEBFRE8AiksjOjIuMN8f1IWsik8mwZHwfKOQy7EpX48DpS1KnREREEmMRSWRnN7Y7bDlFJAD09HHD9NAAAMCSbekorzRInBEREUmJRSSRHd3cVNO3s4e0yTSA+WE90KGtE/68VIJ1hzKlToeIiCTEIpLIjk6oi1BpEGjv6gQ/lVLqdOxO5eKIl0b1AgB8sOc08gt1EmdERERSYRFJZEep2RoALaup5lZ/uaszBvh7oKRcj7d3npA6HSIikgiLSCI7unm7w5ZKLpdh6fg+kMmAzcdycPRcgdQpERGRBFhEEtmRcaealrDIeG36+3vg8cH+AIBFW9OhN3BfbSKi1oZFJJGd6Cr0OJ1fDKBlz0QavRjeE+5KB2TkFuKrw+elToeIiBoZi0giO8nILYTeINChrRN83FteU82t2rd1xvMP9wQAvPfzSVwtKZc4IyIiakwsIonsJO2m9SFbalPNraaF3IFePm7QlFbg3Z9PSp0OERE1IhaRRHZifB6ypS0yXhsHhRxLx/cBAHx1+LypkCYiopaPRSSRnZhmIlvgIuO1CenaHuP7+0EIYNHWNBjYZENE1CqwiCSyg2vlN+1U04pmIo1efaQ32jgpkHRegx+O5UidDhERNQIWkUR2kJGrhUEAHd2c4e3uLHU6jc5HpcQ/H+wOAIjeeQJFugqJMyIioobGIpLIDlKzW19Tza3+NqwLunZwxeXiMnyw57TU6RARUQNjEUlkByk5ra+p5lbODgosGhcEAFh36BzO5BdJnBERETUkFpFEdpDGIhIAcH9PL4T19kalQWDJtgwIwSYbIqKWikUk0W0qLa/Emes71fRtBTvV1GXR2CA4Ochx8Mxl7EpTS50OERE1EBaRRLcp42IhDALwdneGdyvYqaYud7Rvg7/f1xUA8OaPx3GtXC9xRkRE1BBYRBLdpta4yHhdnrm/Gzp5uCBHcw0f/3JG6nSIiKgBsIgkuk03nof0kDaRJsTFSYHXxvQGAKyOO4vzV0olzoiIiOyNRSTRbTJ1Znd2lziTpmVUsA/u7dYe5ZUGvPFjhtTpEBGRnUleRH700Ufo0qULlEolQkJCcPjw4Vrjv/32W/Tq1QtKpRJ9+/bFjh07zI4LIbBo0SL4+vrCxcUFYWFhOH3afM26goICTJs2De7u7vDw8EBkZCSKi4tNx5csWQKZTFbt5erqaopZt25dteNKZfXn4Y4fP47x48dDpVLB1dUVd999N86fP1+fj4qaoJKySvx5qer3TjBvZ5uRyWRYMq4PHOQy7M7Iwy8n86VOiYiI7EjSInLTpk2IiorC4sWLkZSUhP79+yM8PBz5+Zb/sTl06BCmTp2KyMhIHDt2DBEREYiIiEBaWpopZtmyZVi5ciVWr16NhIQEuLq6Ijw8HDqdzhQzbdo0pKenY/fu3YiNjUVcXBzmzJljOv7CCy8gNzfX7BUUFIRJkyaZ5ePu7m4Wk5WVZXb8zz//xLBhw9CrVy/88ssvSElJwcKFCy0Wm9Q8pV8shBCAj7sSXm78db1Vd283PDW0CwBg6fYMlFWyyYaIqMUQEhoyZIiYO3eu6Wu9Xi/8/PxEdHS0xfjJkyeLMWPGmI2FhISIp59+WgghhMFgED4+PmL58uWm4xqNRjg7O4uNGzcKIYTIyMgQAMSRI0dMMTt37hQymUzk5ORYvG5ycrIAIOLi4kxjn3/+uVCpVLV+f48//rh44oknao2pi1arFQCEVqu9rfNQw4g5cFYEvBwrZn1xpO7gVqrwWrkY9MZuEfByrPjf/jNSp0NERHWwtvaQbCayvLwciYmJCAsLM43J5XKEhYUhPj7e4nvi4+PN4gEgPDzcFJ+ZmQm1Wm0Wo1KpEBISYoqJj4+Hh4cHBg8ebIoJCwuDXC5HQkKCxevGxMSgR48eGD58uNl4cXExAgIC4O/vjwkTJiA9Pd10zGAw4Mcff0SPHj0QHh4OLy8vhISEYMuWLbV+LmVlZSgsLDR7UdOVmq0BwM7s2rgpHbFgdC8AwKp9p6HW6up4BxERNQeSFZGXL1+GXq+Ht7e32bi3tzfUassLFKvV6lrjjT/WFePl5WV23MHBAZ6enhavq9PpsGHDBkRGRpqN9+zZE2vXrsXWrVuxfv16GAwGDB06FNnZ2QCA/Px8FBcX4+2338aoUaPw888/49FHH8Vjjz2GX3/9tcbPJTo6GiqVyvTy9/evMZakl2pqqmERWZtHB3bCXXd4oLRcj+idx6VOh4iI7EDyxpqm7ocffkBRURFmzJhhNh4aGorp06djwIABGDFiBDZv3oyOHTvik08+AVA1EwkAEyZMwL/+9S8MGDAAr7zyCsaOHYvVq1fXeL0FCxZAq9WaXhcuXGi4b45uS5GuAmcvlwDgTGRd5HIZXp8QDJkM2Jp8EQlnr0idEhER3SbJisgOHTpAoVAgLy/PbDwvLw8+Pj4W3+Pj41NrvPHHumJubdyprKxEQUGBxevGxMRg7Nix1WY3b+Xo6IiBAwfizJkzpu/PwcEBQUFBZnG9e/eutTvb2dkZ7u7uZi9qmoxNNX4qJTq0dZY6nSYvuJMKU4fcAQBYvC0dlXqDxBkREdHtkKyIdHJywqBBg7B3717TmMFgwN69exEaGmrxPaGhoWbxALB7925TfGBgIHx8fMxiCgsLkZCQYIoJDQ2FRqNBYmKiKWbfvn0wGAwICQkxO3dmZib2799f7Va2JXq9HqmpqfD19TV9f3fffTdOnjxpFnfq1CkEBATUeT5q+oyLjHNpH+u9+HBPeLRxxAl1ETYkcKkrIqJmrZEafSz6+uuvhbOzs1i3bp3IyMgQc+bMER4eHkKtVgshhHjyySfFK6+8Yor/7bffhIODg3j33XfF8ePHxeLFi4Wjo6NITU01xbz99tvCw8NDbN26VaSkpIgJEyaIwMBAce3aNVPMqFGjxMCBA0VCQoI4ePCg6N69u5g6dWq1/F577TXh5+cnKisrqx1bunSp+Omnn8Sff/4pEhMTxZQpU4RSqRTp6emmmM2bNwtHR0exZs0acfr0abFq1SqhUCjEgQMHrP6M2J3ddP3zqyQR8HKsWLX3lNSpNCtfxp8TAS/Hir6Ld4nLRTqp0yEioltYW3tIWkQKIcSqVavEHXfcIZycnMSQIUPE77//bjo2YsQIMWPGDLP4b775RvTo0UM4OTmJPn36iB9//NHsuMFgEAsXLhTe3t7C2dlZjBw5Upw8edIs5sqVK2Lq1Kmibdu2wt3dXcycOVMUFRWZxej1etG5c2fx6quvWsx7/vz5pry9vb3FI488IpKSkqrFffbZZ6Jbt25CqVSK/v37iy1bttjy8bCIbMIeWL5fBLwcK/afyJM6lWalUm8Qo1fEiYCXY8XL3/0hdTpERHQLa2sPmRBCSDsXSrUpLCyESqWCVqvl85FNSKGuAv2W/AwASHwtDO35TKRNjp4rwF9Wx1c12sy9F/06e0idEhERXWdt7cHubKJ6SM+pWr+zk4cLC8h6GNzFE48O7AQhgEVb02Ew8P+yRETNDYtIonpIzdEA4NI+t2PB6F5wdVIg+YIG3yVlS50OERHZiEUkUT2kXp+J5CLj9eflrsRzYd0BAMt2nYD2WoXEGRERkS1YRBLVA7c7tI+nhgaia0dXXC4ux4o9p6ROh4iIbMAikshG2msVOHelFACLyNvl5CDHknF9AABfxmfhpLpI4oyIiMhaLCKJbJR+fZHxzu1c0M7VSeJsmr/7enREeB9v6A0CS7algwtGEBE1DywiiWyUer2I7MfnIe3mtTFBcHaQI/7sFfyYmit1OkREZAUWkUQ2SuF2h3bn79kGz9x/JwDgrR+Po7S8UuKMiIioLiwiiWxk3DO7XycPaRNpYf4+4k50bueCXK0OH+0/I3U6RERUBxaRRDbQllYg63pTTXAn7iBkT0pHBRaODQIAfBqXiXOXSyTOiIiIasMiksgGaRerZiHv8GwDjzZsqrG3h4O8Mbx7B5TrDXgjNkPqdIiIqBYsIolskJJdVURyaZ+GIZPJsGR8HzgqZNh7Ih/7TuRJnRIREdWARSSRDUzbHbIzu8Hc2bEt/nZvIABg6fYM6Cr0EmdERESWsIgksoFxeR/ORDasf47sDi83Z2RdKcVnBzOlToeIiCxgEUlkpasl5bhQcA0AEOzHIrIhtXV2wKuP9AYAfLjvDC5qrkmcERER3YpFJJGVjE01Ae3bQNXGUeJsWr4JA/xwd5d2uFahx1s7jkudDhER3YJFJJGV2FTTuIxNNnIZ8GNKLg79eVnqlIiI6CYsIomslMbtDhtdHz8VpoUEAACWbstAhd4gcUZERGTEIpLISsaZSG532Lief7gH2rVxxMm8IvxffJbU6RAR0XUsIomsUFBSjpzrzR0sIhuXRxsnvBjeCwDw/u5TuFRUJnFGREQEsIgksopxaZ/ADq5wV7KpprE9frc/gju5o6isEst2nZA6HSIiAotIIqukcX1ISSnkMiwdHwwA+DYxG8fOX5U4IyIiYhFJZIWUbA0AFpFSGhTQDhPv6gwAWLwtHQaDkDgjIqLWjUUkkRXScgoBcLtDqb08uifcnB2Qkq3FN0cvSJ0OEVGrxiKSqA5XistMTTV9/NwlzqZ183JT4rmw7gCAZT+dhLa0QuKMiIhaLxaRRHUwNtV07egKNzbVSG7G0C7o7tUWBSXl+O/uk1KnQ0TUarGIJKpDKneqaVIcFXIsGd8HAPB/v2fheG6hxBkREbVOLCKJ6pDCzuwm595uHfBIXx8YBLB4azqEYJMNEVFjYxFJVAcu79M0/XtMEJSOchw+V4Btf1yUOh0iolaHRSRRLS4VlSFXq4NMBvRhEdmkdPJwwdz7uwEA/rPjOErKKiXOiIiodWERSVQL4yxk1w6uaOvsIHE2dKvZ93XFHZ5tkFdYhlX7zkidDhFRq8IikqgWKdebavp19pA2EbJI6ajAorFBAIDPDp7F2UvFEmdERNR6sIgkqkUqn4ds8kb29sL9PTuiQi+wdHsGm2yIiBoJi0iiWqTmaABwp5qmTCaTYfG4PnBSyPHrqUvYczxf6pSIiFoFFpFENcgv1CGvsAxyGRDky51qmrLADq6IHB4IAHg9Nh26Cr3EGRERtXwsIolqYLyVfWfHtnBlU02TN++BbvBxV+JCwTWsiTsrdTpERC0ei0iiGpieh+St7GbB1dkBr47pDQD43y9nkH21VOKMiIhaNhaRRDXgdofNz7h+vggJ9ISuwoC3fjwudTpERC0ai0iiGhhnIvtxJrLZkMlkWDK+DxRyGXamqfHbmctSp0RE1GKxiCSyIK9Qh/wiY1MNi8jmpLevO568JwAAsHhbOir0BokzIiJqmVhEEllgvJXd3csNLk4KibMhW/3roR5o7+qEM/nF+OLQOanTISJqkVhEElmQcv1WdjCfh2yWVC6OeGlUTwDAij2nkV+kkzgjIqKWh0UkkQWp2RoAfB6yOZs0yB/9O6tQXFaJt3eekDodIqIWp15F5P/93//h3nvvhZ+fH7KysgAAK1aswNatW+2aHJEUhBBIzSkEwJnI5kwul2HphGAAwOakHCRmFUicERFRy2JzEfnxxx8jKioKjzzyCDQaDfT6qp0hPDw8sGLFCnvnR9To1IU6XC4ug0Iu4041zdwAfw9MHtwZALBoazr0Bu6rTURkLzYXkatWrcKnn36Kf//731AobjQcDB48GKmpqXZNjkgKN5pq2rKppgV4aVQvuCkdkH6xEF8fOS91OkRELYbNRWRmZiYGDhxYbdzZ2RklJSV2SYpISqadangru0Xo0NYZUQ/1AAAs/+kkrpaUS5wREVHLYHMRGRgYiOTk5Grju3btQu/eve2RE5GkuMh4y/PkPQHo6e0GTWkF3tt9Uup0iIhaBJuLyKioKMydOxebNm2CEAKHDx/GW2+9hQULFuCll15qiByJGo0QwnQ7m001LYeDQo4l4/sAAL5KOI+06/9RICKi+rO5iJw1axbeeecdvPbaaygtLcVf//pXfPzxx/jggw8wZcqUeiXx0UcfoUuXLlAqlQgJCcHhw4drjf/222/Rq1cvKJVK9O3bFzt27DA7LoTAokWL4OvrCxcXF4SFheH06dNmMQUFBZg2bRrc3d3h4eGByMhIFBcXm44vWbIEMpms2svV1dUUs27dumrHlUql2XWeeuqpajGjRo2q1+dEDS9Xq8OVknI4yGXozaaaFiX0zvYY288XBgEs2ZYOIdhkQ0R0O+q1xM+0adNw+vRpFBcXQ61WIzs7G5GRkfVKYNOmTYiKisLixYuRlJSE/v37Izw8HPn5+RbjDx06hKlTpyIyMhLHjh1DREQEIiIikJaWZopZtmwZVq5cidWrVyMhIQGurq4IDw+HTndjweFp06YhPT0du3fvRmxsLOLi4jBnzhzT8RdeeAG5ublmr6CgIEyaNMksH3d3d7MY45JHNxs1apRZzMaNG+v1WVHDSzE21Xi7QenIppqW5t9jesPFUYGjWVexJTlH6nSIiJo3YaOzZ8+KU6dOVRs/deqUyMzMtPV0YsiQIWLu3Lmmr/V6vfDz8xPR0dEW4ydPnizGjBljNhYSEiKefvppIYQQBoNB+Pj4iOXLl5uOazQa4ezsLDZu3CiEECIjI0MAEEeOHDHF7Ny5U8hkMpGTk2PxusnJyQKAiIuLM419/vnnQqVS1fr9zZgxQ0yYMKHWmNpotVoBQGi12nqfg6y3fNcJEfByrHjp2z+kToUayIf7TouAl2PF4Dd3i8Jr5VKnQ0TU5Fhbe9g8E/nUU0/h0KFD1cYTEhLw1FNP2XSu8vJyJCYmIiwszDQml8sRFhaG+Ph4i++Jj483iweA8PBwU3xmZibUarVZjEqlQkhIiCkmPj4eHh4eGDx4sCkmLCwMcrkcCQkJFq8bExODHj16YPjw4WbjxcXFCAgIgL+/PyZMmID09PRq7/3ll1/g5eWFnj174plnnsGVK1dq/EzKyspQWFho9qLGY9rukE01Ldas4YHo0r4NLhWVYdW+M1KnQ0TUbNlcRB47dgz33ntvtfF77rnHYtd2bS5fvgy9Xg9vb2+zcW9vb6jVaovvUavVtcYbf6wrxsvLy+y4g4MDPD09LV5Xp9Nhw4YN1W7Z9+zZE2vXrsXWrVuxfv16GAwGDB06FNnZ2aaYUaNG4csvv8TevXvxzjvv4Ndff8Xo0aNNi7TfKjo6GiqVyvTy9/e3GEf2J4QwNVz0Y1NNi+XsoMDicVVNNmsPZuJMfnEd7yAiIktsLiJlMhmKioqqjWu12hoLo+buhx9+QFFREWbMmGE2HhoaiunTp2PAgAEYMWIENm/ejI4dO+KTTz4xxUyZMgXjx49H3759ERERgdjYWBw5cgS//PKLxWstWLAAWq3W9Lpw4UJDfmt0kxzNNRRcb6rp6eMmdTrUgB7o5YWRvbxQaRBYup1NNkRE9WFzEXnfffchOjrarGDU6/WIjo7GsGHDbDpXhw4doFAokJeXZzael5cHHx8fi+/x8fGpNd74Y10xtzbuVFZWoqCgwOJ1Y2JiMHbs2Gqzm7dydHTEwIEDceZMzbfIunbtig4dOtQY4+zsDHd3d7MXNQ7jLGRPHzbVtAaLxgXBSSHHgdOX8VN6Xt1vICIiMzYXke+88w727duHnj17YubMmZg5cyZ69uyJuLg4LF++3KZzOTk5YdCgQdi7d69pzGAwYO/evQgNDbX4ntDQULN4ANi9e7cpPjAwED4+PmYxhYWFSEhIMMWEhoZCo9EgMTHRFLNv3z4YDAaEhISYnTszMxP79++3qvtcr9cjNTUVvr6+NcZkZ2fjypUrtcaQNIyd2dyppnUIaO+KOfd1BQC8EZsBXUXLvJNCRNRQbC4ig4KCkJKSgsmTJyM/Px9FRUWYPn06Tpw4geDgYJsTiIqKwqeffoovvvgCx48fxzPPPIOSkhLMnDkTADB9+nQsWLDAFP/cc89h165deO+993DixAksWbIER48exbx58wBU3W6fP38+3nzzTWzbtg2pqamYPn06/Pz8EBERAQDo3bs3Ro0ahdmzZ+Pw4cP47bffMG/ePEyZMgV+fn5m+a1duxa+vr4YPXp0tdxff/11/Pzzzzh79iySkpLwxBNPICsrC7NmzQJQ1XTz4osv4vfff8e5c+ewd+9eTJgwAd26dUN4eLjNnxU1LNN2h2yqaTX+8cCd8FMpkaO5ho9/+VPqdIiImpdG6RWvw6pVq8Qdd9whnJycxJAhQ8Tvv/9uOjZixAgxY8YMs/hvvvlG9OjRQzg5OYk+ffqIH3/80ey4wWAQCxcuFN7e3sLZ2VmMHDlSnDx50izmypUrYurUqaJt27bC3d1dzJw5UxQVFZnF6PV60blzZ/Hqq69azHv+/PmmvL29vcUjjzwikpKSTMdLS0vFww8/LDp27CgcHR1FQECAmD17tlCr1VZ/Nlzip3EYDAbRf+lPIuDlWPHHhatSp0ONKPaPiyLg5VjR4987xPkrJVKnQ0QkOWtrD5kQtj9RrtFocPjwYeTn58NgMJgdmz59up3KWwKqbsWrVCpotVo+H9mALhSUYviy/XBUyJC2NBzODnwmsrUQQuCvnyYg/uwVPBzkjTXTB9f9JiKiFsza2sPB1hNv374d06ZNQ3FxMdzd3SGTyUzHZDIZi0hqllJvaqphAdm6yGQyLJ3QB6M/OICfM/Kw/0Q+lI4K5Bfp4OWmxJBATyjksrpPRETUythcRD7//PP429/+hv/85z9o06ZNQ+RE1OhuNNV4SJsISaKHtxtmhHbB2t8yMevLo9Abbtyg8VUpsXhcEEYFsxmOiOhmNjfW5OTk4Nlnn2UBSS2KcXkfdma3XsGdqm7Z3FxAAoBaq8Mz65OwKy1XirSIiJosm4vI8PBwHD16tCFyIZKEEMJ0O7sfO7NbJb1BYPlPJy0eM5aUS7dnVCswiYhaM5tvZ48ZMwYvvvgiMjIy0LdvXzg6OpodHz9+vN2SI2oMFwquQXutAk4KOXp4c6ea1uhwZgFytboajwsAuVodDmcWIPTO9o2XGBFRE2ZzETl79mwAVWsk3komk7XYrQ+p5UrJ0QAAevm6wcnB5sl5agHyi2ouIOsTR0TUGthcRN66pA9Rc5fK5yFbPS83pV3jiIhag9uadtHp+L9yav5Sud1hqzck0BO+KiVqW8hH6SBHd6+2jZYTEVFTZ3MRqdfr8cYbb6BTp05o27Ytzp49CwBYuHAhPvvsM7snSNSQbm6q4XaHrZdCLsPicUEAUGMhqas0YMyqAzh4+nLjJUZE1ITZXES+9dZbWLduHZYtWwYnJyfTeHBwMGJiYuyaHFFDy7pSiiJdJZwc2FTT2o0K9sXHT9wFH5X5LWtflRILRvdC146uyCsswxOfJeCN2AzoKvj8NxG1bjY/E/nll19izZo1GDlyJP7+97+bxvv3748TJ07YNTmihmachezt6w5HBZtqWrtRwb54KMgHhzMLqu1YMz20C978MQMbEs7js4OZ+O3MZXwwZSB6+vA/H0TUOtVrsfFu3bpVGzcYDKioqLBLUkSN5UZTDfclpyoKuQyhd7bHhAGdEHpne9OWhy5OCrz1aF98NmMw2rs64YS6COM+PIi1BzNh4PqRRNQK2VxEBgUF4cCBA9XGv/vuOwwcONAuSRE1FmNTTT9ud0hWGtnbG7vm34cHenZEeaUBr8dmYMbnh5FfyEZDImpdbL6dvWjRIsyYMQM5OTkwGAzYvHkzTp48iS+//BKxsbENkSNRgzAYhGm7w2B2ZpMNOro5Y+1Td2P971l488fjOHD6MsJXxOHtif0Q3sdH6vSIiBqFzTOREyZMwPbt27Fnzx64urpi0aJFOH78OLZv346HHnqoIXIkahDnrpSgqKwSzg5ydPfm0i1kG5lMhidDu+DHZ4ehj587rpZW4On/S8Qr36egpKxS6vSIiBqcTUVkZWUlXn/9dQQGBmL37t3Iz89HaWkpDh48iIcffrihciRqEGyqIXvo5uWGH/5xL54e0RUyGfD1kQsYs/IAki9opE6NiKhB2fQvp4ODA5YtW4bKSv4vm5o/0/OQXB+SbpOTgxwLRvfGhlkh8FUpce5KKSZ+fAir9p5GpZ67fBFRy2Tz9MvIkSPx66+/NkQuRI0qlc9Dkp0NvbMDdj13H8b284XeIPDe7lOYsuZ3XCgolTo1IiK7s7mxZvTo0XjllVeQmpqKQYMGwdXV1ez4+PHj7ZYcUUMxGATSLxYC4Ewk2ZeqjSNWTR2IB3t5YdHWdBzNuorRHxzA0vF98NhdnSCT1ba5IhFR8yETQti0wJlcXvPkpUwmg17PXRzsqbCwECqVClqtFu7uXMvQXv68VIyR7/0KpaMcaUvC4cBnIqkBXCgoxb82JeNo1lUAwJh+vvhPRF+o2jhKnBkRUc2srT1s/pfTYDDU+GIBSc2F8XnIIF93FpDUYPw92+DrOffg+Yd6QCGX4ceUXIz6IA6H/uT+20TU/N3Wv546HRfXpebJ+Dxkv84e0iZCLZ6DQo5/juyO758ZisAOrsjV6jAtJgHRO46jrJL/8Sai5svmIlKv1+ONN95Ap06d0LZtW5w9exYAsHDhQnz22Wd2T5CoIRhnItlUQ41lgL8HYv85DFOH+EMI4JO4s3j0o0M4k18kdWpERPVicxH51ltvYd26dVi2bBmcnJxM48HBwYiJibFrckQNQW8QSL/I5X2o8bk6OyD6sX745MlBaNfGERm5hRiz8iC+jD8HGx9PJyKSnM1F5Jdffok1a9Zg2rRpUCgUpvH+/fvjxIkTdk2OqCFkXi5GSbkeLo4K3NmRO9VQ4wvv44Of5t+H+3p0RFmlAYu2puNv647gUlGZ1KkREVnN5iIyJycH3bp1qzZuMBhQUVFhl6SIGpLxecg+fu5QyLncCknDy12JdU/djcXjguDkIMf+k5cwakUc9h7Pkzo1IiKr2FxEBgUF4cCBA9XGv/vuOwwcONAuSRE1pBQ+D0lNhFwuw8x7A7F93jD08nHDlZJyRH5xFP/+IRXXytl0Q0RNm82LjS9atAgzZsxATk4ODAYDNm/ejJMnT+LLL79EbGxsQ+RIZFdpOXwekpqWnj5u2DrvXizfdRIxBzOxIeE84s9ewQePD0Rf/j4loibK5pnICRMmYPv27dizZw9cXV2xaNEiHD9+HNu3b8dDDz3UEDkS2Y3eIJCWU7VTTV/ORFIT4uygwGtjg7A+MgTe7s44e6kEj/7vN/zvlzPQG9h0Q0RNj1VF5MqVK01rQp4/fx7Dhg3D7t27kZ+fj9LSUhw8eBAPP/xwgyZKZA9nLxXjWoUebZwU6MqmGmqChnWv2n97dLAPKg0Cy3adxNRPf0eO5prUqRERmbGqiIyKikJhYdXsTWBgIC5dutSgSRE1FOPzkGyqoaasnasT/jftLiz7Sz+4OilwOLMAo1bEYWtyjtSpERGZWPVMpJ+fH77//ns88sgjEEIgOzu7xt1q7rjjDrsmSGRPxs7svp08pE2EqA4ymQyTB/sjJNAT8zcl49h5DZ77Ohn7T+Rj6YRgqFy4/zYRSUsmrFjhds2aNfjnP/+JysrKGmOEEJDJZNw/286s3QSdrDPx40NIzLqK9x/vj0cHdpY6HSKrVOoN+HD/GazaV/V8ZCcPF/x3cn+EdG0vdWpE1AJZW3tYVUQCQFFREbKystCvXz/s2bMH7dtb/surf//+9cuYLGIRaT+VegOCl/wEXYUBe6JGoJsXn4mk5iUx6yr+tSkZ5wtKIZMBz4y4E/PDesDJweYeSSKiGllbe1h1O3vlypWYM2cOgoOD8fnnnyM0NBQuLi52S5aoMfx5qQS6CgNcnRTo2sFV6nSIbDYooB12PDccS7el49vEbPzvlz9x4PRlrJgygLsvEVGjs7mx5m9/+xuKiooaNCmihpCSrQEA9OmkgpxNNdRMtXV2wPJJ/fG/aXdB5eKI1Bwtxq48iA0JWdx/m4gaFRtrqNUwLTLO9SGpBXikry/uuqMdnv82Gb+duYJ//5CG/Scu4Z2JfdG+rbPU6RFRK8DGmiaOz0Taz6P/+w3HzmvwwZQBmDCgk9TpENmFwSCw9rdMLNt1EuV6Azq0dcbySf3wQE8vqVMjomaKjTUtBItI+6jUG9Bn8U8oqzRg3/MjuNA4tTgZFwsxf9MxnMorBgDMCA3Agkd6Q+mokDgzImpu7NpYAwBubm6mxpp7770Xzs68XULNx+n8YpRVGtDW2QFd2rOphlqeID93bJs3DG/vPIF1h87hi/gsHPrzClZMGYA+fnyEg4jsz+Z1IWbMmMECkpod4yLjwZ3c2VRDLZbSUYEl4/vgi78NQUc3Z5zOL0bER79hTdyfMHD/bSKyM6uKSE9PT1y+fBkA0K5dO3h6etb4ImqKUrONO9VwRoZavhE9OuKn+ffh4SBvVOgF/rPjBKbFJOAi998mIjuy6nb2+++/Dzc3N9PPZTLO5FDzYtrusLOHtIkQNRJPVyd88uQgbDpyAUu3ZyD+7BWMWhGH/zzWF2P7+UmdHhG1AFY31pA02Fhz+yquN9WUVxqw/4X7EciFxqmVybxcgvlfH8Mf12fkH7urE5aO7wM3JfffJqLq7NpYY1xo3BosdKipOZ1XjPJKA9yUDgjwbCN1OkSNLrCDK757Zig+2HMa//vlDDYn5eDIuQKseHwABgXwMSQiqh+rikgPDw+rb2FznUhqalJzNACAYD/uVEOtl6NCjhfCe2JEz47416ZkXCi4hkmr4zHvgW7458jucFRw/20iso1VReT+/ftNPz937hxeeeUVPPXUUwgNDQUAxMfH44svvkB0dHTDZEl0G1Ku38Lr15lNNUR3d/HEjueGY8nWdGw+loOV+84g7vRlrHh8ALrwUQ8isoHNz0SOHDkSs2bNwtSpU83Gv/rqK6xZswa//PKLPfNr9fhM5O2b8OFB/JGtxaqpAzGuPxsKiIy2/3ER//4hFYW6SrRxUmDxuCBMHuzP5kmiVs7a2sPm+xfx8fEYPHhwtfHBgwfj8OHDtp6OqEGVVxpwPLcIAGciiW41rr8fds2/D/d09URpuR4vf5+Kv69PxNWScqlTI6JmwOYi0t/fH59++mm18ZiYGPj7+9criY8++ghdunSBUqlESEhIncXot99+i169ekGpVKJv377YsWOH2XEhBBYtWgRfX1+4uLggLCwMp0+fNospKCjAtGnT4O7uDg8PD0RGRqK4uNh0fMmSJZDJZNVerq43bvesW7eu2nGlUllj3n//+98hk8mwYsUKGz4duh2n8opQrjfAXemAO9hUQ1SNn4cLNsy6B6+M7gVHhQw/pechfEUcDpy+JHVqRNTE2VxEvv/++1i1ahX69u2LWbNmYdasWejXrx9WrVqF999/3+YENm3ahKioKCxevBhJSUno378/wsPDkZ+fbzH+0KFDmDp1KiIjI3Hs2DFEREQgIiICaWlppphly5Zh5cqVWL16NRISEuDq6orw8HDodDpTzLRp05Ceno7du3cjNjYWcXFxmDNnjun4Cy+8gNzcXLNXUFAQJk2aZJaPu7u7WUxWVpbFvH/44Qf8/vvv8PPj7dTGdGN9SBVv0RHVQCGX4e8j7sQP/7gXd3Z0RX5RGZ787DBe354BXQWbJYmoBqIeLly4IF599VXx6KOPikcffVS8+uqr4vz58/U5lRgyZIiYO3eu6Wu9Xi/8/PxEdHS0xfjJkyeLMWPGmI2FhISIp59+WgghhMFgED4+PmL58uWm4xqNRjg7O4uNGzcKIYTIyMgQAMSRI0dMMTt37hQymUzk5ORYvG5ycrIAIOLi4kxjn3/+uVCpVHV+j9nZ2aJTp04iLS1NBAQEiPfff7/O9xhptVoBQGi1WqvfQzcs2JwiAl6OFdE7jkudClGzUFpWKRZuSRUBL8eKgJdjRfj7v4rjufz7h6g1sbb2qNeaDp07d8Zbb72FzZs3Y/PmzXjrrbfqdSu7vLwciYmJCAsLM43J5XKEhYUhPj7e4nvi4+PN4gEgPDzcFJ+ZmQm1Wm0Wo1KpEBISYoqJj4+Hh4eH2bOdYWFhkMvlSEhIsHjdmJgY9OjRA8OHDzcbLy4uRkBAAPz9/TFhwgSkp6ebHTcYDHjyySfx4osvok+fPnV9JCgrK0NhYaHZi+qP2x0S2cbFSYHXJwRj7VOD0aGtE06oizD+w9/w2cFM7r9NRGYkXRjs8uXL0Ov18Pb2Nhv39vaGWq22+B61Wl1rvPHHumK8vLzMjjs4OMDT09PidXU6HTZs2IDIyEiz8Z49e2Lt2rXYunUr1q9fD4PBgKFDhyI7O9sU884778DBwQHPPvtsjZ/DzaKjo6FSqUyv+j5nSkBZpR4n1FVFOJtqiGzzYC9v7Jp/Hx7s5YXySgPeiM3AjM8PI69QV/ebiahV4OqyVvjhhx9QVFSEGTNmmI2HhoZi+vTpGDBgAEaMGIHNmzejY8eO+OSTTwAAiYmJ+OCDD0wNONZYsGABtFqt6XXhwgW7fz+txSl1MSr0AioXR3Ru5yJ1OkTNToe2zvhsxmC8EREMpaMcB05fRviKOOxKy5U6NSJqAiQtIjt06ACFQoG8vDyz8by8PPj4+Fh8j4+PT63xxh/rirm1caeyshIFBQUWrxsTE4OxY8dWm928laOjIwYOHIgzZ84AAA4cOID8/HzccccdcHBwgIODA7KysvD888+jS5cuFs/h7OwMd3d3sxfVj7Gpph+baojqTSaT4cl7AhD7z+EI7uQOTWkF/r4+CS999wdKyiqlTo+IJCRpEenk5IRBgwZh7969pjGDwYC9e/eadsO5VWhoqFk8AOzevdsUHxgYCB8fH7OYwsJCJCQkmGJCQ0Oh0WiQmJhoitm3bx8MBgNCQkLMzp2ZmYn9+/dXu5VtiV6vR2pqKnx9fQEATz75JFJSUpCcnGx6+fn54cUXX8RPP/1U5/no9pi2O+TzkES3rZtXW2x+5l48c/+dkMmAb45m45GVB3Ds/FWpUyMiiVi17WFDioqKwowZMzB48GAMGTIEK1asQElJCWbOnAkAmD59Ojp16mTaUvG5557DiBEj8N5772HMmDH4+uuvcfToUaxZswZA1f+a58+fjzfffBPdu3dHYGAgFi5cCD8/P0RERAAAevfujVGjRmH27NlYvXo1KioqMG/ePEyZMqXaEjxr166Fr68vRo8eXS33119/Hffccw+6desGjUaD5cuXIysrC7NmzQIAtG/fHu3btzd7j6OjI3x8fNCzZ0+7fo5UnWkmkkUkkV04Ocjx8qheGNGjI6I2JSPrSin+sjoezz7YHXMfuBMO3H+bqFWxqogcOHCg1bcDk5KSbErg8ccfx6VLl7Bo0SKo1WoMGDAAu3btMt06Pn/+POTyG38xDR06FF999RVee+01vPrqq+jevTu2bNmC4OBgU8xLL72EkpISzJkzBxqNBsOGDcOuXbvMFgLfsGED5s2bh5EjR0Iul2PixIlYuXKlWW4GgwHr1q3DU089BYVCUS33q1evYvbs2VCr1WjXrh0GDRqEQ4cOISgoyKbPgOyvrFKPk+qqnWo4E0lkX/d0bY+d8+/Dwi1p2PbHRby/5xTiTl/C+5MH4I72XNSfqLWwau/spUuXWn3CxYsX31ZCZI57Z9dPSrYG4z/8De3aOCJp4UN8JpKogWw5loOFW9JQVFaJts4OWDK+Dybe1Yl/5oiaMWtrD6tmIlkYUnOTcn19yOBObKohakgRAzthUEA7PP/NHzh8rgAvfPsH9p/Ix1uPBsOjjZPU6RFRA+IDLNQipd3UmU1EDcvfsw02zrkHL4b3hINchh9TczFqxQEcOnNZ6tSIqAHZXETq9Xq8++67GDJkCHx8fODp6Wn2ImoKUrhTDVGjUshlmPtAN2z+x1B07eAKdaEO0z5LwH92HEdZJfffJmqJbC4ily5div/+9794/PHHodVqERUVhcceewxyuRxLlixpgBSJbKOr0ONUXlVTTd/OHtImQ9TK9Ovsgdhnh2HqkDsgBLAm7iwiPjpk+jNJRC2HzUXkhg0b8Omnn+L555+Hg4MDpk6dipiYGCxatAi///57Q+RIZJMT6iJUGgQ8XZ3gp1LW/QYisqs2Tg6Ifqwv1jw5CJ6uTjieW4hxqw7ii0PnYEUvJxE1EzYXkWq1Gn379gUAtG3bFlpt1W3DsWPH4scff7RvdkT1kJqtAVB1K5tNNUTSebiPD3bNH44RPTqirNKAxdvSMXPdEeQXcf9topbA5iKyc+fOyM2t2jf1zjvvxM8//wwAOHLkCJydne2bHVE9pLKphqjJ8HJTYt3Mu7F0fB84O8jxy8lLGLXiAPZk5NX9ZiJq0mwuIh999FHTloL//Oc/sXDhQnTv3h3Tp0/H3/72N7snSGSrm5f3ISLpyWQyzBjaBdv/OQy9fd1RUFKOWV8exas/pKK0nPtvEzVXVi02Xpv4+HjEx8eje/fuGDdunL3youu42LhtdBV69Fn8E/QGgfgFD8JX5SJ1SkR0k7JKPd77+RTWxJ0FAHTt4IoVUwagH5vgiJoMa2uP2y4iqWGxiLRN0vmreOx/h9ChrROO/DuMz0QSNVGHzlxG1Dd/QF2og4Nchn891AN/H3EnFHL+mSWSml13rLnV6dOnsX//fuTn58NgMJgdW7RoUX1OSWQXxkXG2VRD1LQN7dYBu+YPx79/SMOPqblY/tNJ/HryEv77eH90ble1/7beIHA4swD5RTp4uSkxJNCTRSZRE2JzEfnpp5/imWeeQYcOHeDj42P2D7VMJmMRSZLiIuNEzYdHGyd8+NeBeCDJC4u3puHwuQKMXnEAb0QEQ+kox9LtGcjV3ujk9lUpsXhcEEYF+0qYNREZ2Xw7OyAgAP/4xz/w8ssvN1ROdBPezrbNqBVxOKEuwqfTB+OhIG+p0yEiK52/Uor5m44h6bymxhjjlMXHT9zFQpKoAVlbe9jcnX316lVMmjTptpIjagjXym/aqYYzkUTNyh3t2+Cbp0Px3MjuNcYYZzyWbs+A3sDH+YmkZnMROWnSJNPakERNSUZuIQwC6OjmDG93rllK1Nw4KOS4p2v7WmMEgFytDh/sPYUj5wpw/kopdBXcm5tICjY/E9mtWzcsXLgQv//+O/r27QtHR0ez488++6zdkiOyBXeqIWr+rN3NZuXeM1i594zpa5WLI7zdneHtroSXm9L0c293Z3i5K+HtrkTHts5wcrB57oSIamBzEblmzRq0bdsWv/76K3799VezYzKZjEUkSSY1pxAAb2UTNWdebtbtd9/L2w3XKvVQa3UoqzRAe60C2msVOJVXXOv72rs6mYpLb3fl9QLTGd5uStN4+7bO7AInsoLNRWRmZmZD5EF021JzNABYRBI1Z0MCPeGrUkKt1cHSU48yAD4qJX58bjgUchmEECjUVSK/UAd1oQ55hWXIK9Qh3/jzIh3yC8uQX6RDhV7gSkk5rpSUIyO35hzkMuNjMTXMarop4aNSol0bR971oFatXutEGhkbu/mHiKRWWl6JM/lVMxB9uWc2UbOlkMuweFwQnlmfBBlgVkga/6VZPC7INFMok8mgcnGEysUR3b3dajyvwSBwtbT8psLyRsGZd73IVGt1uFxcBoPA9WNlALQ1ntNRIbulyFTC65ZZTS93JdyVDvx3kuyiqa2dWq8i8ssvv8Ty5ctx+vRpAECPHj3w4osv4sknn7RrckTWyrhY1VTjdX32gIiar1HBvvj4ibuqrRPpcxvrRMrlMrRvW3WrOgg1L1lSqTfgSkm5qbi8dVYzr7AM+YU6XCkpR4VeIEdzDTmaa7VeW+koryoq3a4Xme5K+Ljf+Lmx4GzjdFvzOtTC7UrLbXJrp9r8O/a///0vFi5ciHnz5uHee+8FABw8eBB///vfcfnyZfzrX/+ye5JEdTEuMt6Ps5BELcKoYF88FOTT6LMuDgq5qbCrTXmlAZeKr89kanVVPxYZi07jDKcOhbpK6CoMyLpSiqwrpbWe083ZwaywvHVW09tdiY5uzlA6Kuz5Ldepqc1+tUa70nLxzPqkao94qLU6PLM+SbK1U20uIletWoWPP/4Y06dPN42NHz8effr0wZIlS1hEkiSM2x0G83lIohZDIZch9M7al/yRipODHJ08XNDJw6XWuGvleuQX3XzrXIf8ohs/zyssg1qrw7UKPYrKKlF0qRJ/Xiqp9ZwebRyrikuVEt5u1bvQvd2d0aGtMxwVt9+J3hRnv1obvUFg6fYMi88IC1Q95rF0ewYeCvJp9OLe5iIyNzcXQ4cOrTY+dOhQ5ObW8qQyUQNKyeFMJBE1PS5OCgS0d0VAe9caY4QQKC6rNN0qzyu6+Vb69YLz+lh5pQGa0gpoSitw8vrmCpbIZEB7V2fzpqBbZjW93ZVo7+oEeQ2FR1Od/ZKKwSBQaRCoNBhQaRDQ6wUqDAboDQKV+uvH9NePGQQq9IbrP17/2mCAXn/T+03HDDdirr+n8vo59QYDzl0pNSvib2VcO/VwZkGj/6erXutEfvPNN3j11VfNxjdt2oTu3WveaYCooZSUVeLPS1VNNZyJJKLmRiaTwU3pCDelI7p5ta0xTggB7bUKs1nNm5/dzCuqKkLzi8qgNwhcLi7D5eIypF8srPGcCrkMXm7GrvMbBWcHN2e8s/OkVbNfchlqLJwqDYYbBdZNP9ebjd8ovir1N+L0hlvfd3PMLefQmx+7udAzf9/NOdxStFk4n/6m9zX1TZKsXWPVnmwuIpcuXYrHH38ccXFxpmcif/vtN+zduxfffPON3RMkqkv6xUIIgaoH1a1cY46IqLmRyWTwaOMEjzZO6OlTeye6sTnI/Fb6jZlOtbYMV0qqis1cra7WmS5LjLNf3f+9o8kXVw3NUSGDg1wOB7kMDgoZFHI5HBUyKOQyOCrkUMhl5sfk5seMsQ5y+fUYGRzlcigUMjjKZcgvKsPONHWdeUjx75/NReTEiRORkJCA999/H1u2bAEA9O7dG4cPH8bAgQPtnR9RnVKv38rm0j5ERFWd6B3dnNHRzRlAzX8vVugNuFxcVr0LvVCH1BwtTqhrvl1uVFsB6SC3XEhVK5ZqKqTMiqwbxZfxHGbHLBVtchkUipqKtpuLvpuO1ZBPVaz5MUe5vMZHAexJbxAY9s6+OtdOHRLo2eC53Kpe6wkMGjQI69evt3cuRPVy83aHRERkHUeFHL4qF/iqqjcHxf95BVM//b3Oc/xv2l0YEuhpKrJMxZtcxrUx7cTWtVMbk1VFZGFhIdzd3U0/r40xjqixcCaSiMi+rN05KLxP43cEt0YNsXaqPVhVRLZr1w65ubnw8vKCh4eHxf9dCCEgk8mg1+vtniRRTYrLKnH2ctVyGJyJJCKyj6Y8+9VaSbV2am2sKiL37dsHT8+qe+379+9v0ISIbJGeo4UQgJ9KiQ5tnaVOh4ioxWiqs1+tWVNbO9WqInLEiBGmnwcGBsLf37/abKQQAhcuXLBvdkR1SOUi40REDaYpzn5R02FzY01gYKDp1vbNCgoKEBgYyNvZ1KhSucg4EVGDamqzX9R02LwnkvHZx1sVFxdDqeQafdS4UrM5E0lERCQFq2cio6KiAFQtdrpw4UK0adPGdEyv1yMhIQEDBgywe4JENSnUVbCphoiISCJWF5HHjh0DUDUTmZqaCicnJ9MxJycn9O/fHy+88IL9MySqQXpO1XJTnTxc0J5NNURERI3K6iLS2JU9c+ZMfPDBB1wPkiSXmqMBwFlIIiIiKdj8TOSKFStQWVlZbbygoKDOhciJ7Cn1+kwkFxknIiJqfDYXkVOmTMHXX39dbfybb77BlClT7JIUkTW43SEREZF0bC4iExIS8MADD1Qbv//++5GQkGCXpIjqor1WgXNXSgGwiCQiIpKCzUVkWVmZxdvZFRUVuHbtml2SIqpL+vX1ITu3c0E7V6c6oomIiMjebC4ihwwZgjVr1lQbX716NQYNGmSXpIjqwkXGiYiIpGXzjjVvvvkmwsLC8Mcff2DkyJEAgL179+LIkSP4+eef7Z4gkSUp3O6QiIhIUjbPRN57772Ij4+Hv78/vvnmG2zfvh3dunVDSkoKhg8f3hA5ElWTZpyJ7OQhbSJEREStlM0zkQAwYMAAbNiwwd65EFlFW1qBrOtNNcGduF4pERGRFOpVRBrpdDqUl5ebjXERcmpoaRerZiHv8GwDjzZsqiEiIpKCzbezS0tLMW/ePHh5ecHV1RXt2rUzexE1tJTsqiKSS/sQERFJx+Yi8sUXX8S+ffvw8ccfw9nZGTExMVi6dCn8/Pzw5ZdfNkSORGaMz0NypxoiIiLp2Hw7e/v27fjyyy9x//33Y+bMmRg+fDi6deuGgIAAbNiwAdOmTWuIPIlMUrhnNhERkeRsnoksKChA165dAVQ9/1hQUAAAGDZsGOLi4uybHdEtNKXluFBQtah9sB+LSCIiIqnYXER27doVmZmZAIBevXrhm2++AVA1Q+nh4VGvJD766CN06dIFSqUSISEhOHz4cK3x3377LXr16gWlUom+fftix44dZseFEFi0aBF8fX3h4uKCsLAwnD592iymoKAA06ZNg7u7Ozw8PBAZGYni4mLT8SVLlkAmk1V7ubq6mmLWrVtX7bhSqTS7zpIlS9CrVy/T86NhYWHcHvI2GBcZD2jfBqo2jhJnQ0RE1HrZXETOnDkTf/zxBwDglVdewUcffQSlUol//etfePHFF21OYNOmTYiKisLixYuRlJSE/v37Izw8HPn5+RbjDx06hKlTpyIyMhLHjh1DREQEIiIikJaWZopZtmwZVq5cidWrVyMhIQGurq4IDw+HTqczxUybNg3p6enYvXs3YmNjERcXhzlz5piOv/DCC8jNzTV7BQUFYdKkSWb5uLu7m8VkZWWZHe/Rowc+/PBDpKam4uDBg+jSpQsefvhhXLp0yebPithUQ0RE1GSI23Tu3Dnx/fffiz/++KNe7x8yZIiYO3eu6Wu9Xi/8/PxEdHS0xfjJkyeLMWPGmI2FhISIp59+WgghhMFgED4+PmL58uWm4xqNRjg7O4uNGzcKIYTIyMgQAMSRI0dMMTt37hQymUzk5ORYvG5ycrIAIOLi4kxjn3/+uVCpVDZ9v1qtVgAQe/bssSleq9XadJ2W6u//d1QEvBwrVv9yRupUiIiIWiRraw+bZiIrKiowcuRIs1vDAQEBeOyxx9CvXz+bC9jy8nIkJiYiLCzMNCaXyxEWFob4+HiL74mPjzeLB4Dw8HBTfGZmJtRqtVmMSqVCSEiIKSY+Ph4eHh4YPHiwKSYsLAxyubzGW80xMTHo0aNHtV15iouLERAQAH9/f0yYMAHp6em1fr9r1qyBSqVC//79LcaUlZWhsLDQ7EU3mGYi2ZlNREQkKZuKSEdHR6SkpNjt4pcvX4Zer4e3t7fZuLe3N9RqtcX3qNXqWuONP9YV4+XlZXbcwcEBnp6eFq+r0+mwYcMGREZGmo337NkTa9euxdatW7F+/XoYDAYMHToU2dnZZnGxsbFo27YtlEol3n//fezevRsdOnSw+P1FR0dDpVKZXv7+/hbjWqOCknLkaK431fB2NhERkaRsfibyiSeewGeffdYQuTRZP/zwA4qKijBjxgyz8dDQUEyfPh0DBgzAiBEjsHnzZnTs2BGffPKJWdwDDzyA5ORkHDp0CKNGjcLkyZNrfOZzwYIF0Gq1pteFCxca7PtqboxNNYEdXOGuZFMNERGRlGxeJ7KyshJr167Fnj17MGjQILNuZQD473//a/W5OnToAIVCgby8PLPxvLw8+Pj4WHyPj49PrfHGH/Py8uDr62sWM2DAAFPMrUVcZWUlCgoKLF43JiYGY8eOrTa7eStHR0cMHDgQZ86cMRt3dXVFt27d0K1bN9xzzz3o3r07PvvsMyxYsKDaOZydneHs7FzrdVor0yLjnIUkIiKSnM0zkWlpabjrrrvg5uaGU6dO4dixY6ZXcnKyTedycnLCoEGDsHfvXtOYwWDA3r17ERoaavE9oaGhZvEAsHv3blN8YGAgfHx8zGIKCwuRkJBgigkNDYVGo0FiYqIpZt++fTAYDAgJCTE7d2ZmJvbv31/tVrYler0eqampZsWrJQaDAWVlZXWej8ylZGsAsIgkIiJqCqyaiUxJSUFwcDDkcjn2799v1wSioqIwY8YMDB48GEOGDMGKFStQUlKCmTNnAgCmT5+OTp06ITo6GgDw3HPPYcSIEXjvvfcwZswYfP311zh69CjWrFkDAJDJZJg/fz7efPNNdO/eHYGBgVi4cCH8/PwQEREBAOjduzdGjRqF2bNnY/Xq1aioqMC8efMwZcoU+Pn5meW3du1a+Pr6YvTo0dVyf/3113HPPfegW7du0Gg0WL58ObKysjBr1iwAQElJCd566y2MHz8evr6+uHz5Mj766CPk5ORUWyqI6paWU9VkxKYaIiIi6VlVRA4cOBC5ubnw8vJC165dceTIEbRv394uCTz++OO4dOkSFi1aBLVajQEDBmDXrl2mW8fnz5+HXH5jwnTo0KH46quv8Nprr+HVV19F9+7dsWXLFgQHB5tiXnrpJZSUlGDOnDnQaDQYNmwYdu3aZbYQ+IYNGzBv3jyMHDkScrkcEydOxMqVK81yMxgMWLduHZ566ikoFIpquV+9ehWzZ8+GWq1Gu3btMGjQIBw6dAhBQUEAAIVCgRMnTuCLL77A5cuX0b59e9x99904cOAA+vTpY5fPr7W4Ulxmaqrp4+cucTZEREQkE0KIuoLat2+PHTt2ICQkBHK5HHl5eejYsWNj5NfqFRYWQqVSQavVwt299RZPv5zMx1OfH0HXjq7Y9/z9UqdDRETUYllbe1g1Ezlx4kSMGDECvr6+kMlkGDx4sMWZOQA4e/Zs/TImqkUqd6ohIiJqUqwqItesWYPHHnsMZ86cwbPPPovZs2fDzc2toXMjMkllZzYREVGTYvUSP6NGjQIAJCYm4rnnnmMRSY2KRSQREVHTYvM6kZ9//nlD5EFUo0tFZcjV6iCTAX1YRBIRETUJNq8TSdTYjIuMd+3girbONv+/h4iIiBoAi0hq8lKuN9X06+whbSJERERkwiKSmjzj85DBvJVNRETUZLCIpCYvNUcDAOjHnWqIiIiajHoVkf/3f/+He++9F35+fsjKygIArFixAlu3brVrckT5hTrkFZZBJgOCfFvvYutERERNjc1F5Mcff4yoqCg88sgj0Gg00Ov1AAAPDw+sWLHC3vlRK2e8ld2tY1u4sqmGiIioybC5iFy1ahU+/fRT/Pvf/zbbtWbw4MFITU21a3JEpvUheSubiIioSbG5iMzMzMTAgQOrjTs7O6OkpMQuSREZcbtDIiKipsnmIjIwMBDJycnVxnft2oXevXvbIyciE+NMJJtqiIiImhabHzKLiorC3LlzodPpIITA4cOHsXHjRkRHRyMmJqYhcqRWKq9Qh/yiMshlQJAvi0giIqKmxOYictasWXBxccFrr72G0tJS/PWvf4Wfnx8++OADTJkypSFypFbKeCu7u5cbXJwUdUQTERFRY6pXu+u0adMwbdo0lJaWori4GF5eXvbOiwgpXGSciIioybL5mcgHH3wQGo0GANCmTRtTAVlYWIgHH3zQrslR65bG5yGJiIiaLJuLyF9++QXl5eXVxnU6HQ4cOGCXpIiEEKY9szkTSURE1PRYfTs7JSXF9POMjAyo1WrT13q9Hrt27UKnTp3smx21WnmFZbhcXAaFXMadaoiIiJogq4vIAQMGQCaTQSaTWbxt7eLiglWrVtk1OWq9UrI1AIDuXm3ZVENERNQEWV1EZmZmQgiBrl274vDhw+jYsaPpmJOTE7y8vMx2sCG6HcbnIbnIOBERUdNkdREZEBAAADAYDA2WDJFRCrc7JCIiatJsXuLnyy+/rPX49OnT650MEVDVVMPtDomIiJo2m4vI5557zuzriooKlJaWwsnJCW3atGERSbctV6vDlZJyKOQy9GZTDRERUZNk8xI/V69eNXsVFxfj5MmTGDZsGDZu3NgQOVIrY1zap4e3G5SOfM6WiIioKbK5iLSke/fuePvtt6vNUhLVh2mRcd7KJiIiarLsUkQCgIODAy5evGiv01ErZtrukE01RERETZbNz0Ru27bN7GshBHJzc/Hhhx/i3nvvtVti1DoJITgTSURE1AzYXERGRESYfS2TydCxY0c8+OCDeO+99+yVF7VSOZprKCgph4Nchp4+blKnQ0RERDWwuYjkOpHUkIyzkD192FRDRETUlNntmUgie0jh+pBERETNglUzkVFRUVaf8L///W+9kyFK5U41REREzYJVReSxY8esOplMJrutZKh1E0LcKCI5E0lERNSkWVVE7t+/v6HzIEL21WvQlFbAUcGmGiIioqbutp6JzM7ORnZ2tr1yoVYu9aamGmcHNtUQERE1ZTYXkQaDAa+//jpUKhUCAgIQEBAADw8PvPHGG+zcptty41a2h7SJEBERUZ1sXuLn3//+Nz777DO8/fbbpsXFDx48iCVLlkCn0+Gtt96ye5LUOqSyM5uIiKjZsLmI/OKLLxATE4Px48ebxvr164dOnTrhH//4B4tIqpebm2r6sTObiIioybP5dnZBQQF69epVbbxXr14oKCiwS1LU+lwouAbttQo4KeTo4c2mGiIioqbO5iKyf//++PDDD6uNf/jhh+jfv79dkqLWJyVHAwDo5esGJweugU9ERNTU2Xw7e9myZRgzZgz27NmD0NBQAEB8fDwuXLiAHTt22D1Bah2Mt7KD+TwkERFRs2DzlM+IESNw6tQpPProo9BoNNBoNHjsscdw8uRJDB8+vCFypFbA2FTTj0UkERFRs2DzTCQA+Pn5sYGG7MZspxo21RARETULNs9E7tq1CwcPHjR9/dFHH2HAgAH461//iqtXr9o1OWodsq6UokhXCScHNtUQERE1FzYXkS+++CIKCwsBAKmpqYiKisIjjzyCzMxMREVF2T1BavmMs5C9fd3hqGBTDRERUXNg8+3szMxMBAUFAQC+//57jBs3Dv/5z3+QlJSERx55xO4JUst3Y6cad4kzISIiImvZPO3j5OSE0tJSAMCePXvw8MMPAwA8PT1NM5REtrjRVOMhbSJERERkNZtnIocNG4aoqCjce++9OHz4MDZt2gQAOHXqFDp37mz3BKllMxgE0ri8DxERUbNj80zkhx9+CAcHB3z33Xf4+OOP0alTJwDAzp07MWrUKLsnSC1bVkEpisoq4ewgR3fvtlKnQ0RERFayuYi84447EBsbiz/++AORkZGm8ffffx8rV66sVxIfffQRunTpAqVSiZCQEBw+fLjW+G+//Ra9evWCUqlE3759qy1yLoTAokWL4OvrCxcXF4SFheH06dNmMQUFBZg2bRrc3d3h4eGByMhIFBcXm44vWbIEMpms2svV1dUUs27dumrHlUql6XhFRQVefvll9O3bF66urvDz88P06dNx8eLFen1OLVFKtgYAm2qIiIiam3r9q63X6/Hdd9/hjTfewBtvvIHvvvsOlZWV9Upg06ZNiIqKwuLFi5GUlIT+/fsjPDwc+fn5FuMPHTqEqVOnIjIyEseOHUNERAQiIiKQlpZmilm2bBlWrlyJ1atXIyEhAa6urggPD4dOpzPFTJs2Denp6di9ezdiY2MRFxeHOXPmmI6/8MILyM3NNXsFBQVh0qRJZvm4u7ubxWRlZZmOlZaWIikpCQsXLkRSUhI2b96MkydPYvz48fX6rFoi463sflwfkoiIqHkRNkpLSxOBgYGiTZs2YuDAgWLgwIHC1dVVdOnSRaSmptp6OjFkyBAxd+5c09d6vV74+fmJ6Ohoi/GTJ08WY8aMMRsLCQkRTz/9tBBCCIPBIHx8fMTy5ctNxzUajXB2dhYbN24UQgiRkZEhAIgjR46YYnbu3ClkMpnIycmxeN3k5GQBQMTFxZnGPv/8c6FSqWz6fg8fPiwAiKysLIvHdTqd0Gq1pteFCxcEAKHVam26TnMxefUhEfByrNh05LzUqRAREZEQQqvVWlV72DwTOWvWLAQHByM7OxtJSUlISkrChQsX0K9fP7OZPGuUl5cjMTERYWFhpjG5XI6wsDDEx8dbfE98fLxZPACEh4eb4jMzM6FWq81iVCoVQkJCTDHx8fHw8PDA4MGDTTFhYWGQy+VISEiweN2YmBj06NGj2taOxcXFCAgIgL+/PyZMmID09PRav2etVguZTAYPDw+Lx6Ojo6FSqUwvf3//Ws/XnBkMAukXqzr6ORNJRETUvNhcRCYnJyM6Ohrt2rUzjbVr1w5vvfUWjh07ZtO5Ll++DL1eD29vb7Nxb29vqNVqi+9Rq9W1xht/rCvGy8vL7LiDgwM8PT0tXlen02HDhg1mz4ACQM+ePbF27Vps3boV69evh8FgwNChQ5GdnW0xd51Oh5dffhlTp06Fu7vlNREXLFgArVZrel24cMFiXEuQeaUExWWVUDrK0a0jm2qIiIiaE5uX+OnRowfy8vLQp08fs/H8/Hx069bNbok1JT/88AOKioowY8YMs/HQ0FCEhoaavh46dCh69+6NTz75BG+88YZZbEVFBSZPngwhBD7++OMar+Xs7AxnZ2f7fgNNlHF9yCBfdziwqYaIiKhZsepf7sLCQtMrOjoazz77LL777jtkZ2cjOzsb3333HebPn4933nnHpot36NABCoUCeXl5ZuN5eXnw8fGx+B4fH59a440/1hVza+NOZWUlCgoKLF43JiYGY8eOrTa7eStHR0cMHDgQZ86cMRs3FpBZWVnYvXt3jbOQrc2NnWp4K5uIiKi5saqI9PDwQLt27dCuXTuMGzcOGRkZmDx5MgICAhAQEIDJkycjLS0N48aNs+niTk5OGDRoEPbu3WsaMxgM2Lt3r9kM381CQ0PN4gFg9+7dpvjAwED4+PiYxRQWFiIhIcEUExoaCo1Gg8TERFPMvn37YDAYEBISYnbuzMxM7N+/v9qtbEv0ej1SU1Ph6+trGjMWkKdPn8aePXvQvn37Os/TWhhnIvt29pA2ESIiIrKZVbez9+/f32AJREVFYcaMGRg8eDCGDBmCFStWoKSkBDNnzgQATJ8+HZ06dUJ0dDQA4LnnnsOIESPw3nvvYcyYMfj6669x9OhRrFmzBgAgk8kwf/58vPnmm+jevTsCAwOxcOFC+Pn5ISIiAgDQu3dvjBo1CrNnz8bq1atRUVGBefPmYcqUKfDz8zPLb+3atfD19cXo0aOr5f7666/jnnvuQbdu3aDRaLB8+XJkZWVh1qxZAKoKyL/85S9ISkpCbGws9Hq96ZlLT09PODk5Nchn2hzoDQLpF7m8DxERUXNlVRE5YsQIq05281qN1nr88cdx6dIlLFq0CGq1GgMGDMCuXbtMt47Pnz8PufzGhOnQoUPx1Vdf4bXXXsOrr76K7t27Y8uWLQgODjbFvPTSSygpKcGcOXOg0WgwbNgw7Nq1y2wh8A0bNmDevHkYOXIk5HI5Jk6cWG2xdIPBgHXr1uGpp56CQqGolvvVq1cxe/ZsqNVqtGvXDoMGDcKhQ4cQFBQEAMjJycG2bdsAAAMGDDB77/79+3H//ffb/Hm1FJmXi1FSroeLowJ3sqmGiIio2ZEJIcTtnKCoqAgbN25ETEwMEhMTodfr7ZUboepWvEqlglarbVHPUv5wLBv/2vQHBge0w3fPDJU6HSIiIrrO2tqj3i2xcXFxmDFjBnx9ffHuu+/iwQcfxO+//17f01Erk3L9echgNtUQERE1SzYt8aNWq7Fu3Tp89tlnKCwsxOTJk1FWVoYtW7aYbuESWYPbHRIRETVvVs9Ejhs3Dj179kRKSgpWrFiBixcvYtWqVQ2ZG7VQeoNAWk7VTjVc3oeIiKh5snomcufOnXj22WfxzDPPoHv37g2ZE7VwZy8V41qFHm2cFOjKphoiIqJmyeqZyIMHD6KoqAiDBg1CSEgIPvzwQ1y+fLkhc6MWyvg8ZB8/dyjkMomzISIiovqwuoi855578OmnnyI3NxdPP/00vv76a/j5+cFgMGD37t0oKipqyDypBbmxU42HtIkQERFRvdncne3q6oq//e1vOHjwIFJTU/H888/j7bffhpeXF8aPH98QOVILYyoiO7ecJYuIiIham3ov8QMAPXv2xLJly5CdnY2NGzfaKydqwSr1BmRcNDbVeEibDBEREdXbbRWRRgqFAhEREabdWYhq8uelElyr0MPVSYGuHVylToeIiIjqyS5FJJG1UrI1AIA+nVSQs6mGiIio2WIRSY0qzdRUw/UhiYiImjMWkdSoUrhTDRERUYvAIpIajXlTDYtIIiKi5oxFJDWa0/nFKKs0oK2zA7q0Z1MNERFRc8YikhqNcX3I4E7ubKohIiJq5lhEUqNJzWZTDRERUUvBIpIazY2dajykTYSIiIhuG4tIahQVegMyctlUQ0RE1FKwiKRGcTqvGOWVBrgpHRDg2UbqdIiIiOg2sYikRpGaowEABPtxpxoiIqKWgEUkNYpULjJORETUorCIpEZh7MwO5vOQRERELQKLSGpw5ZUGHFcXAeBMJBERUUvBIpIa3Km8IpRXGuCudMAdbKohIiJqEVhEUoO7sT6kCjIZm2qIiIhaAhaR1OBubHfIW9lEREQtBYtIanDGppp+nTykTYSIiIjshkUkNaiySj1OqLlTDRERUUvDIpIa1Cl1MSr0AioXR/h7ukidDhEREdkJi0hqUDcvMs6mGiIiopaDRSQ1KNN2h7yVTURE1KKwiKQGZZqJZBFJRETUorCIpAZTVqnHyes71XAmkoiIqGVhEUkN5qS6CBV6gXZtHNG5HZtqiIiIWhIWkdRgUrJvLDLOphoiIqKWhUUkNZi0mzqziYiIqGVhEUkNxjgTyUXGiYiIWh4WkdQgdBV6nMqraqrp29lD2mSIiIjI7lhEUoM4oS5CpUHA09UJfiql1OkQERGRnbGIpAZhXB+yL5tqiIiIWiQWkdQgUrM1APg8JBERUUvFIpIahKmphp3ZRERELRKLSLI7XYUep/OLAXAmkoiIqKViEUl2l5FbCL1BoENbJ/iyqYaIiKhFYhFJdpfGphoiIqIWj0Uk2R0XGSciImr5WESS3ZlmIrnIOBERUYvFIpLs6lr5TTvVcCaSiIioxWIRSXaVkVsIgwA6ujnD291Z6nSIiIiogUheRH700Ufo0qULlEolQkJCcPjw4Vrjv/32W/Tq1QtKpRJ9+/bFjh07zI4LIbBo0SL4+vrCxcUFYWFhOH36tFlMQUEBpk2bBnd3d3h4eCAyMhLFxcWm40uWLIFMJqv2cnV1NcWsW7eu2nGl0rwTefPmzXj44YfRvn17yGQyJCcn1/NTaj5uXmScTTVEREQtl6RF5KZNmxAVFYXFixcjKSkJ/fv3R3h4OPLz8y3GHzp0CFOnTkVkZCSOHTuGiIgIREREIC0tzRSzbNkyrFy5EqtXr0ZCQgJcXV0RHh4OnU5nipk2bRrS09Oxe/duxMbGIi4uDnPmzDEdf+GFF5Cbm2v2CgoKwqRJk8zycXd3N4vJysoyO15SUoJhw4bhnXfescfH1Syk5hQC4K1sIiKiFk9IaMiQIWLu3Lmmr/V6vfDz8xPR0dEW4ydPnizGjBljNhYSEiKefvppIYQQBoNB+Pj4iOXLl5uOazQa4ezsLDZu3CiEECIjI0MAEEeOHDHF7Ny5U8hkMpGTk2PxusnJyQKAiIuLM419/vnnQqVSWfV9ZmZmCgDi2LFjdcbqdDqh1WpNrwsXLggAQqvVWnUtqT30319EwMuxYne6WupUiIiIqB60Wq1VtYdkM5Hl5eVITExEWFiYaUwulyMsLAzx8fEW3xMfH28WDwDh4eGm+MzMTKjVarMYlUqFkJAQU0x8fDw8PDwwePBgU0xYWBjkcjkSEhIsXjcmJgY9evTA8OHDzcaLi4sREBAAf39/TJgwAenp6TZ8ApZFR0dDpVKZXv7+/rd9zsZSWl6JM8adarjdIRERUYsmWRF5+fJl6PV6eHt7m417e3tDrVZbfI9ara413vhjXTFeXl5mxx0cHODp6WnxujqdDhs2bEBkZKTZeM+ePbF27Vps3boV69evh8FgwNChQ5GdnV3Xt16rBQsWQKvVml4XLly4rfM1poyLVU01Xm7O8HbnTjVEREQtmYPUCTR1P/zwA4qKijBjxgyz8dDQUISGhpq+Hjp0KHr37o1PPvkEb7zxRr2v5+zsDGfn5tnVnHp9fch+nIUkIiJq8SSbiezQoQMUCgXy8vLMxvPy8uDj42PxPT4+PrXGG3+sK+bWxp3KykoUFBRYvG5MTAzGjh1bbXbzVo6Ojhg4cCDOnDlTa1xLlnp9p5pgNtUQERG1eJIVkU5OThg0aBD27t1rGjMYDNi7d6/ZDN/NQkNDzeIBYPfu3ab4wMBA+Pj4mMUUFhYiISHBFBMaGgqNRoPExERTzL59+2AwGBASEmJ27szMTOzfv7/arWxL9Ho9UlNT4evrW2dsS5XCmUgiIqJWQ9Lb2VFRUZgxYwYGDx6MIUOGYMWKFSgpKcHMmTMBANOnT0enTp0QHR0NAHjuuecwYsQIvPfeexgzZgy+/vprHD16FGvWrAEAyGQyzJ8/H2+++Sa6d++OwMBALFy4EH5+foiIiAAA9O7dG6NGjcLs2bOxevVqVFRUYN68eZgyZQr8/PzM8lu7di18fX0xevToarm//vrruOeee9CtWzdoNBosX74cWVlZmDVrlimmoKAA58+fx8WLFwEAJ0+eBFA1G1rTbGtzVVJWiT8vVTXVcCaSiIio5ZO0iHz88cdx6dIlLFq0CGq1GgMGDMCuXbtMt47Pnz8PufzGZOnQoUPx1Vdf4bXXXsOrr76K7t27Y8uWLQgODjbFvPTSSygpKcGcOXOg0WgwbNgw7Nq1y2wh8A0bNmDevHkYOXIk5HI5Jk6ciJUrV5rlZjAYsG7dOjz11FNQKBTVcr969Spmz54NtVqNdu3aYdCgQTh06BCCgoJMMdu2bTMVxAAwZcoUAMDixYuxZMmS2/vwmpj0i4UQAvBxV8LLjU01RERELZ1MCCGkToJqVlhYCJVKBa1WC3d3d6nTqdFnBzPxRmwGwnp7I2bG4LrfQERERE2StbWH5NseUstg3O6Qz0MSERG1DiwiyS6My/twkXEiIqLWgUUk3bbiskqcvVwCgHtmExERtRYsIum2pedoIQTgp1KiQ9vmuVA6ERER2YZFJN02461sLu1DRETUerCIpNvG7Q6JiIhaHxaRdNu43SEREVHrwyKSbkuRroJNNURERK0Qi0i6LWk5hQCATh4uaM+mGiIiolaDRSTdljTj+pCchSQiImpVWETSbUnhIuNEREStEotIui2ciSQiImqdWERSvWmvVSCTTTVEREStEotIqrf067OQndu5oJ2rk8TZEBERUWNiEUn1lspb2URERK0Wi0iqNzbVEBERtV4sIqnejE01/Tp5SJsIERERNToWkVQv2tIKZF0pBQAEd3KXOBsiIiJqbCwiqV7SLlbNQt7h2QYebdhUQ0RE1NqwiKR6SclmUw0REVFrxiKS6iWNTTVEREStGotIqpeUHA0AzkQSERG1ViwiyWaa0nJcKLgGAAj2YxFJRETUGrGIJJsZFxkPaN8GqjaOEmdDREREUmARSTbjTjVERETEIpJslsrObCIiolaPRSTZLJWd2URERK0ei0iySUFJObKvXm+q4UwkERFRq8UikmxinIUM7OAKdyWbaoiIiForFpFkE+Mi45yFJCIiat1YRJJNUrI1AIB+LCKJiIhaNRaRZJO0nEIAbKohIiJq7VhEktWuFJchR1PVVNPHz13ibIiIiEhKLCLJasammq4dXeHGphoiIqJWjUUkWY2LjBMREZERi0iyGrc7JCIiIiMWkWQ1FpFERERkxCKSrHKpqAy5Wh1kMqAPi0giIqJWj0UkWcW4yHjXDq5o6+wgcTZEREQkNRaRZBXjrex+nT2kTYSIiIiaBBaRZJWUbG53SERERDewiCSrpJlmIllEEhEREYtIskJ+oQ7qwqqmmiBf7lRDRERELCLJCsbnIbt1bAtXNtUQERERWESSFbg+JBEREd2KRSTVybTdIZ+HJCIioutYRFKdOBNJREREt2IRSbXKK9Qhv6gMchkQ5MemGiIiIqrCIpJqZbyV3d3LDW2c2FRDREREVZpEEfnRRx+hS5cuUCqVCAkJweHDh2uN//bbb9GrVy8olUr07dsXO3bsMDsuhMCiRYvg6+sLFxcXhIWF4fTp02YxBQUFmDZtGtzd3eHh4YHIyEgUFxebji9ZsgQymazay9XV1RSzbt26aseVSqXNuTRlKTlcZJyIiIiqk7yI3LRpE6KiorB48WIkJSWhf//+CA8PR35+vsX4Q4cOYerUqYiMjMSxY8cQERGBiIgIpKWlmWKWLVuGlStXYvXq1UhISICrqyvCw8Oh0+lMMdOmTUN6ejp2796N2NhYxMXFYc6cOabjL7zwAnJzc81eQUFBmDRpklk+7u7uZjFZWVlmx63JpSnjIuNERERkkZDYkCFDxNy5c01f6/V64efnJ6Kjoy3GT548WYwZM8ZsLCQkRDz99NNCCCEMBoPw8fERy5cvNx3XaDTC2dlZbNy4UQghREZGhgAgjhw5YorZuXOnkMlkIicnx+J1k5OTBQARFxdnGvv888+FSqWq8XuzJpdb6XQ6odVqTa8LFy4IAEKr1dZ4nYZiMBjEoDd2i4CXY8XRcwWNfn0iIiJqfFqt1qraQ9KZyPLyciQmJiIsLMw0JpfLERYWhvj4eIvviY+PN4sHgPDwcFN8ZmYm1Gq1WYxKpUJISIgpJj4+Hh4eHhg8eLApJiwsDHK5HAkJCRavGxMTgx49emD48OFm48XFxQgICIC/vz8mTJiA9PR00zFrcrlVdHQ0VCqV6eXv728xrjHkFZbhcnEZFHIZd6ohIiIiM5IWkZcvX4Zer4e3t7fZuLe3N9RqtcX3qNXqWuONP9YV4+XlZXbcwcEBnp6eFq+r0+mwYcMGREZGmo337NkTa9euxdatW7F+/XoYDAYMHToU2dnZVudyqwULFkCr1ZpeFy5csBjXGFKyNQCA7l5t4eKkkCwPIiIianrYbmuFH374AUVFRZgxY4bZeGhoKEJDQ01fDx06FL1798Ynn3yCN954o17XcnZ2hrOz823lay9pXB+SiIiIaiDpTGSHDh2gUCiQl5dnNp6XlwcfHx+L7/Hx8ak13vhjXTG3Nu5UVlaioKDA4nVjYmIwduzYajOKt3J0dMTAgQNx5swZq3Npyoyd2dyphoiIiG4laRHp5OSEQYMGYe/evaYxg8GAvXv3ms3w3Sw0NNQsHgB2795tig8MDISPj49ZTGFhIRISEkwxoaGh0Gg0SExMNMXs27cPBoMBISEhZufOzMzE/v37q93KtkSv1yM1NRW+vr5W59JUCSE4E0lEREQ1kvx2dlRUFGbMmIHBgwdjyJAhWLFiBUpKSjBz5kwAwPTp09GpUydER0cDAJ577jmMGDEC7733HsaMGYOvv/4aR48exZo1awAAMpkM8+fPx5tvvonu3bsjMDAQCxcuhJ+fHyIiIgAAvXv3xqhRozB79mysXr0aFRUVmDdvHqZMmQI/Pz+z/NauXQtfX1+MHj26Wu6vv/467rnnHnTr1g0ajQbLly9HVlYWZs2aZXUuTVWuVofLxeVQyGXozaYaIiIiuoXkReTjjz+OS5cuYdGiRVCr1RgwYAB27dplunV8/vx5yOU3JkyHDh2Kr776Cq+99hpeffVVdO/eHVu2bEFwcLAp5qWXXkJJSQnmzJkDjUaDYcOGYdeuXWYLgW/YsAHz5s3DyJEjIZfLMXHiRKxcudIsN4PBgHXr1uGpp56CQlG9seTq1auYPXs21Go12rVrh0GDBuHQoUMICgqyKZemyLhfdg9vNygd2VRDRERE5mRCCCF1ElSzwsJCqFQqaLVauLs33ozguz+dxIf7z2Dy4M5Y9pf+jXZdIiIikpa1tYfkO9ZQ03SjqcZD2kSIiIioSWIRSdWwqYaIiIjqwiKSqsnRXENBSTkc5DL08nGTOh0iIiJqglhEUjXGWciePmyqISIiIstYRFI1Kdm8lU1ERES1YxFJ1aRypxoiIiKqA4tIMiOEuFFEciaSiIiIasAiksxkX70GTWkFHBUy9GRTDREREdWARSSZSb2pqcbZgU01REREZBmLSDJz41a2h7SJEBERUZPGIpLMpLIzm4iIiKzAIpJMbm6q6cfObCIiIqoFi0gyuVBwDdprFXBSyNHDm001REREVDMWkWRinIXs5esGJwf+1iAiIqKasVIgk5QcDQAgmM9DEhERUR1YRJKJsammH4tIIiIiqgOLSAJg3lTDmUgiIiKqC4tIAgBkXSlFka4STg5sqiEiIqK6sYgkADeaanr7urOphoiIiOrEaoEA3LxTjbvEmRAREVFzwCKSANzcVOMhbSJERETULLCIJBgMAmlsqiEiIiIbsIgkZBWUoqisEs4OcnT3bit1OkRERNQMsIgkpGRrAFQ11Tgq+FuCiIiI6saKoZXTGwR+TlcDALzcnKE3CIkzIiIiouaARWQrtistF8Pe2YcfU6uKyJ8z8jDsnX3YlZYrcWZERETU1LGIbKV2peXimfVJyNXqzMbVWh2eWZ/EQpKIiIhqxSKyFdIbBJZuz4ClG9fGsaXbM3hrm4iIiGrEIrIVOpxZUG0G8mYCQK5Wh8OZBY2XFBERETUrLCJbofyimgvI+sQRERFR68MishXyclPaNY6IiIhaHxaRrdCQQE/4qpSQ1XBcBsBXpcSQQM/GTIuIiIiaERaRrZBCLsPicUEAUK2QNH69eFwQFPKaykwiIiJq7VhEtlKjgn3x8RN3wUdlfsvaR6XEx0/chVHBvhJlRkRERM2Bg9QJkHRGBfvioSAfHM4sQH6RDl5uVbewOQNJREREdWER2cop5DKE3tle6jSIiIiomeHtbCIiIiKyGYtIIiIiIrIZi0giIiIishmLSCIiIiKyGYtIIiIiIrIZi0giIiIishmLSCIiIiKyGYtIIiIiIrIZi0giIiIishmLSCIiIiKyGYtIIiIiIrIZi0giIiIishmLSCIiIiKymeRF5EcffYQuXbpAqVQiJCQEhw8frjX+22+/Ra9evaBUKtG3b1/s2LHD7LgQAosWLYKvry9cXFwQFhaG06dPm8UUFBRg2rRpcHd3h4eHByIjI1FcXGw6vmTJEshksmovV1dXizl9/fXXkMlkiIiIMBvPy8vDU089BT8/P7Rp0wajRo2qlgsRERFRcyRpEblp0yZERUVh8eLFSEpKQv/+/REeHo78/HyL8YcOHcLUqVMRGRmJY8eOISIiAhEREUhLSzPFLFu2DCtXrsTq1auRkJAAV1dXhIeHQ6fTmWKmTZuG9PR07N69G7GxsYiLi8OcOXNMx1944QXk5uaavYKCgjBp0qRqOZ07dw4vvPAChg8fbjYuhEBERATOnj2LrVu34tixYwgICEBYWBhKSkpu96MjIiIikpaQ0JAhQ8TcuXNNX+v1euHn5yeio6Mtxk+ePFmMGTPGbCwkJEQ8/fTTQgghDAaD8PHxEcuXLzcd12g0wtnZWWzcuFEIIURGRoYAII4cOWKK2blzp5DJZCInJ8fidZOTkwUAERcXZzZeWVkphg4dKmJiYsSMGTPEhAkTTMdOnjwpAIi0tDSz769jx47i008/rfEz0el0QqvVml4XLlwQAIRWq63xPURERET2otVqrao9HKQqXsvLy5GYmIgFCxaYxuRyOcLCwhAfH2/xPfHx8YiKijIbCw8Px5YtWwAAmZmZUKvVCAsLMx1XqVQICQlBfHw8pkyZgvj4eHh4eGDw4MGmmLCwMMjlciQkJODRRx+tdt2YmBj06NGj2mzj66+/Di8vL0RGRuLAgQNmx8rKygAASqXS7PtzdnbGwYMHMWvWLIvfY3R0NJYuXVptvLCw0GI8ERERkT0Zaw4hRK1xkhWRly9fhl6vh7e3t9m4t7c3Tpw4YfE9arXaYrxarTYdN47VFuPl5WV23MHBAZ6enqaYm+l0OmzYsAGvvPKK2fjBgwfx2WefITk52WKuvXr1wh133IEFCxbgk08+gaurK95//31kZ2cjNzfX4nsAYMGCBWaFck5ODoKCguDv71/je4iIiIjsraioCCqVqsbjkhWRzcUPP/yAoqIizJgxwzRWVFSEJ598Ep9++ik6dOhg8X2Ojo7YvHkzIiMj4enpCYVCgbCwMIwePbrWyt7Z2RnOzs6mr9u2bYsLFy7Azc0NMpkMd999N44cOVLtfbaM3zpWWFgIf39/XLhwAe7u7jV/GHZWU84NfR5r42uLq8+xun4tpPp1qCm3xjiHNe+pK8bWX4um/Geipvwa+hz2+DNR23H+/cS/n24H/35q/D8TQggUFRXBz8+v1jjJisgOHTpAoVAgLy/PbDwvLw8+Pj4W3+Pj41NrvPHHvLw8+Pr6msUMGDDAFHNr405lZSUKCgosXjcmJgZjx441m938888/ce7cOYwbN840ZjAYAFTNap48eRJ33nknBg0ahOTkZGi1WpSXl6Njx44ICQkxu5VeF7lcjs6dO5u+VigUFn/T2DJeU6y7u3uj/uVQUx4NfR5r42uLq88xa38tGvvXoaY8GuMc1rynrhhbfy2a8p+J2nJpyHPY489Ebcf59xP/frod/PtJmj8Ttc1AGknWne3k5IRBgwZh7969pjGDwYC9e/ciNDTU4ntCQ0PN4gFg9+7dpvjAwED4+PiYxRQWFiIhIcEUExoaCo1Gg8TERFPMvn37YDAYEBISYnbuzMxM7N+/H5GRkWbjvXr1QmpqKpKTk02v8ePH44EHHkBycnK1W88qlQodO3bE6dOncfToUUyYMMHaj6mauXPn3vZ4TbGNzV552Hoea+Nri6vPsZb+a1Gfc1jznrpibP21aMq/DoA0vxb2+DNR2/HW+meiPufh30/V8e+npvHrYFFjdPnU5OuvvxbOzs5i3bp1IiMjQ8yZM0d4eHgItVothBDiySefFK+88oop/rfffhMODg7i3XffFcePHxeLFy8Wjo6OIjU11RTz9ttvCw8PD7F161aRkpIiJvx/e3caE9X9dwH8ACoWRxSBsCpLWRQRUBSroVaWSCnon6WVGiJCUEwp1UiAUEXRvgBpbWI1pClirTYYtlQspSKpYAhL2VrGWCuLRbCUpYViYLQa4D4vjPOEKsJYZmHmfJJ5MXfu/DjMyZBv7p3L/O9/go2NjfDw4UPpPm+++aawevVqoa6uTqiqqhLs7e2FHTt2PJMvJSVFMDc3F0ZHR6f8Xf59dbYgCEJ+fr5QUVEh3LlzRygqKhKsrKyEkJAQWV8muZvuVVgkX+xBdbAL1cEuVAN7UB2q1IVSPxMZFhaGP//8E0eOHEFvby/c3NxQWloqPXXc1dUFbe3/P1i6ceNGXLx4ESkpKTh48CDs7e1RVFQEZ2dn6T5JSUmQSCSIiYnB0NAQPD09UVpaOuEq6ZycHMTFxcHHxwfa2toIDQ3FqVOnJmQbHx/HV199hcjISOjo6LzU79fT04P4+Hjp6fWIiAgcPnz4pdaSJ11dXaSmpk74LCYpHntQHexCdbAL1cAeVIcqdaElCFNcv01ERERE9C9K/9pDIiIiIpp9OEQSERERkcw4RBIRERGRzDhEEhEREZHMOEQSERERkcw4RNILfffdd3B0dIS9vT2ys7OVHUejBQcHw8DAAG+//bayo2ise/fuYfPmzXBycoKLiwsKCgqUHUljDQ0NYe3atXBzc4OzszPOnDmj7Ega78GDB7CyskJCQoKyo2gsa2truLi4wM3NDV5eXnL/efwXPzSp0dFRODk5oaKiAosWLYK7uztqampgaGio7Gga6fr16xgeHsb58+dRWFio7DgaqaenR/o1qr29vXB3d0draysWLFig7GgaZ2xsDI8ePYKenh4kEgmcnZ3R2NjIv09KdOjQIbS3t2Pp0qU4ceKEsuNoJGtra9y8eRMikUghP49HImlS9fX1WLlyJSwsLCASieDv74+ysjJlx9JYmzdvxsKFC5UdQ6OZmZnBzc0NAGBqagojIyMMDg4qN5SG0tHRgZ6eHgDg0aNHEAQBPCaiPG1tbbh9+zb8/f2VHYUUiEOkGqusrMTWrVthbm4OLS0tFBUVPbNPZmYmrK2tMX/+fKxfvx719fXSx/744w9YWFhI71tYWKC7u1sR0dXOf+2CZsZM9tDU1ISxsTEsXbpUzqnV00x0MTQ0BFdXV1haWiIxMRFGRkYKSq9eZqKLhIQEpKenKyixepqJHrS0tPDGG29g3bp1yMnJkXtmDpFqTCKRwNXVFZmZmc99PC8vD/Hx8UhNTcVPP/0EV1dX+Pn5ob+/X8FJ1R+7UA0z1cPg4CAiIiKQlZWliNhqaSa6WLx4McRiMTo6OnDx4kX09fUpKr5a+a9dXL58GQ4ODnBwcFBkbLUzE++JqqoqNDU14dtvv0VaWhpu3Lgh39DK/OJuUhwAwqVLlyZs8/DwEN5//33p/bGxMcHc3FxIT08XBEEQqqurhaCgIOnj+/fvF3JychSSV529TBdPVVRUCKGhoYqIqfZetod//vlHeP3114ULFy4oKqra+y/viafee+89oaCgQJ4xNcLLdJGcnCxYWloKVlZWgqGhoaCvry8cO3ZMkbHVzky8JxISEoRz587JMaUg8Eikhnr8+DGamprg6+sr3aatrQ1fX1/U1tYCADw8PHDz5k10d3djZGQEV65cgZ+fn7Iiq63pdEHyN50eBEFAZGQkvL29sXPnTmVFVXvT6aKvrw/Dw8MAgPv376OyshKOjo5KyavOptNFeno67t27h7t37+LEiRPYs2cPjhw5oqzIamk6PUgkEul7YmRkBOXl5Vi5cqVcc82R6+qksv766y+MjY3BxMRkwnYTExPcvn0bADBnzhx8+umn8PLywvj4OJKSknjloxxMpwsA8PX1hVgshkQigaWlJQoKCrBhwwZFx1Vb0+mhuroaeXl5cHFxkX5e6euvv8aqVasUHVetTaeLzs5OxMTESC+o+eCDD9iDHEz37xPJ13R66OvrQ3BwMIAn/71gz549WLdunVxzcYikF9q2bRu2bdum7BgE4IcfflB2BI3n6emJ8fFxZccgPDlT0tzcrOwY9C+RkZHKjqCxbG1tIRaLFfozeTpbQxkZGUFHR+eZD6L39fXB1NRUSak0E7tQDexBdbAL1cEuVIOq9sAhUkPNmzcP7u7uuHbtmnTb+Pg4rl27xlOkCsYuVAN7UB3sQnWwC9Wgqj3wdLYaGxkZQXt7u/R+R0cHmpubsWTJEixbtgzx8fHYtWsX1q5dCw8PD5w8eRISiQRRUVFKTK2e2IVqYA+qg12oDnahGmZlD3K99puUqqKiQgDwzG3Xrl3SfU6fPi0sW7ZMmDdvnuDh4SH8+OOPygusxtiFamAPqoNdqA52oRpmYw/87mwiIiIikhk/E0lEREREMuMQSUREREQy4xBJRERERDLjEElEREREMuMQSUREREQy4xBJRERERDLjEElEREREMuMQSUREREQy4xBJRERERDLjEElEpGYiIyMRFBQ0o2taW1vj5MmTM7omEc1uHCKJiGZIZGQktLS0cPz48Qnbi4qKoKWlNeXzf/75Z4SFhcHMzAy6urqwsrJCYGAgiouLoexvqG1oaEBMTIxSMxCRauEQSUQ0g+bPn4+MjAz8/fffMj3v8uXLeO211zAyMoLz58/j119/RWlpKYKDg5GSkoL79+/LKfH0GBsbQ09PT6kZiEi1cIgkIppBvr6+MDU1RXp6+rSfI5FIEB0djYCAAJSUlGDLli2wtbXFihUrEB0dDbFYjEWLFgEAxsbGEB0dDRsbG7zyyitwdHTEZ5999sL1S0tL4enpicWLF8PQ0BCBgYG4c+eO9PELFy5AJBKhra1Nui02NhbLly/HgwcPADx7OntoaAi7d++GsbEx9PX14e3tDbFYLH1cLBbDy8sLCxcuhL6+Ptzd3dHY2Djt14SIVB+HSCKiGaSjo4O0tDScPn0av//++7SeU1ZWhoGBASQlJU26z9PT4ePj47C0tERBQQFu3bqFI0eO4ODBg8jPz5/0uRKJBPHx8WhsbMS1a9egra2N4OBgjI+PAwAiIiLw1ltvITw8HKOjoygpKUF2djZycnImPfr4zjvvoL+/H1euXEFTUxPWrFkDHx8fDA4OAgDCw8NhaWmJhoYGNDU1ITk5GXPnzp3W60FEs8McZQcgIlI3wcHBcHNzQ2pqKs6ePTvl/q2trQAAR0dH6baGhgZ4eXlJ7+fm5iIwMBBz587FsWPHpNttbGxQW1uL/Px8bN++/bnrh4aGTrj/5ZdfwtjYGLdu3YKzszMA4IsvvoCLiwv27duHb775BkePHoW7u/tz16uqqkJ9fT36+/uhq6sLADhx4gSKiopQWFiImJgYdHV1ITExEcuXLwcA2NvbT/k6ENHswiORRERykJGRIf1s48twcXFBc3MzmpubIZFIMDo6Kn0sMzMT7u7uMDY2hkgkQlZWFrq6uiZdq62tDTt27ICtrS309fVhbW0NABOeY2BggLNnz+Lzzz/Hq6++iuTk5EnXE4vFGBkZgaGhIUQikfTW0dEhPU0eHx+P3bt3w9fXF8ePH59w+pyI1AOHSCIiOdi0aRP8/Pzw4YcfTrnv06N0LS0t0m26urqws7ODnZ3dhH1zc3ORkJCA6OholJWVobm5GVFRUXj8+PGk62/duhWDg4M4c+YM6urqUFdXBwDPPKeyshI6Ojro6emBRCKZdL2RkRGYmZlJh9ynt5aWFiQmJgIAjh49il9++QUBAQEoLy+Hk5MTLl26NOVrQUSzB4dIIiI5OX78OIqLi1FbW/vC/bZs2YIlS5YgIyNjyjWrq6uxceNGxMbGYvXq1bCzs3vhUb6BgQG0tLQgJSUFPj4+WLFixXOvHK+pqUFGRgaKi4shEokQFxc36Zpr1qxBb28v5syZIx10n96MjIyk+zk4OODAgQMoKytDSEgIzp07N+XvR0SzB4dIIiI5WbVqFcLDw3Hq1KkX7icSiZCdnY2SkhIEBATg6tWr+O2333Djxg18/PHHAJ5csAM8OWrZ2NiIq1evorW1FYcPH0ZDQ8OkaxsYGMDQ0BBZWVlob29HeXk54uPjJ+wzPDyMnTt3Yt++ffD390dOTg7y8vJQWFj43DV9fX2xYcMGBAUFoaysDHfv3kVNTQ0OHTqExsZGPHz4EHFxcbh+/To6OztRXV2NhoYGrFixQpaXj4hUHIdIIiI5+uijj6RXQb9IcHAwampqoKenh4iICDg6OsLb2xvl5eXSi2oAYO/evQgJCUFYWBjWr1+PgYEBxMbGTrqutrY2cnNz0dTUBGdnZxw4cACffPLJhH3279+PBQsWIC0tDcCT4TctLQ179+5Fd3f3M2tqaWnh+++/x6ZNmxAVFQUHBwe8++676OzshImJCXR0dDAwMICIiAg4ODhg+/bt8Pf3n3BBEBHNflqCsr8GgYiIiIhmHR6JJCIiIiKZcYgkIiIiIplxiCQiIiIimXGIJCIiIiKZcYgkIiIiIplxiCQiIiIimXGIJCIiIiKZcYgkIiIiIplxiCQiIiIimXGIJCIiIiKZcYgkIiIiIpn9H2lRHCRJNgs3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "grad_likelihood(true_g, e_post)" + "plt.figure(figsize=(7,7))\n", + "stds = [jnp.sqrt(cov[0][0]) for cov in covs]\n", + "\n", + "std1 = jnp.array(stds)\n", + "std2 = sigma_e / jnp.sqrt(jnp.array(n_galaxies))\n", + "res = jnp.abs((std1 - std2) / std2)\n", + "\n", + "plt.plot(n_galaxies, res, '-o', label='$(\\sqrt{(F^{-1})_{00}}, \\sigma_{e} / \\sqrt{N})$')\n", + "plt.xscale('log')\n", + "\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"N Galaxies\")\n", + "plt.ylabel(\"Absolute fractional difference\")" ] }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 87, + "id": "e35ecc39-bfdd-4570-b78b-df239aaec982", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# likelihood_fnc = jjit(partial(shear_loglikelihood, prior=prior, interim_prior=interim_prior)) \n", + "grad_likelihood = lambda g, e: grad(likelihood_fnc)(g, e_post=e)" + ] + }, + { + "cell_type": "code", + "execution_count": 88, "id": "e509ad09-1110-474e-ad8a-a5959cb03310", "metadata": { "tags": [] @@ -640,7 +629,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 6/6 [00:34<00:00, 5.81s/it]\n" + "100%|██████████| 6/6 [00:40<00:00, 6.70s/it]\n" ] } ], @@ -671,7 +660,7 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 89, "id": "e50eab33-bfe0-4542-9bb5-9a0284f06200", "metadata": { "tags": [] @@ -683,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 97, "id": "566fea49-bfec-4f48-96cf-8eca46ccc0f3", "metadata": { "tags": [] @@ -691,7 +680,17 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABS7klEQVR4nO3deXhU5d3/8ffMZAcSCIFAIAsiqAFJNCQBlNUoooIbaq1LQAX1h7YWtYVulD6t1mqpVVJBXMC1CCoirhiBIKAgGJRNQFnClrBlJ9vM/P44EAghkMBkziyf13XN5XNmzsx8cx5KPpz7/t63xel0OhERERHxElazCxARERFpCoUXERER8SoKLyIiIuJVFF5ERETEqyi8iIiIiFdReBERERGvovAiIiIiXiXA7AJczeFwsGfPHlq1aoXFYjG7HBEREWkEp9NJSUkJMTExWK2nv7fic+Flz549xMbGml2GiIiInIW8vDw6d+582nN8Lry0atUKMH748PBwk6sRERGRxiguLiY2Nrb29/jp+Fx4OTZUFB4ervAiIiLiZRoz5UMTdkVERMSrKLyIiIiIV1F4EREREa+i8CIiIiJeReFFREREvIrCi4iIiHgVhRcRERHxKgovIiIi4lUUXkRERMSreFx4KSwspHfv3iQnJ9OzZ09mzJhhdkkGhx22LYUf5hr/ddjNrkhERMQvedz2AK1atSInJ4ewsDDKysro2bMnN910E23btjWvqA3z4dPfQfGe48+Fx8DVT0HiCPPqEhER8UMed+fFZrMRFhYGQGVlJU6nE6fTaV5BG+bDO3fXDS4AxXuN5zfMN6cuERERP9Xk8JKTk8Pw4cOJiYnBYrEwb968eudkZWWRkJBASEgI6enprFy5sknfUVhYSFJSEp07d+bxxx8nKiqqqWW6hsNu3HHhVOHp6HOfTtAQkoiIiBs1ObyUlZWRlJREVlbWKV+fPXs248ePZ9KkSaxZs4akpCSGDh1KQUFB7TnH5rOc/Nizx7i70bp1a9auXcu2bdt46623yM/Pb7CeyspKiouL6zxcZsfy+ndc6nBC8W7jPBEREXGLJs95GTZsGMOGDWvw9SlTpjBmzBhGjx4NwLRp0/joo4945ZVXmDBhAgC5ubmN+q7o6GiSkpJYunQpI0eOPOU5Tz75JJMnT27aD9FYpQ2HprM6T0RERM6ZS+e8VFVVsXr1ajIyMo5/gdVKRkYGK1asaNRn5OfnU1JSAkBRURE5OTlccMEFDZ4/ceJEioqKah95eXnn9kOcwN6ivUvPExERkXPn0m6jAwcOYLfbiY6OrvN8dHQ0mzZtatRn7Nixg7Fjx9ZO1H344Ye5+OKLGzw/ODiY4ODgc6q7ISvtFxLvjKQDh7BaTn1OtdPKhoNOks5rlhJERETkJB7XKp2WltboYaUTZWVlkZWVhd3uusmzBWXVzKy+mxcCn8XhpE6AcTjBAgRaHPT8ZCRYnoKU0WBpIOWIiIiIS7h02CgqKgqbzVZvgm1+fj4dOnRw5VfVM27cODZs2MCqVatc9pntW4XwmSONB6sfYR+RdV7bR1seq76fbPsl2BxVsOA3MPceqHDhhGERERGpx6V3XoKCgkhJSSE7O5sbbrgBAIfDQXZ2Ng899JArv8ot0rpE0jEihM+L0lhY2Zs06ybaU0gBrVnpuBAHVt5z9Oc+x8f8LnA2Aevfw7k3F8vIVyEm2ezyRUREfFKT77yUlpaSm5tbO7Szbds2cnNz2blzJwDjx49nxowZzJo1i40bN/Lggw9SVlZW233UXLKyskhMTCQ1NdVln2mzWpg0PBEAJ1a+diQy39GPrx2JOLFiAa7uGcObtuu5pfLP7HJGYTn0M46XroRvXgQzF9cTERHxURZnE5evXbx4MYMHD673fGZmJjNnzgRg6tSpPP300+zbt4/k5GSee+450tPTXVLwmRQXFxMREUFRURHh4eEu+cxP1+1l8ocb2FtUUftcx4gQJg1P5OqeHTlYWsn0nJ+Zt3wdf7O8wFW21QAcir+ayF9Mh9DWLqlDRETEVzXl93eTw4una47wAmB3OFm57RAFJRW0bxVCWpdIbCe1IBUUV/DfRVsJ+HY6v7W+SZDFzn5bBw5fO53ulw5yWS0iIiK+RuGlGcJLU+wuPMK8BR8yfMsfiLMUUOW08X7bsVx880QSO0WYUpOIiIgna8rvb4/bmPFsNcecl7PVqXUo4+68Fcv9S1nbahBBFju3HXqB3dNu5PHXFrO1oMTsEkVERLyW7rw0N6eTgkVZtFn6FwKd1ex2tuVX1Q8TlzSYX1/RjYSoFmZXKCIiYjq/vPPisSwW2g95iMCx2VSFJ9DJcpDZgX+l/ffTyJiyiN/N/Z5dh8vNrlJERMRr6M6LO1WWwIePwLq5ACyyJzG++kFKbRH8IjWOh4acT3R4iLk1ioiImEATdj01vICx9suaWfDJ76CmgkO2KO4v/3+scl5IcICVO/vE8+CgrkS1bJ79mkRERDyRXw4bedKE3dOyWCBlFNyXDW27EWk/wDshf+PJqE+pqqnh5a+20f+pRTz16SYKy6vMrlZERMTj6M6LmSpL4aNH4fv/AXC4w2X8uupBcvYYmbJVcAD3XN6Fe/t3ITwk0MxKRUREmpWGjbwlvBzz3Zvw8WNQXY6zZTRrUv7JH79vy8a9xiaPEaGBjB1wHqP6JdAi2OM2AhcRETlnCi/eFl4ACjbBnFGwfyNgwTngt3wSdTdTvviJrQWlALRtEcSDg7pyZ594QgJtppYrIiLiSgov3hheAKrK4ZPfwnevG8cJ/bHfOIMPf3bw7Beb2X7QaKlu3yqYh4acz22psQQHKMSIiIj388vwkpWVRVZWFna7nc2bN3tneDnm+3eMlurqMmjRDm56kZqEQby3Zjf/yd7C7sIjgLGS78NDzufmlM4E2nxm7rWIiPghvwwvx3j1nZcTHdhiDCPlrwMs0P9RGDSRKqeV2d/mMfXLLeQXVwIQFxnGIxnduD65U73NIkVERLyBwosvhBeA6iPw2e/h21eM47h+cPNLENGJimo7b36zkxcWb+VAqdFS3bVdCx7J6M61F3fEqhAjIiJeROHFV8LLMevehfm/hqoSCI2EG6dD96sAKK+qYdbyHUzP+YnC8moALuzQivFXdufKxGgsFoUYERHxfAovvhZeAA7+BHNHw961xnG/X8EVfwabsf5LSUU1r3y1nZeW/kxJZQ0AvTpH8JsruzOoezuFGBER8WgKL74YXgBqKuHzP8HK6cZx5zQY+Qq0jq09pbC8ihlLf+bVZdspr7IDkBLfhkev6k6/rlFmVC0iInJGCi++Gl6O2TAfPngIKosgpDXc8AJceE2dUw6WVjJtyU+8tmIHlTUOAPqe15ZHr+pO74RIE4oWERFpmF+GF59qlW6Mw9thzmjYs8Y47vP/IGMyBATVOa2guIKsRVt5e2UeVXYjxAzs3o5Hr+pOr86t3VuziIhIA/wyvBzjF3dejqmpguzJsGKqcRxzKdzyKrRJqHfq7sIjTP1yC3O+3UWNw/h/+ZWJ0Yy/sjsXdfTx6yQiIh5P4cVfwssxP34C7z8AFYUQHAHXT4XEEac8dcfBMv6TvYV53+3maIbh2l4d+U1GN85v38p9NYuIiJxA4cXfwgtAYR7MvQd2rTSO08bClf8HgSGnPH1rQSnPfrGZBd/vBcBqgRuSO/HrjG7Et23hrqpFREQAhRf/DC8A9mr48v9g2X+M4w694JaZ0LZrg2/ZtK+Yfy/czGfr8wGwWS3cktKZh4acT+c2YW4oWkREROHFf8PLMVsWwvv3Q/lBCGoFI/4DPW8+7Vt+2FXElIU/sujH/QAE2izcnhbHuMHnEx1+6rs3IiIirqLw4u/hBaB4D8y9F3YuN45TRsHV/4DA0NO+bfWOw0xZ+CPLth4EIDjAyl194nlgUFeiWgY3c9EiIuKvFF4UXgz2GljyD8h5BnBCdE9jGCmq2xnfuuKng0xZ+COrth8GICzIxqh+CYwdcB6tw4LO8G4REZGm8cvw4nfrvDTFT1/Ce2OhbD8EtoDr/g1Jt53xbU6nk5wtB5jy+Y+s3VUEQKvgAO65vAv39u9CeEhgc1cuIiJ+wi/DyzG689KAkn3w7n2wfalxnHwnXPM0BJ15Uq7T6eSLjQVMWbiZjXuLAYgIDeT+geeR2TeBFsEBzVm5iIj4AYUXhZdTc9iNIaQl/wCnA9pdaAwjtb+ocW93OPlk3T7+/cVmthaUAtC2RRAPDurKnX3iCQm0NWPxIiLiyxReFF5Ob9tSePdeKM2HgFC49hlIvgMaufO03eFk/trd/OeLLWw/WA5A+1bBPDTkfG5LjSU4QCFGRESaRuFF4eXMSvfD+2ON+TAAvX4B1/4Lgls2+iNq7A7eW7Ob/2RvYXfhEQA6tQ7l4SHnc3NKZwJt1uaoXEREfJDCi8JL4zgc8NUUWPR3YxipbTdjGKlDzyZ9TGWNnXdW5TF10VbyiysBiG8bxq+v6Mb1yZ2wWRt3R0dERPyXwovCS9PsWG6sCVOyBwJCjPVgUkY1ehjpmIpqO29+s5MXFm/lQGkVAOe3b8kjGd24pmdHrAoxIiLSAIUXhZemKzsI8x6ALZ8bxz1vhuuehZCmX8PyqhpmLd/BtCU/UXSkGoALO7Ri/JXduTIxGksTQ5GIiPg+hReFl7PjcMCK5yH7r+CogcjzjGGkjkln9XHFFdW88tU2Xl66jZLKGgB6dY5g/JXdGdi9nUKMiIjUUnhReDk3eSuNHaqL8sAWBEOfgNT7mjyMdExheRUzlv7Mq8u2U15lB6B3fBvGX9Wdfl2j6pxrdzhZue0QBSUVtG8VQlqXSM2ZERHxAwovCi/nrvwQfDAOfvzYOL5oBIx4HkJbn/VHHiitZPqSn3htxQ4qaxwA9Ovalkev6k5KfCSfrtvL5A83sLeoovY9HSNCmDQ8kat7djyXn0ZERDycwovCi2s4nfD1C7Dwz+CohtbxcMur0CnlnD42v7iC/y7aylsrd1JtN/749YgJZ/2e4nrnHrvn8sKdlyrAiIj4sKb8/vaZhTiysrJITEwkNTXV7FJ8h8UCff8f3PuZEVwKd8DLQ2HFf41gc5aiw0OYfH1PFj8+mNvTYrFaOGVwATj2LZM/3IDd4VM5W0REzpLuvEjjHCmE+Q/DxvnG8QXXwPVZEBZ5zh8977tdPDJ77RnPe3tMH/p2bXvO3yciIp7HL++8SDMLbQ23vgbXPGNM4v3xY5g+wJjce44a23VUUFJx5pNERMTnKbxI41kskDYG7vvCaKMuyoNXh8Gy/xht1mepfauQRp33+fp97Dy6l5KIiPgvhRdpuo5JMHaJsZCdo8aY0Pv2bcZCd2chrUskHSNCONP9l49+2MfAZxZx36xV5Gzej4+NeIqISCMpvMjZCQmHm182VuENCDFW5p12ubHVQBPZrBYmDU8EqBdgLEcf4wZ3ZUD3djid8MXGAu5+ZSVXTFnCrOXbKT26AJ6IiPgHTdiVc7dvHcwZBQe3gMUGg38Pl48Ha9OycWPWeflpfymvr9jB3NW7akNLy+AARqZ05q6+8XRt1/hdsUVExHNonReFF/erLIWPHoXv/2ccnzcYbpoBLds16WMau8JuaWUN763Zxazl2/lpf1nt8/27RTGqXwKDLmivlXlFRLyIwovCizmcTsh9Ez56DGqOQMtouPkl6DKgGb/SybKtB5m5fDvZm/Jrl5+Jiwzjrj7x3No7loiwwGb7fhERcQ2FF4UXcxVsNIaR9m8CixUG/g4GPA5WW7N+bd6hcl7/egezV+XV7mYdEmjlxks6kdkvgQs76M+DiIinUnhReDFfVTl88jh894Zx3GWAMYzUqkOzf/WRKjsf5O5m5vLtbNpXUvt8epdIRvVL4MrEaAJsmqsuIuJJFF4UXjzH2tmw4DdQXQYt2sFNL0LXIW75aqfTyarth5m1fDufrt9Xu71Ax4gQ7uwTzy9SY2nbMtgttYiIyOkpvCi8eJb9m2HuaMhfB1ig/6MwaCLYAtxWwt6iI7z59U7eXrmTg2VVAAQFWBneK4bMfvH06tzabbWIiEh9Ci8KL56n+gh8OhFWv2ocx/UzJvNGdHJrGRXVdj7+YS+zlm9n7a6i2ucviWvNqH4JDOvZkaAADSmJiLibwovCi+f6YS58+AhUlUBopDGM1O1KU0r5budhXluxgwXf76HabvzPIKplML9Mj+OO9Diiwxu3bYGIiJw7nwgv5eXlXHTRRdxyyy0888wzjX6fwosXOPiT0Y2073vj+LJfw5A/gS0QHHZjld7SfKPVOr5fs3cp7S+p5O2VO3nzmx3kF1cCEGC1MOzijmT2jSclvk2jN48UEZGz4xPh5Q9/+ANbt24lNjZW4cUXVVfAwj/ByheN485pkHw75DwNxXuOnxceA1c/BYkjmr8ku4PP1u9j1vLtrNp+uPb5HjHhZPZLYERSDCGBzRukRET8ldeHly1btjBhwgSGDx/OunXrFF582YYP4IOHobKogROO3vG49TW3BJhj1u0u4vUVO5iXu5vKGmPH7DZhgdyWGsedfeLo3CbMbbWIiPiDpvz+bvLMxJycHIYPH05MTAwWi4V58+bVOycrK4uEhARCQkJIT09n5cqVTfqOxx57jCeffLKppYk3SrwexnwJ1oZWwT2arT+dYAwpuUnPThE8NbIXX0+8ggnDLqRT61AOl1czbclPDPjnIu5//VuWbz2gna1FREzQ5F7VsrIykpKSuOeee7jpppvqvT579mzGjx/PtGnTSE9P59lnn2Xo0KH8+OOPtG/fHoDk5GRqaurvBPz555+zatUqunfvTvfu3Vm+/Mw7FFdWVlJZWVl7XFxc3NQfScxWshcc1ac5wQnFu425MF36u60sgDYtgnhgYFfG9D+P7I35zFqxnWVbD/LZ+nw+W59P9+iW3N03gRsv6USLYPe1fouI+LNzGjayWCy8//773HDDDbXPpaenk5qaytSpUwFwOBzExsby8MMPM2HChDN+5sSJE3njjTew2WyUlpZSXV3No48+yp///OdTnv+Xv/yFyZMn13tew0Ze5Ie58O69Zz7v5pfh4pHNX88ZbMkvYdaK7by3ZjflVcbdoFYhAdySEsvdfeNJiGphcoUiIt7HbXNeTg4vVVVVhIWFMXfu3DqBJjMzk8LCQj744IMmff7MmTPPOOflVHdeYmNjFV68ybalMOu6M5+XucDtd15Op7iimrnf7uK1FdvZfrAcAIsFBnVvx939EhjYrR1W7WwtItIoTQkvLr3PfeDAAex2O9HR0XWej46OZtOmTa78qlrBwcEEB2uJd68W38/oKireS+0cl5NZA43WaQ8SHhLIPZd3YVS/BHK27GfW8u0s+nF/7aNLVAvu6hPPyN6dCQ/RztYiIq7i0YP0o0aNavS5WVlZZGVlYbe7b1KnuIjVZrRDv3M3RnfRKQKMoxpmDIER/4GeN7u7wtOyWi0MuqA9gy5oz/YDZbz+9Q7e+TaPbQfK+OuCDTzz+Y/cdGknMvsm0C26ldnlioh4PZeugx4VFYXNZiM/P7/O8/n5+XTo0Ly7CY8bN44NGzawatWqZv0eaSaJI4x26PCOdZ8P7wTX/Qfi+hqr8s69x1iht/qIKWWeSUJUC/50XSJfT7yCv93Qk27tW1JeZeeNr3dy5b9zuOOlr/n8hE0iRUSk6Vx65yUoKIiUlBSys7Nr57w4HA6ys7N56KGHXPlV4osSR8CF1556hd1L7oTFT8LSfxn7I+1aBbfMhKhuZld9Si2CA7izTzx3pMex4qeDzFqxnYUb8lm29SDLth6kU+tQ7uobz229Y2nTIsjsckVEvEqTJ+yWlpaydetWAC655BKmTJnC4MGDiYyMJC4ujtmzZ5OZmcn06dNJS0vj2Wef5Z133mHTpk315sI0By1S5+N++hLeHQPlByCwBVz3b0i6zeyqGmXX4XLe+Hon/1u1k8JyozU8OMDK9ckxZPZLoEdMhMkVioiYp1m7jRYvXszgwYPrPZ+ZmcnMmTMBmDp1Kk8//TT79u0jOTmZ5557jvT09KZ8TZOdOOdl8+bNCi++rGQfvHsfbF9qHF9yJwx7GoK8Y9Xbimo789fuYdby7azfc3xdotSENmT2S2Bojw4E2rSztYj4F6/fHuBc6M6Ln3DYYck/YclTgBPaXWQMI7W/0OzKGs3pdLJ6x2FmrdjBJz/speboPJjo8GDuSI/n9rQ42rVSJ52I+AeFF4UX//HzEnhvjDFHJiAUrv0XXHKH2VU1WX5xBW9+s5O3vtnJgVJj3aIgm5Vre3Xk7r7xXBLXxuQKRUSal1+GFw0b+bHSAnhvLPy8yDhOuh2ueQaCW5pb11moqnHwybq9zFy+ne92FtY+n9Q5gsx+CVzbqyPBAdrZWkR8j1+Gl2N058VPORzw1b9g0RPgdEBUdxj5KnToaXZlZ+37XYXMXL6dBWv3UmU3drZu2yKI29PiuKNPHB0jQk2uUETEdRReFF78147lMPdeKNkDASFw9T8gZZSxbr+XOlhayf9W5fHG1zvYW1QBgM1qYWiPaDL7JpDWJRKLF/98IiKg8KLw4u/KDsL798PWhcZxz5vhumchxLv/PNTYHSzckM/M5dv5Ztuh2ucv6hhOZt94rk/uRGiQhpRExDspvCi8iMMBK56HLyaD0w6R5xndSB2TzK7MJTbuLea1Fdt5/7vdVFQbQ0oRoYHclhrLXX3iiY30jrZxEZFj/DK8aMKunFLeSpgzGop3gS0Ihj4Bqfd59TDSiYrKq3nn2zxe+3o7eYeMLRMsFrjiwmgy+8Vz+flRGlISEa/gl+HlGN15kXrKD8EH4+DHj43jxOthxPMQ4jsr2todThZtKmDWiu0s3XKg9vmu7VqQ2S+Bmy7tTMvggDrnr9x2iIKSCtq3CiGtSyQ2q0KOiJhH4UXhRU7mdMLX/4WFk4wdqlvHwy2vQqcUsytzua0Fpby+YjtzV++irMrYZb1lcAAjUzpzd994NueXMPnDDbWTfwE6RoQwaXgiV/fs2NDHiog0K4UXhRdpyK7VMHcUFO4EayBc+Vfo86DPDCOdqKSimvfW7GbWiu38vL/stOce++lfuPNSBRgRMYXCi8KLnM6RQpj/EGz80Di+4Fq4fiqERZpaVnNxOJx8tfUAM5dt48sf9zd4ngXoEBHCV78boiEkEXG7pvz+9pnd37KyskhMTCQ1NdXsUsTThbaGW183NnO0BcGPH8H0AZC3yuzKmoXVamFA93aMGdD1tOc5gb1FFUz9civ7SyrdU5yIyFnQnRfxb3tyYc4oOLwNrAFwxZ+h78Ng9ZlcX+uD3N38+n+5jT4/vm0YKfFtah/d27fCqjsyItJMNGyk8CJNUVEMH/4a1r9nHHcbCje8AC3amluXi6346SC3z/j6jOfFtgllV+ERTv6boVVIAJfEtaH30TCTHNuaFid0MImInAuFF4UXaSqnE1bPhE9+B/ZKaBUDI1+B+L5mV+YydoeTy5/6kn1FFZzqf/Qnznkprazhu52HWbPjMN/uOExuXiHlRzuXjrFajNV9e8e34dKjgaZT61CtKyMiZ0XhReFFzta+dTAnEw5uBYsNhvwBLvuNzwwjfbpuLw++sQagToA5U7dRjd3Bpn0lrN5xuPaxu/BIvfM6hIfUGWpKjAkn0OYb105EmpfCi8KLnIvKUvhoPHw/2zjuOgRufBFatjO3Lhf5dN1el6zzsrfoSJ0ws35PMXZH3b9OQgKtJHVuTUp8G3ontOHSuDa0Dgty2c8iIr5D4UXhRc6V0wnfvQEfPw41R6BlB7j5JejS3+zKXKI5Vtgtr6phbV4Ra3YeDzRFR6rrnXd++5akxB29O5PQhvOiWmioSUT8M7xobyNpFgUbjW6k/ZvAYoWBv4MBj4NVuzeficPh5OcDpXy7/WiY2Xn4lIvltQkLJOXYvJm4NiTFtiYkUNdXxN/4ZXg5RndexOWqyuDj30LuG8ZxlwFw00vQKtrcurzQobKq2knAa3YcZu2uQiprHHXOCbBa6NEporarqXd8G9qHh5hUsYi4i8KLwos0h7X/gwXjoboMWrSDm2ZA18FmV+XVqmocrN9TVDvM9O2Ow6dcIK9zm9DaIHNpfBsu7BCuVYBFfIzCi8KLNJf9m41hpIL1gAX6PwqDJoJN6524gtPpZNfhI3XCzI/7ijlpHjAtgmxcEne8qyk5rjXhIYHmFC0iLqHwovAizan6CHw6wVgXBiD+MmMyb3iMqWX5qpKKanLzCmsDzXc7CymtrKlzjsUCF0S3qu1qSomLJDZSa86IeBOFF4UXcYcf5hor81aVQlhbo526W4bZVfk8u8PJ5vyS2nkzq3ccZueh8nrntWsVXKerqUdMOMEBmggs4qkUXhRexF0O/mQsarfvB+P4skdgyB/BpiEMdyoormDNzsNGZ9POw6zbXUS1ve5fbUEBVnp1iiAloU1tqGnbMtikikXkZAovCi/iTtUV8PkfYdUM4zg2HW5+GVrHmluXH6uotvPDbmMi8LfbD7Nm52EOlVXVO69LVIvaeTO949vQtV1LbT4pYhK/DC9a50VMt34ezH8YKoshtI2xueMFw8yuSjAmAm87UFZnReAtBaX1zgsPCeDSE7qakmNbExakydgi7uCX4eUY3XkRUx3aBnNHw57vjOO+D8EVkyBAS+J7mqLy6trVgL/dcYi1eUUcqa67+aTNaiGxY3id/ZpiWoc2+juaYyVjEV+l8KLwImaqqYIvJsHX/zWOO6UYO1S3STC1LDm9aruDTXtL+HbHodq7Myfu/3RMTERI7S7aveMjuahjKwJOsfmkq/aQEvEXCi8KL+IJNn0E8x6EiiIIjoDrp0LiCLOrkibYU3ikTlfThr31N58MDbSRHNu6tqvp0tg2rPj5AA++sYaT/3I90+7dIv5M4UXhRTxF4U6Yew/sWmUcp42Fq/4GAepy8UZllTWs3VXI6qNdTWt2HKa4oqbeeQFWCzUnr6x3lAXoEBHCV78boiEkkRMovCi8iCexV0P2X2H5c8ZxxyQY+Sq07WpuXXLOHA4nW/eX1ulq2nag/uaTp/L2mD707dq2mSsU8R5N+f1df6BWRFzLFghX/R/88h0IjYS9a2H6QFj3ntmVyTmyWi10j27F7Wlx/OvWJBY9Noi/39CzUe8tKKk/n0ZEGkfhRcRdug+FB76CuL5QVWJ0JS34jbHdgPiM89q1bNR57Vtpp2yRs6XwIuJOEZ0gcwFcPt44/vYVeCkDDmwxty5xmbQukXSMCOF0s1k6Rhht0yJydhReRNzNFgAZk+DOdyEsCvLXGcNI379jdmXiAjarhUnDEwEaDDAp8W00WVfkHCi8iJjl/AxjGCmhP1SXwXtj4IOHoKr+JoPiXa7u2ZEX7ryUDhF1h4YiQo09rxZ8v5ePvt9rRmkiPkHdRiJmc9hhyT9hyVOAE9pdBLfMhPYXml2ZnKNTrbD794828sqybYQEWplzfz8u7hxhdpkiHsEvW6W1t5F4vZ+XGHdfSvMhMAyueQYuucPsqsTFauwO7p31LUs276dDeAgfPHQZ0eGavCvil+HlGN15Ea9WWmAEmJ8XG8dJtxshJrhxHSziHYorqrnpv8vZWlBKUucIZt/fl5BAm9lliZhK67yIeKuW7eHO92DIH8FihbVvw4zBkL/e7MrEhcJDAnk5szetwwJZu6uIx+d+j4/9O1KkWSm8iHgaqw0GPG60VLfqCAc2w4whsHom6Becz4hv24IX7kghwGrhw7V7eP7LrWaXJOI1FF5EPFXCZUY30vkZUFMBH/4a3r0PKkvMrkxcpG/Xtvzt6Iq8UxZuVgeSSCMpvIh4shZR8Ms5kPEXsNhg3VyYPsDYYkB8wi/S4rjnsi4APDonlx92FZlckYjnU3gR8XRWK1z+Gxj9CYR3hkM/G6vyrpyhYSQf8ftrLmRg93ZUVDsY89q35Bdr3yOR01F4EfEWcenwwFLoPgzsVfDxYzAnEyr0L3VvF2Cz8vwvL+H89i3ZV1zB2Ne+paLabnZZIh5L4UXEm4RFwu1vw1V/B2sAbPgApvWH3WvMrkzOkTqQRBpP4UXE21gs0O8huOdzaB0HhTvg5avg6xc0jOTl1IEk0jgKLyLeqnMK3L8ULrwOHNXw6QSYfSccOWx2ZXIO+nZty/+d0IH08Q/qQBI5mcKLiDcLbQ23vQHDngZbEGxaANMGQN4qsyuTc3D7CR1I499RB5LIyRReRLydxQLpY+Hez6FNFyjaCa9eDcueA4fD7OrkLJ3cgVSgDiSRWgovIr4i5hK4fwn0uBEcNbDwT/D2L6D8kNmVyVk4uQNpjDqQRGopvIj4kpAIGPkqXDsFbMGw5TOYdjnsWGF2ZXIW1IEkcmoeGV4SEhLo1asXycnJDB482OxyRLyLxQKp98KYbGh7PhTvhpnXwtJ/HR9Gcthh21L4Ya7xX4f+Re+p1IEkUp/F6YExPiEhgXXr1tGyZcsmv7cpW2qL+LzKElgwHn54xzjuOgR63AyL/w7Fe46fFx4DVz8FiSPMqVPO6O2VO5n43g8A/PeOS7nm4o4mVyTiWk35/e2Rd15ExEWCW8FNL8KI5yEgFH76EuaPqxtcAIr3wjt3w4b55tQpZ6QOJJHjmhxecnJyGD58ODExMVgsFubNm1fvnKysLBISEggJCSE9PZ2VK1c26TssFgsDBw4kNTWVN998s6klisiJLBa49G64d6GxKu8pHb0B++kEDSF5MHUgiRiaHF7KyspISkoiKyvrlK/Pnj2b8ePHM2nSJNasWUNSUhJDhw6loKCg9pzk5GR69uxZ77Fnj/Gvwa+++orVq1czf/58nnjiCb7//vsG66msrKS4uLjOQ0ROoaLQ6EJqkNOYH7NjubsqkiZSB5KI4ZzmvFgsFt5//31uuOGG2ufS09NJTU1l6tSpADgcDmJjY3n44YeZMGFCk7/j8ccfp0ePHowaNeqUr//lL39h8uTJ9Z7XnBeRk/wwF96998zn3fwyXDyy+euRs7bjYBnXZy2jsLya4UkxPPeLZCwWi9lliZwT0+a8VFVVsXr1ajIyMo5/gdVKRkYGK1Y0rlWzrKyMkpISAEpLS/nyyy/p0aNHg+dPnDiRoqKi2kdeXt65/RAivqpltGvPE9OoA0n8nUvDy4EDB7Db7URH1/3LLzo6mn379jXqM/Lz87n88stJSkqiT58+3H333aSmpjZ4fnBwMOHh4XUeInIK8f2MriJO8y90WxC0SXBXRXIOTt4D6RPtgSR+pKHZe6Y577zzWLt2bZPfl5WVRVZWFna7xn9FTslqM9qh37kbI8CcYsTYXgUvDoQbX4RuGfVfF49ye1ocm/NLeHXZdn7zTi6xkWH07BRhdlkizc6ld16ioqKw2Wzk5+fXeT4/P58OHTq48qvqGTduHBs2bGDVKm1IJ9KgxBFw62sQftIaIeGdjM0dO1wM5QfhzZth4SSwV5tTpzTaH665qLYD6b5Z6kAS/+DS8BIUFERKSgrZ2dm1zzkcDrKzs+nbt68rv0pEzlbiCHhkHWQuMCbnZi6AR344urnjF5B6n3HesmeNlXmLdplarpyeOpDEHzU5vJSWlpKbm0tubi4A27ZtIzc3l507dwIwfvx4ZsyYwaxZs9i4cSMPPvggZWVljB492qWFi8g5sNqgS3+jq6hLf+MYIDAErv0X3DITgsMh7xtjb6QfPzG1XDk97YEk/qbJrdKLFy8+5X5DmZmZzJw5E4CpU6fy9NNPs2/fPpKTk3nuuedIT093ScENOXHOy+bNm9UqLXKuDm2DuaNhz3fGcd+H4IpJEBBkbl3SoBU/HeSul7+hxuFk/JXd+dUV3cwuSaTRmtIq7ZF7G50L7W0k4kI1lcbcl29eMI47pRi7VreJN7cuadCJeyC9cMelDNMeSOIltLeRiLhGQDAM+wfc9iaERMDu1TC9P2z80OzKpAG3p8Ux+rIEAH7zTi7rdmsPJPE9Ci8icmYXXQcPfAWdekNFEcy+Ez7+rXFnRjyOOpDE1/lMeMnKyiIxMfG0C9qJyDloHQf3fAr9HjaOV06Hl6+CQz+bW5fUow4k8XWa8yIiTbf5M3j/fjhy2OhKGvEc9LjR7KrkJNoDSbyJ5ryISPPqPtQYRortA5XFMGcULBgP1Rqe8CQn74E0VXsgiY9QeBGRsxPRGUZ9BJePN46/fRleyoAD+gXpSU7cA+lf2gNJfITPhBfNeRExgS0AMibBne9CWBTk/wDTB8D375hdmZxAHUjiazTnRURco3gvvDcGti81ji+5C4b9E4LCzK1LAKixO7hn1rfkbN5Ph/AQ5j90Ge3DQ8wuS6SW5ryIiPuFd4S7P4CBvwMs8N3r8NIVsP9HsysTjA6kqepAEh+h8CIirmO1weDfw93zoEV7KNgALw6C3LfMrkzQHkjiOxReRMT1zhtkdCN1GQjV5TDvQXj/AagqM7syv6cOJPEFCi8i0jxaRcNd78PgP4LFCmvfNu7C5K83uzK/pw4k8XY+E17UbSTigaw2GPg4ZH4IrTrCgc0wYwisngUarjCVOpDEm6nbSETco+yAsSrv1i+M44tvgev+DcGtzK3Lj6kDSTyJuo1ExPO0iIJfzoGMv4DFBj/MgekDYe/3Zlfmt+p1IL2+Wh1I4hUUXkTEfaxWuPw3MPpjCO8Eh34yVuVd9ZKGkUxSpwMpr1AdSOIVFF5ExP3i+hjdSN2vBnslfPSosT9SheZdmEEdSOJtFF5ExBxhkXD7/+Cqv4M1ADbMM7YW2L3G7Mr8kjqQxJv4THhRt5GIF7JYoN9DcM9nEBEHh7fDy1fB19M0jGQCdSCJt1C3kYh4hiOH4YOHYNMC4/jC6+D6qRDaxty6/Iw6kMQs6jYSEe8T2gZue8PYzNEWZISYaQNg17dmV+ZXjnUgdW3XQh1I4rEUXkTEc1gskH4/3Ps5tEmAop3wylBY/ryGkdzI6EBKVQeSeCyFFxHxPDGXwP05kHgDOGrg8z/C27+A8kNmV+Y3EqLUgSSeS+FFRDxTSATcMhOunQK2YNj8KUy7HHZ+bXZlfqNv17b89Xp1IInnUXgREc9lsUDqvXDfFxDZFYp3w6vXwNIp4HCYXZ1f+GX68Q6k8e+sVQeSeASFFxHxfB17wf1LjP2QnHbIngxvjoTS/WZX5hf+cM1FDOjejiPVdu6b9S0FxRVmlyR+zmfCi9Z5EfFxwa3gphkw4nkICIGfso1hpO1fmV2Zz1MHkngarfMiIt4nf4OxncCBH8FihUETof+jYLWZXZlP236gjBv+u4zC8mpGJMXwn18kY7FYzC5LfITWeRER3xadCGMXQdIvwemARX+H12+EknyzK/NpJ3YgzVcHkphI4UVEvFNQC7jxBbjhBQgMg21LjGGknxebXZlPUweSeAKFFxHxbsm/hLGLoX0ilBXAazfAl38Hh+ZkNBd1IInZFF5ExPu1uwDuy4ZL7wackPNPmDUCinVXoLmoA0nMpPAiIr4hKMzoRLrpJQhqCTu+gmmXwdYvzK7MJ6kDScyk8CIivqXXLTB2CURfDOUH4Y2b4Yu/gL3G7Mp8zsl7IP1WeyCJmyi8iIjviTrfWJU39T7j+Kt/w8xroWiXuXX5oISoFvz3jkvVgSRupfAiIr4pMASu/ZexP1JwOOR9bXQjbf7M7Mp8Tr+uUepAErdSeBER39bjRmNrgY7JcOQwvHUrfPYHqKkyuzKf8sv0OEb1SwDUgSTNT+FFRHxf5Hlw7+eQ/oBxvGIqvDoMDu8wty4f88drj3cgjXlNHUjSfHwmvGhvIxE5rYBgGPYU3PYmhETA7m9hen/YuMDsynzGiR1Ie4vUgSTNR3sbiYj/ObwD5t5jBBgw7shc+Vcj4Mg50x5Icja0t5GIyOm0iYfRn0Dfh4zjb6bBy1fBoZ/NrctHnNyBlLVIHUjiWgovIuKfAoJg6N/h9tkQ2gb25sL0gbD+fbMr8wkndiA987k6kMS1FF5ExL9dcDU88BXE9oHKYpgzChaMh2pNNj1X6kCS5qLwIiIS0RlGLYDLxxvH374ML2fAwZ/MrcsHqANJmoPCi4gIgC0QMibBne9CWFvY9wNMHwA/zDW7Mq+mDiRpDgovIiInOj8DHlgG8ZdDVSm8ey/Mfxiqj5hdmdfSHkjiagovIiInC+8Id38AA34LWGDNazBjCOz/0ezKvJY6kMSVFF5ERE7FFgBD/gB3vQ8t2kPBBnhxEOS+ZXZlXuvkDqRP16kDSc6OwouIyOl0HWx0I3UZCNXlMO9BeP9BqCozuzKvdGIH0m9mqwNJzo7Ci4jImbSKNu7ADP4DWKyw9i14cTDkbzC7Mq+kDiQ5VwovIiKNYbXBwN9C5ofQqiMc+BFmDDbmw2jyaZME2Kw8f/vxDqSx6kCSJlJ4ERFpioTLjWGkrldATYXRifTeWKgsMbsyrxIRerwDKVcdSNJECi8iIk3VIgrumAtXTAKLDX54x5jMu+8HsyvzKupAkrPlkeFl27ZtDB48mMTERC6++GLKyjQxTkQ8jNUK/cfD6I8hvBMc3AozroBVLx8fRnLYYdtSY6G7bUuNY6mjX9coJl/fA1AHkjSexemB9+kGDhzI3/72N/r378+hQ4cIDw8nICCgUe9typbaIiIuUX7I6ELa/Klx3ONG6H41ZE+G4j3HzwuPgaufgsQR5tTpwf4yfz0zl28nNNDGnAf60rNThNkliZs15fe3x915Wb9+PYGBgfTv3x+AyMjIRgcXERFThEXC7f+Dq/4G1gBjZ+r3768bXACK98I7d8OG+ebU6cHUgSRN0eTwkpOTw/Dhw4mJicFisTBv3rx652RlZZGQkEBISAjp6emsXLmy0Z+/ZcsWWrZsyfDhw7n00kt54oknmlqiiIj7WSzQ72HI/MiYB3NKR290fzpBQ0gnUQeSNEWTw0tZWRlJSUlkZWWd8vXZs2czfvx4Jk2axJo1a0hKSmLo0KEUFBTUnpOcnEzPnj3rPfbs2UNNTQ1Lly7lv//9LytWrGDhwoUsXLiwwXoqKyspLi6u8xARMY2jGpyn+6XrhOLdsGO520ryFid3IP3uXXUgyak1eTxm2LBhDBs2rMHXp0yZwpgxYxg9ejQA06ZN46OPPuKVV15hwoQJAOTm5jb4/k6dOtG7d29iY2MBuOaaa8jNzeXKK6885flPPvkkkydPbuqPISLSPErzXXuenznWgXT3yyv5IHcP3dq35KEh3cwuSzyMS+e8VFVVsXr1ajIyMo5/gdVKRkYGK1asaNRnpKamUlBQwOHDh3E4HOTk5HDRRRc1eP7EiRMpKiqqfeTl5Z3zzyEictZaRrv2PD+kDiQ5E5eGlwMHDmC324mOrvs/yujoaPbt29eozwgICOCJJ55gwIAB9OrVi27dunHdddc1eH5wcDDh4eF1HiIiponvZ3QVYWn4nIAQaHeh20ryRnekx2sPJGmQx3UbgTE09cMPP7Bu3TqmTJlidjkiIo1ntRnt0ECDAaamwljUbuc37qrKK6kDSRri0vASFRWFzWYjP7/uWG5+fj4dOnRw5VfVk5WVRWJiIqmpqc36PSIiZ5Q4Am59DcI71n0+vBNc+TeI7ArFu+DVYfDVv8HhMKdOD3esA+k8dSDJSVwaXoKCgkhJSSE7O7v2OYfDQXZ2Nn379nXlV9Uzbtw4NmzYwKpVq5r1e0REGiVxBDyyDjIXwM0vG/995Ae47GG4fwlcfIvRlfTFX+CtW6DsgNkVe6SI0EBeyUwlIlQdSHJck8NLaWkpubm5tR1D27ZtIzc3l507dwIwfvx4ZsyYwaxZs9i4cSMPPvggZWVltd1HIiJ+w2qDLv3h4pHGf61H138JbgU3zYDhzxnzX7Z+AdMuh+3LzK3XQyVEteCFO409kD7I1R5IchbbAyxevJjBgwfXez4zM5OZM2cCMHXqVJ5++mn27dtHcnIyzz33HOnp6S4puCFZWVlkZWVht9vZvHmztgcQEe+Qvx7mjIIDm8FihUG/N/ZMsja00J3/evObHfzh/XUATLvzUq7u2fEM7xBv0pTtATxyb6Nzob2NRMTrVJXBR4/B2reM4/MGGXdmWrY3tSxPpD2QfJdX720kIuJ3glrAjS/ADS9AYBj8vBheuAx+XmJ2ZR6nXgdSiTqQ/JHCi4iIp0j+JYxZBO0ToawAXrseFj2hfZBOUK8D6bXVlFXWsOKng3yQu5sVPx3E7vCpAQU5BZ8ZNtKcFxHxGVXl8OnvYM1rxnFCf2MY6eTWaz+2/UAZ12cto+hINSGBViqqj7ebd4wIYdLwRM2J8TKa86I5LyLiC76fAwsegapSCIuCm16E868wuyqP8ewXm3n2iy31nj+2NOALmtTrVTTnRUTEF/S6BcYugeiLofwAvHETfDEZ7DVmV2Y6u8PJ7FWn3svu2L/IJ3+4QUNIPkrhRUTEk0WdD/d9Ab3vNY6/mgKzroOi3ebWZbKV2w6xt6jhybpOYG9RBUt+LHBfUeI2AWYX4ConznkREfEpgSFw3RRIuBzm/wp2rjAWtbtxGnQfanZ1pmhsl9E9s76lTVggsZFhxLYJM/4bGUrc0eOY1qEEBejf8d5Gc15ERLzJoZ9hzmjYm2sc93sYrpgEtkBTy3K3FT8d5PYZX5/z51gt0DEilNjIUGLbhBmhJvJ4yGnXMhiL5TQ7hIvLaMKuwouI+LKaSvj8T7ByunHcORVGvgKt48yty43sDieXP/Ul+4oqONUvMQvQISKETx8ZwJ7CI+QdKmfnoXJ2HT7CzkPl5B0qJ+9weZ0upVMJDbTRuU1onVATdzTYxLYJo0WwzwxgmE7hReFFRPzBxg/hg3FQUQQhEcYidxdea3ZVbvPpur08+MYagDoBprHdRk6nk/2llUaQOXQ81BwLOXuKjnCm35BtWwTR+VigOSHkxEWG0TEihACbhqQaS+FF4UVE/MXhHTB3NOxebRynPwhX/hUCgsyty00+XbeXyR9uqDN511XrvFTVONhTeDTUHD4aag4dPy4srz7t+21WCzGtQ+oPRx0NOZEtgjQkdQKFF4UXEfEnNVWQPRlWTDWOYy6Bka9CZBdz63ITu8PJym2HKCipoH2rENK6RGKzNn8oKK6oPnrX5oQ7N4eP37mpqjn9kFRYkI24yDA6tzk+FBV39K5N5zZhhAb51+acfhletMKuiPi9Hz+BeQ/CkcMQHA4jnoceN5hdlV9yOJwUlFQaYeZg/Ts3+SUVZxySimoZTFxk6PF5Nid0S3WMCHVLQHMnvwwvx+jOi4j4taJdMPceyPvGOE69D676u9FuLR6jotrO7qMTiY3Jw0fqhJySitMvRBhosxDTOvSUd25i24TROiywWYakmvMul8KLwouI+DN7NSz6O3z1b+O4Qy+4ZSa07WpqWdJ4ReXVdYahTpxIvOtwOdX20//qbhUccHQi8dEW8LbH79x0bhNKSGDTh6Sac34RKLwovIiIAGz5At4fC+UHIaglDP8PXDzS7KrkHNkdTvKLK463fB+7c3P0/y4oqTzjZ0SHB9dOJK7TLdU2jOhWIVhPuptyrLPr5MDgyn2kFF4UXkREDMV74N37YMcy4zhlFFz9DwgMNbUsaT4V1XZ21d6xqdsCnneonLKq069EH2Sz0rlNaO2dm06tQ5me83OD3VXH1tT56ndDzmkISeFF4UVE5Dh7DSz5B+Q8AzihfQ9jGKldd7MrEzdzOp0cLq8+HmYO1+2W2lN4hJqz3Mzy7TF96Nu17VnX1pTf3z6zNKD2NhIRaYAtAIb8EeIvg/fGQsF6eHEgXDsFkm83uzpxI4vFQmSLICJbBJEU27re6zV2B3uLKuqEmuU/HWDNzsIzfnZj95tyBd15ERHxJyX58N59sC3HOE6+A655GoJamFuXeKzG7iPlzjsvWrdYRMSftIqGu+bBoN+DxQq5b8KMIVCw0ezKxEOldYmkY0QIDc1msWB0HaV1iXRbTQovIiL+xmqDQb+Du+dDyw6wfxO8OBjWvM4ZV04Tv2OzWpg0PBGgXoA5djxpeKJbF81TeBER8Vdd+sMDX0HXIVBzBOY/ZMyJqSw1uzLxMFf37MgLd15Kh4i6ix12iAhxSZt0U2nOi4iIv3M4YNmz8OXfwGmHtucb3UgdLja7MvEwWmG3mSi8iIicpR0r4N17oXg32IJh2D8gZTRo52NxA03YFRGRpovvC/cvhW5DwV4JC35j7JNUUWx2ZSJ1KLyIiMhxLdrC7f+DK/8PrAGw/j2YPgD25JpdmUgtnwkvWVlZJCYmkpqaanYpIiLezWqFy34Foz+FiDg4vA1evhK+eVHdSOIRNOdFREQaduQwzBsHP35kHF80HEZMhdDWppYlvkdzXkRExDVC28Av3jQ2c7QGwsYPYXp/2LXa7MrEjym8iIjI6Vks0OdBuPczaB0PhTvhlaGwIkvDSGIKhRcREWmcTinwwFJIvB4c1fDZ7+Ht26H8kNmViZ9ReBERkcYLiYBbZsG1/zLWgtn8CUzrDzu/Mbsy8SMKLyIi0jQWC6TeB/d9AZFdoXgXvDoMvnrWWK1XpJkpvIiIyNnp2AvuXwI9RxrbCnwxCd66FcoOmF2Z+DiFFxEROXvBreDml2D4fyAgBLYuhGmXw47lZlcmPkzhRUREzo3FAimjYMyXENUdSvbCzGsh52kNI0mzUHgRERHXiO4BYxZB0u3gdBi7VL9xE5QWmF2Z+BifCS/aHkBExAMEt4Qbp8H1/4XAMPh5kTGM9PMSsysTH6LtAUREpHkUbII5o2D/RsACA38HA38LVpvZlYkH0vYAIiJivvYXGvNgLrkLcMKSf8Br10PJPrMrEy+n8CIiIs0nKAyunwo3zYDAFrB9KbxwGWzNNrsy8WIKLyIi0vx63WqsCRPdE8oPwBs3Q/ZfwV5jdmXihRReRETEPaK6Gavy9r4HcMLSf8Gs4VC02+zKxMsovIiIiPsEhsJ1/4aRr0JQK9i53OhG2vy52ZWJF1F4ERER9+t5kzGM1DEJjhyCt26Bz/8E9mqzKxMvoPAiIiLmaNsV7l0Iafcbx8ufg1evgcI8c+sSj6fwIiIi5gkIhmv+Cbe+DsERsGulMYy06WOzKxMPpvAiIiLmSxwBD+RAzKVQUQj/ux0+nQg1VWZXJh5I4UVERDxDmwS45zPo+5Bx/PV/4ZWhcHi7mVWJB1J4ERERzxEQBEP/Drf/D0Jaw541MG0AbJhvdmXiQRReRETE81wwDB74CjqnQWURvHMXfPw4VFeYXZl4AIUXERHxTK1jYfTHcNmvjeOVL8LLV8LBn8ytS0znceHlxx9/JDk5ufYRGhrKvHnzzC5LRETMYAuEK/8Kd8yFsLaw73uYPhDWvWt2ZWIii9PpdJpdRENKS0tJSEhgx44dtGjRolHvacqW2iIi4kWK98Dce41VeQFSRsHV/wBbEOxYDqX50DIa4vuB1WZqqdJ0Tfn9HeCmms7K/PnzueKKKxodXERExIeFx0Dmh7DkH5DzDKyeaexOba+E0oK65139lNF+LT6pycNGOTk5DB8+nJiYGCwWyymHdLKyskhISCAkJIT09HRWrlx5VsW988473HbbbWf1XhER8UG2ABjyR7jrPQgOh6K8usEFoHgvvHO3OpR8WJPDS1lZGUlJSWRlZZ3y9dmzZzN+/HgmTZrEmjVrSEpKYujQoRQUHP/DlZycTM+ePes99uzZU3tOcXExy5cv55prrjmLH0tERHxal4EQGNbAi0dnQ3w6ARx2t5Uk7tPkYaNhw4YxbNiwBl+fMmUKY8aMYfTo0QBMmzaNjz76iFdeeYUJEyYAkJube8bv+eCDD7jqqqsICQk57XmVlZVUVlbWHhcXFzfipxAREa+2YzmU7jvNCU4o3m2c16W/28oS93Bpt1FVVRWrV68mIyPj+BdYrWRkZLBixYomfVZjh4yefPJJIiIiah+xsbFNrltERLxMab5rzxOv4tLwcuDAAex2O9HR0XWej46OZt++0yXkuoqKili5ciVDhw4947kTJ06kqKio9pGXp91IRUR8XsvoM58DxrwY8Tke2W0UERFBfn7j0nJwcDDBwcHNXJGIiHiU+H5GV1HxXmrnuJzKpxON8zr0dFtp0vxceuclKioKm81WL3jk5+fToUMHV35VPVlZWSQmJpKamtqs3yMiIh7AajPaoQGwnPTi0eOQNnBoK7x0BXz7KnjusmbSRC4NL0FBQaSkpJCdnV37nMPhIDs7m759+7ryq+oZN24cGzZsYNWqVc36PSIi4iESR8Ctr0F4x7rPh8fAra/Dw6uh21VQUwELHoF374UKNXX4giYPG5WWlrJ169ba423btpGbm0tkZCRxcXGMHz+ezMxMevfuTVpaGs8++yxlZWW13UciIiIukzgCLry24RV2b58NK56H7L8aWwrs+Q5umQkdk0wtW85Nk7cHWLx4MYMHD673fGZmJjNnzgRg6tSpPP300+zbt4/k5GSee+450tPTXVJwQ7KyssjKysJut7N582ZtDyAiIsflrYS59xiL2tmCYOgTkHofWE4echKzNGV7AI/e2+hsaG8jERE5pfJD8ME4+PFj4/iiETDieQhtbWpZYmjK72+P21VaRESkWYRFwi/eMjZztAbCxvkwfQDsXm12ZdJECi8iIuI/LBbo8yDc+xm0jofCHfDyUFjxX3UjeRGfCS9qlRYRkUbrlAL35xhDR45q+Gwi/O+XxtCSeDzNeREREf/ldMKql+Cz34O9CiJiYeQrEJtmdmV+R3NeREREGsNigbQxcN8XEHme0Y306jBY9h9wOMyuThqg8CIiItIxCcYugZ43g6MGFv4Z3r4Nyg6aXZmcgsKLiIgIQEg43PwyXPcsBITAls9h2uXGAnjiUXwmvGjCroiInDOLBXqPhvuyoW03KNkDM6+DnGc0jORBNGFXRETkVCpL4aNH4fv/GcfnDYabZkDLdubW5aM0YVdERORcBbeEG6fB9VkQEAo/L4Jpl8G2HLMr83sKLyIiIg2xWOCSO2HsYmh3obH542vXw+J/gMNudnV+S+FFRETkTNpfCGMWGUHG6YDFT8LrN0DJPrMr80s+E140YVdERJpVUJgxhHTjixDYwhg+mnY5/PSl2ZX5HU3YFRERaar9m2HuaMhfB1ig/6MwaCLYAsyuzGtpwq6IiEhzatfdWJU3ZTTghKXPwKzhULzH7Mr8gsKLiIjI2QgMheHPGgvbBbWCncuNYaQtC82uzOcpvIiIiJyLi0fC/UugQy8oPwhvjjS2F7BXm12Zz1J4EREROVdtu8K9CyFtrHG87D/w6jVQmGduXT7KZ8KLuo1ERMRUgSFwzdNw62sQHAG7VhrDSJs+Nrsyn6NuIxEREVc7vB3mjIY9a4zjPuMg4y8QEGRmVR5N3UYiIiJmapMA93xmhBaAr7Pg1auNUCPnTOFFRESkOQQEwdVPwC/ehpDWsHs1TBsAG+abXZnXU3gRERFpThdeAw8shc5pUFkE79wFHz8ONZVmV+a1FF5ERESaW+s4GP0xXPZr43jli/DylXDwJ3Pr8lIKLyIiIu5gC4Qr/wq/nAOhkbB3LUwfCOveM7syr6PwIiIi4k7dr4IHvoK4vlBVYuyR9OEjUH3E7Mq8hsKLiIiIu0V0gswF0P8xwAKrX4WXMuDAFrMr8wo+E160SJ2IiHgVWwBc8Se46z0IizJ2qJ4+ENbONrsyj6dF6kRERMxWsg/evQ+2LzWOL7kThj0NQWHm1uVGWqRORETEm7TqAHd/AIMmAhb47g2YMQQKNpldmUdSeBEREfEEVhsMmgCZ86FlNOzfCC8Ogu/eNLsyj6PwIiIi4km6DDC6kc4bDDVH4IP/B+8/AJWlZlfmMRReREREPE3L9nDnezDkT2Cxwtq3YcZgyF9vdmUeQeFFRETEE1mtMOAxGPURtIqBA5uNeTCrZ4Jv9do0mcKLiIiIJ4vvZwwjnX8l1FTAh7+Gd++FimKzKzONwouIiIina9EWfvmOsb2AxQbr3oUXBxpbDPghhRcRERFvYLUaGzve8ymEd4ZDPxur8q6c4XfDSAovIiIi3iQ2DR5YChdcA/Yq+PgxmJMJFUVmV+Y2Ci8iIiLeJiwSfvEWDH0SrIGw4QOY1h92rza7MrfwmfCivY1ERMSvWCzQ9//BvZ9B6zgo3AEvD4WvX/D5YSTtbSQiIuLtjhTC/Idg44fG8QXXwvVTjTs0XkJ7G4mIiPiT0NZw6+twzTNgC4IfP4LpAyBvldmVNQuFFxEREV9gsUDaGLh3IbTpAkV58OrVsOw5cDjMrs6lFF5ERER8SUwy3J8DPW4CRw0s/BO8/QsoO2h2ZS6j8CIiIuJrQsJh5Ctw3bNgC4Ytn8G0y2HHCrMrcwmFFxEREV9ksUDv0TDmS2h7PpTsgZnXwtJ/ef0wksKLiIiIL+vQE8YugV63gdMO2X+FN2+G0v1mV3bWFF5ERER8XXBLuHE6jJgKAaHw05fGMNK2pWZXdlYUXkRERPyBxQKX3gVjF0G7C6F0H7w2AhY/BQ672dU1icKLiIiIP2l/kTEPJvlOcDpg8RPw+g1Qkm92ZY2m8CIiIuJvglrADVnGUFJgC9iWA9Mug58WmV1Zoyi8iIiI+KukX8DYxdC+B5Tth9dvhC//BvYasys7LYUXERERf9auO4zJhpRRgBNynjbmwhTvMbuyBim8iIiI+LvAUBj+H7j5ZQhqCTuWGd1IW74wu7JT8sjw8u9//5sePXqQmJjIr371K3xs42sRERHPdPFIY2uBDr2g/KCxHszCSWCvNl532I326h/mGv81qUvJ4vSwZLB//3769OnD+vXrCQwMZMCAATzzzDP07du3Ue9vypbaIiIicgrVFfD5H2HVDOM4Nt2YH5PzdN3hpPAYuPopSBxxzl/ZlN/fHnnnpaamhoqKCqqrq6murqZ9+/ZmlyQiIuI/AkPg2mfgllkQHA5538CC39SfB1O8F965GzbMd2t5TQ4vOTk5DB8+nJiYGCwWC/Pmzat3TlZWFgkJCYSEhJCens7KlSsb/fnt2rXjscceIy4ujpiYGDIyMujatWtTyxQREZFz1eMGGLMIrIENnHB08ObTCW4dQmpyeCkrKyMpKYmsrKxTvj579mzGjx/PpEmTWLNmDUlJSQwdOpSCgoLac5KTk+nZs2e9x549ezh8+DALFixg+/bt7N69m+XLl5OTk9NgPZWVlRQXF9d5iIiIiIuU7AVH9WlOcELxbtix3G0lBTT1DcOGDWPYsGENvj5lyhTGjBnD6NGjAZg2bRofffQRr7zyChMmTAAgNze3wffPmTOH888/n8jISACuvfZavv76awYMGHDK85988kkmT57c1B9DREREGqO0kSvvNvY8F3DpnJeqqipWr15NRkbG8S+wWsnIyGDFihWN+ozY2FiWL19ORUUFdrudxYsXc8EFFzR4/sSJEykqKqp95OXlnfPPISIiIke1jHbteS7Q5Dsvp3PgwAHsdjvR0XV/gOjoaDZt2tSoz+jTpw/XXHMNl1xyCVarlSuuuIIRIxqexRwcHExwcPA51S0iIiINiO9ndBUV76V2jksdFuP1+H5uK8kju43+/ve/s3HjRtavX89zzz2HxWI543uysrJITEwkNTXVDRWKiIj4CavNaIcG4OTfx0ePr/6HcZ67SnLlh0VFRWGz2cjPrzvulZ+fT4cOHVz5VfWMGzeODRs2sGrVqmb9HhEREb+TOAJufQ3CO9Z9PjzGeN4F67w0hUuHjYKCgkhJSSE7O5sbbrgBAIfDQXZ2Ng899JArv0pERETcKXEEXHit0VVUmm/McYnv59Y7Lsc0ObyUlpaydevW2uNt27aRm5tLZGQkcXFxjB8/nszMTHr37k1aWhrPPvssZWVltd1HzSUrK4usrCzsdnOWKhYREfF5Vht06W92FU3fHmDx4sUMHjy43vOZmZnMnDkTgKlTp/L000+zb98+kpOTee6550hPT3dJwWei7QFERES8T1N+f3vc3kbnSuFFRETE+3j93kYiIiIiDfGZ8KJWaREREf+gYSMRERExnYaNRERExGcpvIiIiIhXUXgRERERr+Iz4UUTdkVERPyDz03YLSoqonXr1uTl5WnCroiIiJcoLi4mNjaWwsJCIiIiTnuuS/c28gQlJSUAxMbGmlyJiIiINFVJSckZw4vP3XlxOBzs2bOHVq1aYbFYSE1NPeVO06d6/kzPHUuF7rqr01DtzfH+xpx7unN0nXWdz8RXr/OpnveX69yY88/mOjf0midd54ZqbK73+8PfHU6nk5KSEmJiYrBaTz+rxefuvFitVjp37lx7bLPZTnlxT/V8Y58LDw93y/84Gqq9Od7fmHNPd46us67zmfjqdT7V8/5ynRtz/tlc54Ze86Tr3ND3N9f7/eXvjjPdcTnGZybsNmTcuHGNfr6xz7nLuX53U97fmHNPd46us+vO1XU+9/e78zqf6nl/uc6NOf9srnNDr3nSdXbF93vqn2lP+7vjVHxu2Kg5afVe99B1dg9dZ/fQdXYPXWf38YRr7fN3XlwpODiYSZMmERwcbHYpPk3X2T10nd1D19k9dJ3dxxOute68iIiIiFfRnRcRERHxKgovIiIi4lUUXkRERMSrKLyIiIiIV1F4EREREa+i8OIiCxYs4IILLqBbt2689NJLZpfjs2688UbatGnDyJEjzS7Fp+Xl5TFo0CASExPp1asXc+bMMbskn1RYWEjv3r1JTk6mZ8+ezJgxw+ySfFp5eTnx8fE89thjZpfisxISEujVqxfJyckMHjy42b5HrdIuUFNTQ2JiIosWLSIiIoKUlBSWL19O27ZtzS7N5yxevJiSkhJmzZrF3LlzzS7HZ+3du5f8/HySk5PZt28fKSkpbN68mRYtWphdmk+x2+1UVlYSFhZGWVkZPXv25Ntvv9XfHc3kD3/4A1u3biU2NpZnnnnG7HJ8UkJCAuvWraNly5bN+j268+ICK1eupEePHnTq1ImWLVsybNgwPv/8c7PL8kmDBg2iVatWZpfh8zp27EhycjIAHTp0ICoqikOHDplblA+y2WyEhYUBUFlZidPpRP+ebB5btmxh06ZNDBs2zOxSxAUUXoCcnByGDx9OTEwMFouFefPm1TsnKyuLhIQEQkJCSE9PZ+XKlbWv7dmzh06dOtUed+rUid27d7ujdK9yrtdZGs+V13r16tXY7XZiY2ObuWrv44rrXFhYSFJSEp07d+bxxx8nKirKTdV7D1dc58cee4wnn3zSTRV7J1dcZ4vFwsCBA0lNTeXNN99stloVXoCysjKSkpLIyso65euzZ89m/PjxTJo0iTVr1pCUlMTQoUMpKChwc6XeTdfZfVx1rQ8dOsTdd9/Niy++6I6yvY4rrnPr1q1Zu3Yt27Zt46233iI/P99d5XuNc73OH3zwAd27d6d79+7uLNvruOLP81dffcXq1auZP38+TzzxBN9//33zFOuUOgDn+++/X+e5tLQ057hx42qP7Xa7MyYmxvnkk086nU6nc9myZc4bbrih9vVf//rXzjfffNMt9Xqrs7nOxyxatMh58803u6NMn3C217qiosLZv39/52uvveauUr3aufyZPubBBx90zpkzpznL9Hpnc50nTJjg7Ny5szM+Pt7Ztm1bZ3h4uHPy5MnuLNvruOLP82OPPeZ89dVXm6U+3Xk5g6qqKlavXk1GRkbtc1arlYyMDFasWAFAWloa69atY/fu3ZSWlvLJJ58wdOhQs0r2So25zuIajbnWTqeTUaNGMWTIEO666y6zSvVqjbnO+fn5lJSUAFBUVEROTg4XXHCBKfV6q8Zc5yeffJK8vDy2b9/OM888w5gxY/jzn/9sVsleqTHXuaysrPbPc2lpKV9++SU9evRolnoCmuVTfciBAwew2+1ER0fXeT46OppNmzYBEBAQwL/+9S8GDx6Mw+Hgt7/9rboFmqgx1xkgIyODtWvXUlZWRufOnZkzZw59+/Z1d7lerTHXetmyZcyePZtevXrVjnu//vrrXHzxxe4u12s15jrv2LGDsWPH1k7Uffjhh3WNm6ixf3fIuWnMdc7Pz+fGG28EjE66MWPGkJqa2iz1KLy4yIgRIxgxYoTZZfi8L774wuwS/MLll1+Ow+Ewuwyfl5aWRm5urtll+JVRo0aZXYLPOu+881i7dq1bvkvDRmcQFRWFzWarN4kuPz+fDh06mFSV79F1dh9da/fQdXYPXWf38LTrrPByBkFBQaSkpJCdnV37nMPhIDs7W8MVLqTr7D661u6h6+weus7u4WnXWcNGGBOLtm7dWnu8bds2cnNziYyMJC4ujvHjx5OZmUnv3r1JS0vj2WefpaysjNGjR5tYtffRdXYfXWv30HV2D11n9/Cq69wsPUxeZtGiRU6g3iMzM7P2nOeff94ZFxfnDAoKcqalpTm//vpr8wr2UrrO7qNr7R66zu6h6+we3nSdtbeRiIiIeBXNeRERERGvovAiIiIiXkXhRURERLyKwouIiIh4FYUXERER8SoKLyIiIuJVFF5ERETEqyi8iIiIiFdReBERERGvovAiIiIiXkXhRURERLyKwouIiIh4lf8PbetC/NxeiG4AAAAASUVORK5CYII=", + "text/plain": [ + "" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbb0lEQVR4nO3deVhUdf//8ecMq6iAuCAogllmaEIquOSuZVbaZnXXXaGllbf2rduy7F6y7l/L3b7JnWXl0mpqqWnZYiqaGorhbmq5K+DGqmwz8/vjKEWCggxzZobX47rmsnM4M+fNuUhens/nfT4Wh8PhQERERMRDWM0uQERERKQ6FF5ERETEoyi8iIiIiEdReBERERGPovAiIiIiHkXhRURERDyKwouIiIh4FF+zC3A2u93OwYMHadiwIRaLxexyREREpAocDgd5eXlERkZitZ793orXhZeDBw8SFRVldhkiIiJyHvbt20fLli3PeozXhZeGDRsCxjcfHBxscjUiIiJSFbm5uURFRZX9Hj8brwsvp4eKgoODFV5EREQ8TFWmfGjCroiIiHgUhRcRERHxKAovIiIi4lG8bs6LiIhIddhsNkpKSswuw+v5+fnh4+PjlM9SeBERkTrJ4XCQkZFBdna22aXUGaGhoTRv3rzGz2FTeBERkTrpdHBp1qwZQUFBerBpLXI4HJw4cYKsrCwAIiIiavR5Ci8iIlLn2Gy2suDSuHFjs8upE+rVqwdAVlYWzZo1q9EQkibsiohInXN6jktQUJDJldQtp693TecYKbyIiEidpaEi13LW9Xa78JKdnU2XLl2Ij4+nQ4cOTJkyxeySDHYb7FoOG2cbf9ptZlckIiJSJ7ndnJeGDRuSkpJCUFAQBQUFdOjQgRtvvNHcMckt82HRY5B78Pd9wZFw1fMQO9S8ukREROogt7vz4uPjUzYmVlRUhMPhwOFwmFfQlvnw2V3lgwtA7iFj/5b55tQlIiJSgePHj/PUU09x6NAhs0upNdUOLykpKQwZMoTIyEgsFgtz584945jk5GRiYmIIDAyka9eupKamVusc2dnZxMXF0bJlS8aPH0+TJk2qW6Zz2G3GHRcqCk+n9i2aoCEkERFxGw8++CCpqamMHj3a7FJqTbXDS0FBAXFxcSQnJ1f49ZkzZzJu3DgmTpzIunXriIuLY9CgQWW93UDZfJY/vw4eNO5uhIaGsn79enbt2sXHH39MZmZmpfUUFRWRm5tb7uU0e1aeecelHAfkHjCOExERMdnChQvJy8tj4cKFhIaG8tFHH5ldUq2wOGowJmOxWPjiiy+4/vrry/Z17dqVhIQEJk2aBIDdbicqKooHHniACRMmVPscf/vb3+jfvz/Dhg2r8OtPPvkkTz311Bn7c3JyCA4Orvb5ytk4G+bcc+7jbnoPLq24PhERcT+FhYXs2rWL1q1bExgYWKPPstkdpO46RlZeIc0aBpLYOgwfa+12MS1dupThw4eze/fuWj3P+ThbbWe77rm5uYSEhFTp97dT57wUFxeTlpbGwIEDfz+B1crAgQNZtWpVlT4jMzOTvLw8wAggKSkpXHzxxZUe//jjj5OTk1P22rdvX82+iT+w1W/m1ONERMS7LNp0iJ7P/8BtU1bz4Kfp3DZlNT2f/4FFm7x3vok7cGp4OXLkCDabjfDw8HL7w8PDycjIqNJn7Nmzh169ehEXF0evXr144IEHuPTSSys9PiAggODg4HIvZ0m1teOgIwz7We5NlTisbDpq4oRiERExxaJNhxj94ToO5RSW25+RU8joD9cpwNQit+s2SkxMJD09nfXr17Nhwwbuu+++Kr0vOTmZ2NhYEhISnFZLVkEJT5XcBXBGgLE7wOEAP4udDl8Pg7XvGztERMQjORwOThSXVumVV1jCxPmbz9bOwZPzt5BXWHLOz3JWR+1PP/1Ez549qVevHvHx8aSkpGCxWNi0aZNTPt/V5zkbpz7npUmTJvj4+JwxwTYzM5PmzZs781RnGDNmDGPGjCkbM3OGZg0D+caeyOiSh5joN4NIjpV9LYPGvFwyjKt9UhnAz7Dg78bD64a8DoHOu/sjIiKucbLERuwT3zjlsxxARm4hlz757TmP3fKfQQT51+zX8aZNmxgwYAAPPfQQ7777Lps3b+bmm28mICCAdu3a1eizzTjPuTg1vPj7+9O5c2cWL15cNonXbrezePFixo4d68xTuURi6zAiQgL5NieR74q6kGjdRjOyySKUVHs77Fj53N6LkfaveMxvJr6bP8dxKB3LsKkQGW92+SIiUkf83//9H0OHDuXpp58GoF27dkyfPp39+/fj6+u8X/WuOs+5VPtM+fn57Ny5s2x7165dpKenExYWRqtWrRg3bhxJSUl06dKFxMREXnvtNQoKChgxYoRTC/+z5ORkkpOTsdmc98wVH6uFiUNiGf3hOhxYWW2PLfua5dTrqg6RfLT9OtYWXcyb/m/S8thv2N+9AuugZyBxFGjdDBERj1DPz4ct/xlUpWNTdx1j+NQ15zxu2ogEEluHnfO8NbFnzx6WLFlyxrBNQEAAcXFxFb5nwoQJPP/882f93K1bt5a7m3I+56kt1Q4va9eupV+/fmXb48aNAyApKYlp06Zx6623cvjwYZ544gkyMjKIj49n0aJFZ0zidbbaGDYCuKpDBG/d0YmnvtxSblJW85BAJg6J5aoOERzNL+LtlGhuXNmCpy1vcSVp8PV4jm1ZTNhf3oZ6oU6rR0REaofFYqny8E2vi5oSERJIRk5hhfNeLBi/J3pd1LTW26bT09Px9/enffv25fZv3bqVkSNHVviehx9+mOHDh5/1cy+44IIan6e2VDu89O3b95yTi8aOHeuRw0SVuapDBFfENq+0j79xgwD+cfUljOzZmv8tuYTUtW/zqPUjwvYs4vBLXTl+zdu07dTX3G9CRESc5o935i2Ufw776agycUhsrQcXMJbVKS0tpbCwsOzZKYsXL2bz5s2V3hFp2rQpTZs2rfXz1Ba36zZyVz5WC93bNOa6+BZ0b9O4wh/IZsGBPHldB0Y8/AJTLprMXkczmtoyiJl3IzPfmMCWAzkmVC4iIrXh9J355iHlH7bWPCSQt+7oxFUdIlxSR+fOnfHz82P8+PH89ttvfPnll9x7770ATg0VrjpPVXhNeKmNVunz1SK0HmPuuAXLfctZ37Av/hYbtx57iwOTb2D8jKXszMozu0QREXGCqzpEsOKx/nwyqhuv/yWeT0Z1Y8Vj/V0WXAAiIiJ4//33mTdvHh07dmTq1KkkJSVx4YUXEhZ29vk27nieqnDd1OBaVltzXmoiKrI5UePmkrUkmUbLn+QKnzRif72b/3vtAVrF9ePBARcR06S+2WWKiEgNnL4zb6bbb7+d22+/HTC6fPv27cvNN9/ssec5F68JL27LYqFZ/7FwSS+KP7mLFrm7men3H17c8AsD11/LTZ1a8cCAC2nZKMjsSkVExAOlpKRw+PBhLrvsMo4cOcKLL77Inj17mDt3rkeepyq8ZtjI7UXE4T9mBXQYhq/FzuN+nzDF5wW+XbuZfi8t5d9zN5GZW3juzxEREfmDzMxMHn30UWJjY7n55psJDg4mNTXV6UM5rjpPVdRoVWl3VJ1VKU3hcMC66fD1Y1BayDGfJtx34m+scbQjwNfKHd2iGd23DU0aBJhdqYiI13LmqtJm2L17N3PnzuWhhx4yu5QznK02Z60q7TXh5Y8Pqdu+fbv7hpfTMjbBrOFwdAcOi5VP69/BP45ciQMr9fx8GH55DPf1voDQIH+zKxUR8TqeHl48lcJLJdz+zssfFeXDwodhw6cAHG9+OQ8WjybloDGa1zDAl7t7tuaeXq0JDvQzs1IREa+i8GIOZ4UXzXkxU0ADuPFtuO5/4BdEo4wfmV78MHMGlXBJRDB5RaW8vngHvZ5fQvKSnRQUlZpdsYiIiOkUXtzBZX+FUUug6SVY8jPpvGw4X126nP/dHseFzRqQc7KEF7/5hd4vLOHd5b9RWOK89ZtEREQ8jcKLu2jWDkb9AJfdCTiwpDzP1evu55t72vLarfHENA7iaEExTy/cSu8XljBj1W6KShViRESk7vGa8OJOT9g9b/5BcN0kuHEK+NWH3cvxeacX1wf/wvfj+vDCTR1pEVqPrLwinpi3mf4vLePT1L2U2OxmVy4iIuIymrDrro7sMLqRMjcBFuj1MPR9nGKHlZlr9zHphx1k5hYB0CosiIcGXsR18S1csgiYiIin04Rdc2jCrrdrchGM/B663A04YPlLMH0I/gWHuLNbNMvG9+Pf18bSpIE/e4+dYNxn67ny1WV8uf4gdrtX5VEREZFyFF7cmV89uPZVGPY++DeEvSthck/Y/i2Bfj7c07M1KY/247Gr2hEa5Mevhwt44JOfufqN5Xy7OQMvu6kmIiICKLx4hg43wX3LICIOTh6Dj2+Gb/8NthKC/H0Z3bcNyx/tx98HtqVhgC/bMvK494M0rkv+kSW/ZCnEiIiIV1F48RSN28A930Hifcb2yjdg6tWQvQ+AhoF+PDjwIpY/1o8x/doQ5O/Dhv05jJi6hmGTV7Hy1yMmFi8i4sXsNti1HDbONv60e0Yn6IgRI/jXv/4FQJ8+fbBYLHzyySfljnnzzTeJjIw0o7yzUnjxJL4BcPULcMsHEBAC+1ONYaRtX5UdEhrkz/hB7Vj+aD9G9WpNgK+VtD3HuX3KT9z2zmrW7j5m4jcgIuJltsyH1zrA9Gthzj3Gn691MPa7MZvNxoIFCxg6dCgOh4Off/6ZiIgI5syZU+64tLQ0OnXqZFKVlfOa8OIVrdJVFTsU7k+ByE5QmA2f3gaLHofS4rJDGjcI4J/XxLL80X4kdY/G38fKqt+OMmzyKpLeT2XD/mzTyhcR8Qpb5sNnd0HuwfL7cw8Z+2s5wKxevZoBAwbQuHFjLBZLuVdubu5Z37ty5Ur8/PxISEhgx44d5OXl8a9//Yuvv/6aEydOlB23bt06OnfuXKvfx/nwmvAyZswYtmzZwpo1a8wuxTUaxcDd30D3scb26v/B+4Pg+O5yhzULDuSp6zqwZHxfbkuMwtdqYdn2wwyd9COjZqxl66Gz/4CLiNQZDgcUF1TtVZgLXz8KVDSn8NS+RY8Zx53rs85jXuL69evp27cvl112GcuXL2fRokWEhYUxYMAAZs6cec5W4/nz5zNkyBAsFgtpaWkEBgYycuRIgoOD+frrrwGjrXnr1q1ueedFz3nxBr98DV/cb9yFCQgxHnQXO7TCQ/ccLeD1xTuY+/MBTndUX9Mxgr8PvIgLmzV0Xc0iIiaq8HkjxQXwrAnzO/5xEPzrV+stffr0oUWLFnz88cdl+8aOHUtaWhqrVq065/vbtm3Lq6++yjXXXMP48eNJSUnhp59+4m9/+xvHjx/nk08+4aeffqJbt27s3buXqKioan9bFdFzXuR3Fw+G+1dAy0QoyoHP7oSvxkNJ4RmHRjeuzyu3xPPt3/twbccIABZuOMSVr6YwbmY6e44WuLp6ERGphszMTFasWMHf/va3cvvr16+PxXLuB5Vu3bqVgwcPMmDAAMAYGjp9d+XGG29k4cKFFBUVsW7dOpo2beq04OJMvmYXIE4SGgUjvoIf/h/8+DqkvgN7V8PN04xOpT+5sFkDJt3eibH9c3n1u+18szmTz38+wLz1B7m5c0vG9r+Qlo2CXP99iIiYxS/IuAtSFXtWwkfDzn3cX2dDdI9zn7ca0tLSsNvtxMXFnbG/S5cuAOzYsYOHHnqIjIwM6tevz+zZs2nWrBlgDBldccUVZXc+1q1bx2233QZA37598fPz45tvvnHbybqgOy/exccPrviP8T9LUGPI2ABv94FNcyp9S7vmwbx9Zxe+HNuTfhc3xWZ38OmaffR7aSlPzNtEZu6Zd29ERLySxWIM31Tl1aY/BEcCld3psEBwC+O4c31WFe6W/JHdbqxnV1Dw+53yDRs2kJKSwu23305RURF/+9vfePvtt0lLS+P222/nnXfeKTt23rx5XHfddQD89ttvZGdnl4UUX19fhg4dypw5c9x2si4ovHini64whpFa9YDiPJh9N3z5IJScrPQtl7YMYeqIROaM7sHlFzamxOZgxqo99H5hCU8v2MKR/CIXfgMiIm7O6gNXPX9q48/h49T2Vf81jnOyrl27Uq9ePcaPH8+2bdtYuHAhQ4cOZcyYMXTr1o25c+eyefNmrr32WuLj43n99dfx8/MDICsri7Vr13LttdcCxt0af39/OnToUPb5N910E/Pnz2fz5s268yIuFhwJSV9C7/GABdKmwbsDjQUfz6JzdCM+GtmNT0Z1IyGmEUWldt5dsYveLyzhhUXbyD5RfNb3i4jUGbFD4ZYZEBxRfn9wpLG/ksaJmmratCmfffYZqampdOzYkQcffJCxY8fy8ssvA7Bx40Zefvll0tPTSU9PZ+vWrTz22GMAfPnllyQmJtKkSRPAGDLq0KED/v7+ZZ9/xRVXYLPZKC4udtvw4jXdRsnJySQnJ2Oz2di+fXvd6jY6l19/gM/vhYLD4FffWC8p7tZzvs3hcJCy4wivfPsL6/fnANAwwJe7e7bmnl6tCQ70q+3KRURqhVNXlbbbjDkw+ZnQINyY41ILd1yqatKkSaxdu5Zp06YBxpBSx44dARg6dCg9e/bk0UcfNaU2Z3UbeU14Oa1OtkpXRV4GzBkJu5cb2/F3wNUvgv+5J4o5HA6+35rFK99tL3suTEg9P+7rcwFJ3WOoH6B53yLiWZwaXtxMQUEBf/3rX9m2bRsBAQEMGjSIF154AYAXXniB2267zbQOIoWXSii8nIXdBikvwbL/gsMOTdsZ3UjNLqna2+0Ovt6Uwavfb2dnVj4Ajev7M7pvG+7oFk2gn3n/0hARqQ5vDi/uTM95keqz+kDfx+Cu+catzcPb4J1+8POHVXrCo9Vq4ZqOEXzzUG9evTWOmMZBHC0o5umFW+n9whJmrNpNUalnLEgmIiKeS+GlLmrdC+7/0WjhKz0J88YYT+gtyq/S232sFm64rCXfj+vDCzd1pEVoPbLyinhi3mb6v7SMT1P3UmKz1/I3ISIidZXCS13VoCn8dQ70/zdYrLDhU3inL2RsqvJH+PpYuSUhih8e6cP/u6494cEBHMg+yYTPNzLwlWV8vm4/NrtXjUqKiIgbUHipy6xW6P0IDF8IDSPh6A54dwCsnVqthcICfH24s3sMy8b349/XxtKkgT97jp5g3GfrGfRaCgs2HMSuECMiIk6i8CJGW9/9K+CiK6G0EBY8BHPuMVZDrYZAPx/u6dmalEf78dhV7Qip58fOrHzGfvwzV7+xnG83Z+Bl88NFxMPp7yTXctb1VngRQ/3GcNtMY3kBq6+xpMA7feDQ+mp/VJC/L6P7tmH5Y/14aOBFNAzwZVtGHvd+kMZ1yT+y9Jcs/YUhIqY6/cTZEydOmFxJ3XL6ep++/udLrdJypn2pxpICOfvAxx8GPQsJI6u9/sZp2SeKmbL8N6b+uJsTxUY3UpfoRoy7si092jQpd6zN7iB11zGy8gpp1jCQxNZh+FjP77wiImdz6NAhsrOzadasGUFBQVVakVnOj8Ph4MSJE2RlZREaGkpERMQZx+g5LwovNXfimNGF9MtXxvYlQ2Hom1Av9Lw/8kh+EW8v+5UZq/ZQVGp0I/Vo05iHr2xL5+gwFm06xFNfbuFQzu+LQUaEBDJxSCxXdTjzB11EpCYcDgcZGRlkZ2ebXUqdERoaSvPmzSsMigovCi/O4XDA6rfguyfAXgKh0XDzVGhRs1VGM3ML+d+SnXycupcSm/Hj1z4ymM0Hz5xjc/rH+607OinAiEitsNlslJSUmF2G1/Pz88PHp/KHmdbJ8KK1jWrRgTSYNQKy94DVz5gX0230eQ8jlX1s9kkm/bCDmWv2cbZmJAvQPCSQFY/11xCSiIiXqpPh5TTdeaklJ7Nh/gOwdb6xffHVcF0yBIXV+KPn/ryfh2aee2LwJ6O60b1N4xqfT0RE3I+WBxDnqxdqLPF+9UvGJN5fvoK3exuTe2uoqpPksvIKz32QiIh4PYUXqTqLBRJHwcjvIewCoxtp6mD48XWwn/9yAM0aVm1RtG83Z7D3qNoaRUTqOoUXqb6IOLh3GXS4CeylxoTeT26FgqPn9XGJrcOICAnkXPdfFm7MoM9LSxg5fQ3LdxzWs2JEROoohRc5P4HBcNN7cO1r4BsIO76FyT1hz8pqf5SP1cLEIbEAZwQYy6nXmH5t6N22KQ4HfL81izvfS2XAK8uYvnI3+UWlNf1uRETEg2jCrtRcxiaYNdxYG8niA/3+AT3HGWsnVUNVnvPy6+F8Pli1h9lp+8tCS4MAX4Z1bsmd3aNp07SB074tERFxHXUbKby4XlE+LHzYWJ0a4IJ+cOMUY/XqaqjqE3bzi0r5fN1+pq/cza+HC8r297qoCcN7xND34mZqqxYR8SAKLwov5nA4IP0jWPgIlJ6EBuFw07vQunctntLBip1HmL5yD4u3ZZYtht0qLIg7u0VzS5coQoJqtoaGiIjUPoUXhRdzZW01hpEObwOLFfo8Br3Hg7XyJys6w75jJ/hg9R5mrtlHzknjaZn1/Hy4/rIWJPWIpl1z/TyIiLgrhReFF/MVn4Cvx8PPHxrbrXsbw0gNm9f6qU8W25iXfoBpK3ezLSOvbH/X1mEM7xHDFbHh+PporrqIiDtReFF4cR/rZ8KCv0NJAdRvCje+A236u+TUDocxf2b6qt18szkT26k1CCJCArmjWzR/SYiicYMAl9QiIiJnp/Ci8OJeDm+H2SMgcxNggV4PQ9/HwcfXZSUcyjnJR6v38knqXo4WFAPg72tlSMdIhveI4dKWIS6rRUREzqTwovDifkpOwqLHIW2qsd2qhzGZN6SFS8soLLHx1cZDTF+5m/X7c8r2X9YqlOE9YhjcIQJ/Xw0piYi4msKLwov72jgbvnwIivOgXpgxjHTRFaaU8vPe40xfuZuFGw9RYjP+N2jSIIDbu7bir11bER5ctWULRESk5rwivJw4cYJLLrmEm2++mZdeeqnK71N48QBHfzW6kTI2GNuXPwj9/w0+fmC3GU/pzc80Wq2je9R6l9LhvCI+Sd3LRz/tITO3CABfq4XBl0YwvEc0nVo1qvLikSIicn68Irz885//ZOfOnURFRSm8eKOSQvju35D6jrHdMhHib4OUFyH34O/HBUfCVc9D7NDaL8lmZ9GmDKav3M3aPcfL9ndoEcxd3WMYGhdJoF/tBikRkbrK48PLjh07mDBhAkOGDGHTpk0KL95syzyY9wAU5VRywKk7HrfMcEmAOW3TgRxmrNrNvPSDFJUaK2Y3CvLjL4mtuKNbNC1C67msFhGRuqA6v7+rPTMxJSWFIUOGEBkZicViYe7cuWcck5ycTExMDIGBgXTt2pXU1NRqneORRx7hueeeq25p4olir4NRP4C1sqfgnsrWiyYYQ0ou0qFFCC8Mi2P14wOYMLgdLULrcfxECW8t/ZVez//AfR+sZeWvR7SytYiICardq1pQUEBcXBx33303N9544xlfnzlzJuPGjWPy5Ml07dqV1157jUGDBvHLL7/QrFkzAOLj4yktPXMl4G+//ZY1a9bQtm1b2rZty8qV516huKioiKKiorLt3Nzc6n5LYra8Q2AvOcsBDsg9YMyFad3LZWUBNKrvz/192jCq1wV8vzWTGat28+POo3yzOZNvNmfSNrwBd3WP4cZOLQjyd13rt4hIXVajYSOLxcIXX3zB9ddfX7ava9euJCQkMGnSJADsdjtRUVE88MADTJgw4Zyf+fjjj/Phhx/i4+NDfn4+JSUlPPzwwzzxxBMVHv/kk0/y1FNPnbFfw0YeZONsmHPPuY+76T24dFjt13MOOzLzmL5qN5+vO8CJYuNuUMNAX27pEsWd3aKJaVLf5ApFRDyPy+a8/Dm8FBcXExQUxOzZs8sFmqSkJLKzs5k3b161Pn/atGnnnPNS0Z2XqKgohRdPsms5TL/23MclLXD5nZezyTlZwpy0/cxYtZvdR08AYLFA37ZNSeoRQ++LmmLVytYiIlVSnfDi1PvcR44cwWazER4eXm5/eHg427Ztc+apygQEBBAQoEe8e7ToHkZXUe4hyua4/JnVz2iddiMh9fy4u2drhveIYdmOw0xfuZulvxxmyalX6yb1ubNbNMO6tCQ4UCtbi4g4i1sP0g8fPrzKxyYnJ5OcnIzN5rpJneIkVh+jHfqzuzC6iyoIMPYSmNIfhr4OHW5ydYVnZbVa6HdxM/pd3IzdRwqYsWoPs9buY9eRAv6zYAsvf/sLN3ZqSVKPaC5s1tDsckVEPJ5Tn4PepEkTfHx8yMzMLLc/MzOT5s1rdzXhMWPGsGXLFtasWVOr55FaEjvUaIcOjii/P7gFXPs6tOpuPJV39t3GE3pLTppS5rnENKnPE0NiWf2PAfy/6ztwUbMGFBTb+GD1Hga+ksJf313Nt5szyhaJFBGR6nPqnRd/f386d+7M4sWLy+a82O12Fi9ezNixY515KvFGsUOh3TUVP2H3sjtg6XOw/GVjfaT9a+DmadDkIrOrrlD9AF/u7BbNHV1bserXo0xbuZvvt2by486j/LjzKC0b1ePObtHcmhBFaJC/2eWKiHiUak/Yzc/PZ+fOnQBcdtllvPLKK/Tr14+wsDBatWrFzJkzSUpK4u233yYxMZHXXnuNzz77jG3btp0xF6Y26CF1Xu7XH2DOKDhxBPzqw7WvQtytZldVJfuPn+DD1Xv5dM1esk8YreEBvlauj29BUo8YYiP18yoidVetdhstXbqUfv36nbE/KSmJadOmATBp0iRefPFFMjIyiI+P54033qBr167VOU21/XHOy/bt2xVevFleBswZCbuXG9uX3QGDXwT/IHPrqqLCEhvz0w8ybeVuthz6/blEiTFh3NUjmkHtm+Pno5WtRaRu8fjlAWpCd17qCLsNlr0Ay54HHND0EmMYqVk7syurMofDQdqe40xbuZtFmzIoPTUPpnlwIH/t2oq/JLaiaUN10olI3aDwovBSd/y2DD4fZcyR8a0H17wMl/3V7KqqLTO3kI9W7+Hj1L0cyS8GwN/HyjUdI0jqEUN8VKi5BYqI1LI6GV40bFSH5WfB5/fCb0uM7bjb4OqXIKCBuXWdh6JSG19vzGDayt2k78su2x8XFUpS92iu6RhBgK9WthYR71Mnw8tpuvNSR9ntsOJlWPIsOOzQpC0MmwrNO5hd2Xlbvy+b6at2s2D9IYptxsrWTRr4c1tiK/7aNZrmIYEmVygi4jwKLwovddeelTD7Hsg7CL6BcNV/ofNw47n9HupIfhGfpu7lw9V7ycgtBMDHauGq9s1J6hFDQkwjLB78/YmIgMKLwktdV3AUvrgPdn5nbHe4Ca59DQI9++ehxGbnuy2ZTFu5m9Rdx8r2XxIRzPAe0QyNa0E9fw0piYhnUnhReBG7HVa9Cd8/BQ4bhF1gdCNFxJldmVNsOZjLB6t388XPBygsMYaUQoP8uLVLFHd0iyYqzDPaxkVETquT4UUTdqVC+1Jh1gjI3Q8+/jDoWUgY6dHDSH+UfaKYz9buY8aqPew/biyZYLHAgHbhDO8Rw+UXNtaQkoh4hDoZXk7TnRc5w4ljMG8M/PKVsR17HQx9EwJDzK3LiWx2Bz9sy2LGqt0s33GkbP+FzRqQ1D2aGzu1pH6Ab7njU3cdIyuvkGYNA0lsHYaPVSFHRMyj8KLwIn/mcMDq/8F3E40VqkOj4eap0KKz2ZU53c6sfGas2s2ctP0UFBurrDcM8OWmzi25q3s02zPzeOrLLRzKKSx7T0RIIBOHxHJVh4jKPlZEpFYpvCi8SGX2p8Hs4ZC9F6x+cMV/oNtorxlG+qO8whLmpO1nxqo9/Hak4KzHnv7u37qjkwKMiJhC4UXhRc7mZDbMHwtbvzS2L74GrpsEQWGmllVb7HYHy3ceYfqPu/jhl8OVHmcBmocEsuKx/hpCEhGXq87vb69Z/S05OZnY2FgSEhLMLkXcXb1QuOUDYzFHH3/4ZSG83Rv2rTG7slphtVro07Ypo3q3OetxDuBQTiHJS3ZyJL/INcWJiJwH3XmRuu1gOswaDsd3gdUXBjwB3R8Aq9fk+jLz0g/w4KfpVT4+pnEQnaPD6BzdiM7RjbioWQOsuiMjIrVEw0YKL1Idhbnw5YOw+XNj+6JBcP1bUL+xuXU52apfj3LblNXnPK5lo0D2Hy88Y3/DQF86tWpEl1NhJi4qtFwHk4hITSi8KLxIdTkckDYNvn4MbEXQMBKGvQ/R3c2uzGlsdgc9n/+BjJxCKvqf/o9zXvILS1m37zjr9hxn7e7jpO/L5mSJrdzxPlYLl0Q0pHOrRnSOMe7QtAit55LvRUS8j8KLwoucr4xNMCsJju4Eiw/0/ydc/nevGUZatOkQoz9cB1AuwJyr26jUZmfroTzS9hwjbW82abuPcTDnzLszESGBdIpuROdWjegS04hLIoLx8/GOaycitUvhReFFaqIoHxaOgw0zje02/eGGd6BBU3PrcpJFmw455TkvB7NPkrbnOGl7jrNu73E2H8zFZi//10k9Px/iokLK5s10atWI0CB/p30vIuI9FF4UXqSmHA74+UP4ajyUnoQGzeGmd6F1L7Mrc4raeMLuieJS1u/LMe7OnAo1uYWlZxx3YbMGdIluZNyhiW7EBU3qawkDEamb4UVrG0mtyNpqdCMd3gYWK/R5DHqPB6tWbz4Xu93Br4fzSdtznLV7jPkzFT0sr1GQ36k7M8a8mY4tQwj00/UVqWvqZHg5TXdexOmKC+CrRyH9Q2O7dW+48V1oGG5uXR7oaH4R6/Zmn7ozc4z1+3MoLrWXO8bPx0L7SGOo6XRnU7PgQJMqFhFXUXhReJHasP5TWDAOSgqgflO4cQq06Wd2VR6tuNTOpoM5rDs1zLR2z3EO5535gLyosHpGV9OpOzQXN2+opwCLeBmFF4UXqS2HtxvDSFmbAQv0ehj6Pg4+et6JMzgcDvYfP3kqyBwjbU822zJy+fPfUg0CfLmsVSidTgWay1qF0jDQz5yiRcQpFF4UXqQ2lZyERROM58IARF9uTOYNjjS1LG+VV1hC+r7ssknAP+/NJr+o/ERgiwUuDm9Il5hTd2dahREVVk8TgUU8iMKLwou4wsbZxpN5i/MhqLHRTn3RQLOr8no2u4NfMvJI23uctN3HSNt7nH3HTp5xXNOGAWXPm+kU3Yj2kcEE+GoisIi7UnhReBFXOfqr8VC7jI3G9uUPQf9/gY+GMFwpK7ew7M7M2j3H2XwwhxJb+b/a/H2txLUMoVN0I7pEh9GpVSiNGwSYVLGI/JnCi8KLuFJJIXz7L1gzxdiO6go3vQehUebWVYcVltjYeCCHtbt/f4jesYLiM467oEn9sufNdIluRJumWnxSxCx1MrzoOS9ius1zYf4DUJQL9RoZiztePNjsqgRjIvCuIwVld2fS9hxnR1b+GceF1POjU6tQ42nA0Y2IjwolyF+TsUVcoU6Gl9N050VMdWwXzB4BB382truPhQETwVePxHc32SeK+fnUM2fW7jlG+r5sCkvKP3PGx2ohNiK4bHmDztGNiKzG4pO18SRjEW+l8KLwImYqLYbvJ8Lq/xnbLTobK1Q3ijG1LDm7EpudrYdyy+bNpO0+TkbumYtPRp5afLLLqWfOXBLREN8KFp901hpSInWFwovCi7iDbQth7mgozIGAELhuEsQONbsqqYaD2SfLljZI23OcLYcqXnwyPsoYauoc04hOUY1Y9dsRRn+4jj//5Xqu1btF6jKFF4UXcRfZe2H23bB/jbGdeC9c+TT4qsvFExUUlbJ+fzZpu4+TttcINRUtPulrtVBqr/ivVgvQPCSQFY/11xCSyB8ovCi8iDuxlcDi/8DKN4ztiDgYNhUatzG3Lqkxu93BztOLT+42upp2VbD4ZEU+GdWN7m0a13KFIp6jOr+/zxyoFRHn8vGDK/8f3P4Z1AuDQ+vh7T6w6XOzK5MaslottA1vyG2JrXj5ljiWPNKXZ67vUKX3ZuWdOZ9GRKpG4UXEVdoOgvtXQKvuUJxndCUt+Lux3IB4jQuaNqjScc0aaqVskfOl8CLiSiEtIGkB9BxnbK99H94dCEd2mFuXOE1i6zAiQgI522yWiBCjbVpEzo/Ci4ir+fjCwIlwxxwIagKZm4xhpA2fmV2ZOIGP1cLEIbEAlQaYztGNNFlXpAYUXkTMcuFAYxgppheUFMDno2DeWCg+YXZlUkNXdYjgrTs60Tyk/NBQSD1jzasFGw6xcMMhM0oT8QrqNhIxm90Gy16AZc8DDmh6Cdw8DZq1M7syqaGKnrD7zMKtvP/jLgL9rMy6rweXtgwxu0wRt1AnW6W1tpF4vN+WGXdf8jPBLwiufgku+6vZVYmTldrsjJyxlqW/HCY8OID5Y3sSHqzJuyJ1Mrycpjsv4tHys4wA89tSYzvuNiPEBFStg0U8Q25hCTf+byU7s/Lp2DKEmfd2p56/j9lliZhKz3kR8VQNmsEdn0P/f4HFCus/gSn9IHOz2ZWJEwUH+vFeUhdCg/zYsD+H8bPX42X/jhSpVQovIu7G6gO9xxst1Q0j4Mh2mNIf0qaBfsF5jejG9Zl8R2d8rRYWbDjEG4t3ml2SiMdQeBFxVzGXG91IFw6E0kL48kGYMxKK8syuTJyk2wWNefrUE3lf/X67OpBEqkjhRcSd1W8Ct8+CgU+CxQc2zYa3extLDIhX+EtiK+6+vDUAD89KZ+P+HJMrEnF/Ci8i7s5qhZ5/hxFfQ3BLOPab8VTe1CkaRvIS/7i6HX0vbkphiZ2RM9aQmat1j0TORuFFxFO06gr3L4e2g8FWDF89ArOSoFD/Uvd0vj5W3rjtMi5s1oDM3CJGzVjLyWKb2WWJuC2FFxFPEhQGt30CVz4DVl/YMg8m94ID68yuTGrodAdSI3UgiZyTwouIp7FYoMdYuPtbCG0F2XvgvSth9VsaRvJw0Y3r85Y6kETOSeFFxFO17Az3LYd214K9BBZNgJl3wMnjZlcmNaAOJJFzU3gR8WT1QuHWD2Hwi+DjD9sWwOTesG+N2ZVJDfwlsRX39FQHkkhlFF5EPJ3FAl3vhXu+hUatIWcvTL0KfnwD7Hazq5Pz9I+rL1EHkkglFF5EvEXkZXDfMmh/A9hL4bt/wyd/gRPHzK5MzoOP1aIOJJFKKLyIeJPAEBg2Fa55BXwCYMc3MLkn7FlldmVyHtSBJFIxtwwvMTExdOzYkfj4ePr162d2OSKexWKBhHtg1GJofCHkHoBp18Dyl38fRrLbYNdy2Djb+NOuf9G7K3UgiZzJ4nDDGB8TE8OmTZto0KBBtd9bnSW1RbxeUR4sGAcbPzO22/SH9jfB0mcg9+DvxwVHwlXPQ+xQc+qUc/o0dS8TPt8IQPLtnbimY4TJFYk4V3V+f7vlnRcRcZKAhnDjOzD0TfCtB7/+APPHlA8uALmH4LO7YMt8c+qUc1IHksjvqh1eUlJSGDJkCJGRkVgsFubOnXvGMcnJycTExBAYGEjXrl1JTU2t1jksFgt9+vQhISGBjz76qLolisgfWSzQ6S645zvjqbwVOnUDdtEEDSG5MXUgiRiqHV4KCgqIi4sjOTm5wq/PnDmTcePGMXHiRNatW0dcXByDBg0iKyur7Jj4+Hg6dOhwxuvgQeNfgytWrCAtLY358+fz7LPPsmHDhkrrKSoqIjc3t9xLRCpQmG10IVXKYcyP2bPSVRVJNZ3uQLpIHUhSx9VozovFYuGLL77g+uuvL9vXtWtXEhISmDRpEgB2u52oqCgeeOABJkyYUO1zjB8/nvbt2zN8+PAKv/7kk0/y1FNPnbFfc15E/mTjbJhzz7mPu+k9uHRY7dcj523v0RNcl7yC4ydKuKZjBJNuuwyLxWJ2WSI1Ytqcl+LiYtLS0hg4cODvJ7BaGThwIKtWVa1Vs6CggLy8PADy8/P54YcfaN++faXHP/744+Tk5JS99u3bV7NvQsRbNQh37nFimlaNg8o6kBZuOMTri3eYXZKISzk1vBw5cgSbzUZ4ePm//MLDw8nIyKjSZ2RmZtKzZ0/i4uLo1q0bd911FwkJCZUeHxAQQHBwcLmXiFQguofRVcRZ/oXu4w+NYlxVkdRAtwsa88wNxhpIr32/Q2sgSZ1S2ew901xwwQWsX7++2u9LTk4mOTkZm03jvyIVsvoY7dCf3YURYCoYMbYVwzt94IZ34KKBZ35d3MqtCa3YnpnPeyt28fCsdKLC6tGxZajZZYnUOqfeeWnSpAk+Pj5kZmaW25+ZmUnz5s2deaozjBkzhi1btrBmjRakE6lU7FC4ZQYE/+kZIcEtjMUdm18KJ47CRzfBdxPBVmJOnVJlf+xAGjVjLRk56kAS7+fU8OLv70/nzp1ZvHhx2T673c7ixYvp3r27M08lIucrdig8tAmSFhiTc5MWwEMbTy3u+D0kjDSO+/E148m8OftNLVfO7s8dSPd+oA4k8X7VDi/5+fmkp6eTnp4OwK5du0hPT2fv3r0AjBs3jilTpjB9+nS2bt3K6NGjKSgoYMSIEU4tXERqwOoDrXsZXUWtexnbAH6BcM3LcPM0CAiGfT8ZayP98rWp5crZGWsgJZStgfSI1kASL1ftVumlS5dWuN5QUlIS06ZNA2DSpEm8+OKLZGRkEB8fzxtvvEHXrl2dUnBl/jjnZfv27WqVFqmpY7tg9gg4+LOx3X0sDJgIvv7m1iWVWv3bUe549ydK7Q4eGngRDw1sa3ZJIlVWnVZpt1zbqCa0tpGIE5UWGXNffnrL2G7R2Vi1ulG0uXVJpWau2ctjc7QGkngerW0kIs7hGwCD/wu3fgSBIXAgDd7uBVu/NLsyqcStCeXXQNqwP9vcgkRqgcKLiJzbJdfC/SugRRcozIGZd8BXjxp3ZsTt/OPqS+inDiTxYl4TXpKTk4mNjT3rA+1EpAZCW8Hdi6DHA8Z26tvw3pVw7Ddz65IzqANJvJ3mvIhI9W3/Br64D04eN7qShr4B7W8wuyr5E62BJJ5Ec15EpHa1HWQMI0V1g6JcmDUcFoyDEg1PuJNWjYOYfEdn/Hy0BpJ4F4UXETk/IS1h+ELoOc7YXvsevDsQjuw0ty4pp+sFjXn6+t/XQFqw4aDJFYnUnNeEF815ETGBjy8MnAh3zIGgJpC5Ed7uDRs+M7sy+YNyHUifrVcHkng8zXkREefIPQSfj4Ldy43ty+6EwS+Af5C5dQkANruDkdPXsOSXw4QHBzBvTE+ahwSaXZZIGc15ERHXC46Au+ZBn8cAC/z8Abw7AA7/YnZlgjqQxLsovIiI81h9oN8/4K65UL8ZZG2Bd/pC+sdmVyZAQ62BJF5C4UVEnO+CvkY3Uus+UHIC5o6GL+6H4gKzK6vz1IEk3kDhRURqR8NwuPML6PcvsFhh/SfGXZjMzWZXVuepA0k8ndeEF3Ubibghqw/0GQ9JX0LDCDiyHab0h7TpoOEKU92a0IqR6kASD6VuIxFxjYIjxlN5d35vbF96M1z7KgQ0NLeuOkwdSOJO1G0kIu6nfhO4fRYMfBIsPrBxFrzdBw5tMLuyOuvPHUijZqgDSTyDwouIuI7VCj3/DiO+guAWcOxX46m8a97VMJJJ/tiBtPGAOpDEMyi8iIjrtepmdCO1vQpsRbDwYWN9pMIcsyurk9SBJJ5G4UVEzBEUBrd9Clc+A1Zf2DLXWFrgwDqzK6uT1IEknsRrwou6jUQ8kMUCPcbC3d9ASCs4vhveuxJWT9YwkgnUgSSeQt1GIuIeTh6HeWNh2wJju921cN0kqNfI3LrqGHUgiVnUbSQinqdeI7j1Q2MxRx9/I8RM7g3715pdWZ2iDiTxBAovIuI+LBboeh/c8y00ioGcvfD+IFj5poaRXEgdSOLuFF5ExP1EXgb3pUDs9WAvhW//BZ/8BU4cM7uyOkMdSOLOFF5ExD0FhsDN0+CaV8AnALYvgsk9Ye9qsyurM9SBJO5K4UVE3JfFAgn3wMjvIawN5B6AqVfD8lfAbje7ujrhzx1I6/dlm1uQCAovIuIJIjrCfcuM9ZAcNlj8FHw0DPIPm11ZnfD41ZfQ7+KmFJXaGTVjLRk5hWaXJHWc14QXPedFxMsFNIQbp8DQN8E3EH5dbAwj7V5hdmVe748dSFl56kAS8+k5LyLieTK3GMsJHPkFLFbo+zj0ehisPmZX5tX2Hj3BdckrOH6ihGsujeDN2y7DarWYXZZ4CT3nRUS8W3gs3LsE4m4Hhx2WPAMf3AB5mWZX5tXKdSBtVAeSmEfhRUQ8k399uOEtuP4t8AuCXcuMYaTflppdmVf7YwfS64vVgSTmUHgREc8WfzvcuxSaxUJBFsy4Hn54Buyak1Fb1IEkZlN4ERHP1/RiGLkYOt0FOCDlBZg+FHIPmV2Z11IHkphJ4UVEvIN/kNGJdOO74N8A9qyAyZfDzu/NrswrqQNJzKTwIiLepePNcO8yCL8UThyFD2+C758EW6nZlXmdM9ZAmrUeu92rGljFTSm8iIj3aXKh8VTehJHG9opXYdo1kLPf3Lq8kDqQxAwKLyLinfwC4ZqXjfWRAoJh32qjG2n7N2ZX5nW6XtCYZ66/FDA6kL5crw4kqV0KLyLi3drfYCwtEBEPJ4/Dx7fAN/+E0mKzK/MqtyRElXUgPTJLHUhSuxReRMT7hV0A93wLXe83tldNgqmD4fgec+vyMupAElfxmvCitY1E5Kx8A2Dw83DrRxAYAgfWwtu9YOsCsyvzGqc7kNqGqwNJapfWNhKRuuf4Hph9txFgwLgjc8V/jIAjNaY1kOR8aG0jEZGzaRQNI76G7mON7Z8mw3tXwrHfzK3LS6gDSWqbwouI1E2+/jDoGbhtJtRrBIfS4e0+sPkLsyvzCupAktqk8CIiddvFV8H9KyCqGxTlwqzhsGAclGiyaU2pA0lqi8KLiEhISxi+AHqOM7bXvgfvDYSjv5pblxdQB5LUBoUXEREAHz8YOBHumANBjSFjI7zdGzbONrsyj6YOJKkNCi8iIn904UC4/0eI7gnF+TDnHpj/AJScNLsyj9Uw0I9370ogrL6/1kASp1B4ERH5s+AIuGse9H4UsMC6GTClPxz+xezKPJY6kMSZFF5ERCri4wv9/wl3fgH1m0HWFninL6R/bHZlHiuxdZg6kMQpFF5ERM6mTT+jG6l1Hyg5AXNHwxejobjA7Mo80i0JUYzqpQ4kqRmFFxGRc2kYbtyB6fdPsFhh/cfwTj/I3GJ2ZR5pwuBL6N+umTqQ5LwpvIiIVIXVB/o8CklfQsMIOPILTOlnzIfxrlVWap2P1cLrf4lXB5KcN4UXEZHqiOlpDCO1GQClhUYn0uf3QlGe2ZV5FHUgSU0ovIiIVFf9JvDX2TBgIlh8YONnxmTejI1mV+ZR1IEk58stw8uuXbvo168fsbGxXHrppRQUaGKciLgZqxV6jYMRX0FwCzi6E6YMgDXv/T6MZLfBruXGg+52LTe2pRx1IMn5sDgc7jdY26dPH55++ml69erFsWPHCA4OxtfXt0rvrc6S2iIiTnHimNGFtH2Rsd3+Bmh7FSx+CnL/8Ms4OBKueh5ih5pTpxt7ZuEWpizfRYCvlc/u605cVKjZJYmLVef3t9vdedm8eTN+fn706tULgLCwsCoHFxERUwSFwW2fwpVPg9XXWJn6i/vKBxeA3EPw2V2wZb45dboxdSBJdVQ7vKSkpDBkyBAiIyOxWCzMnTv3jGOSk5OJiYkhMDCQrl27kpqaWuXP37FjBw0aNGDIkCF06tSJZ599trolioi4nsUCPR6ApIXGPJgKnbrRvWiChpD+RB1IUh3VDi8FBQXExcWRnJxc4ddnzpzJuHHjmDhxIuvWrSMuLo5BgwaRlZVVdkx8fDwdOnQ443Xw4EFKS0tZvnw5//vf/1i1ahXfffcd3333XaX1FBUVkZubW+4lImIaewk4zvZL1wG5B2DPSpeV5CkaBvrxXtLvHUgPz0pXB5JUqNrhZfDgwTz99NPccMMNFX79lVdeYdSoUYwYMYLY2FgmT55MUFAQ77//ftkx6enpbNq06YxXZGQkLVq0oEuXLkRFRREQEMDVV19Nenp6pfU899xzhISElL2ioqKq+y2JiDhPfqZzj6tjosJ+70D6amMGr6kDSSrg1DkvxcXFpKWlMXDgwN9PYLUycOBAVq1aVaXPSEhIICsri+PHj2O320lJSeGSSy6p9PjHH3+cnJycste+fftq/H2IiJy3BuHOPa4O+mMH0hvqQJIKODW8HDlyBJvNRnh4+f8pw8PDycjIqNJn+Pr68uyzz9K7d286duzIRRddxLXXXlvp8QEBAQQHB5d7iYiYJrqH0VWEpfJjfAOhaTuXleSJtAaSnI3bdRuBMTS1ceNGNm3axCuvvGJ2OSIiVWf1MdqhgUoDTGmh8VC7vT+5qiqPpA4kqYxTw0uTJk3w8fEhM7P8WG5mZibNmzd35qnOkJycTGxsLAkJCbV6HhGRc4odCrfMgOCI8vuDW8AVT0NYG8jdD1MHw4pXwW43p043pw4kqYxTw4u/vz+dO3dm8eLFZfvsdjuLFy+me/fuzjzVGcaMGcOWLVtYs2ZNrZ5HRKRKYofCQ5sgaQHc9J7x50Mb4fIH4L5lcOnNRlfS90/CxzdDwRGzK3ZL6kCSilQ7vOTn55Oenl7WAbRr1y7S09PZu3cvAOPGjWPKlClMnz6drVu3Mnr0aAoKChgxYoRTCxcRcXtWH2jdCy4dZvxpPfX8l4CGcOMUGPKGMf9l5/cwuSfs/tHcet2UOpDkz6q9PMDSpUvp16/fGfuTkpKYNm0aAJMmTeLFF18kIyOD+Ph43njjDbp27eqUgiuTnJxMcnIyNpuN7du3a3kAEfEMmZth1nA4sh0sVuj7D2PNJGtlD7qruz5bs49H52wA4M3bLmNIXKTJFYkzVWd5ALdc26gmtLaRiHic4gJY+Ais/9jYvqCvcWemQTNTy3JHWgPJe3n02kYiInWOf3244S24/i3wC4LflsJbl8Nvy8yuzO2oA0lA4UVExH3E3w6jlkCzWCjIghnXwZJntQ7SH/y5A2nkjDXkF5ay6tejzEs/wKpfj2LThF6v5zXDRprzIiJeo/gELHoM1s0wtmN6GcNIf269rsP2HTvBdck/cqygmEA/K4Ulv7ebR4QEMnFILFd10PXyJJrzojkvIuINNsyCBQ9BcT4ENYEb34ELB5hdldt4c/EOXv5u+xn7Tz8a8K07OinAeBDNeRER8QYdb4Z7l0H4pXDiCHx4I3z/FNhKza7MdDa7g49T91b4tdP/In/qyy0aQvJSCi8iIu6syYUw8nvoco+xveIVmH4t5Bwwty6Tpe46xqGzTNZ1AIdyCvluSwZeNsAggK/ZBTjLH+e8iIh4Fb9AuPYViOkJ8/8P9q4yHmp3w2RoO8js6kyRlVe1LqP7P1xHkL8PUY2CiAoLIiqsHq3CgohqFESrxsaf9fz1TB1PozkvIiKe5NhvMGsEHEo3tns8AAMmgo+fqWW52qpfj3LblNVO+awmDQJoFVaPqLCgsmBzOuhEhNTDx3qWFcLFaTRhV+FFRLxZaRF8+29IfdvYbpkAw96H0Fbm1uVCNruDns//QEZOIRX9ErMAzUMCWfxwHzJyCtl3/CR7j51g/7ET7P3DK6/w7POH/HwsRIYad2taNjoVbv5w9yY0yA+LReHGGRReFF5EpC7Y+iXMGwOFORAYYjzkrt01ZlflMos2HWL0h+sAygWY6nQb5ZwoYd9xI8jsOxVo9h0/yb5jJ9h//AQltrP/imwY4EvLsCBanQ40p1+NgmjZqB6BfhqSqiqFF4UXEakrju+B2SPgQJqx3XU0XPEf8PU3ty4XWbTpEE99uaXc5F1nPefFZneQmVv4e6g5FWxO/3dWXtE5PyM8OOBPQ1G/370JbxiIVUNSZRReFF5EpC4pLYbFT8GqScZ25GUwbCqEtTa3Lhex2R2k7jpGVl4hzRoGktg6zCXzVApLbOwvu2tzsvzdm2MnKCg+ewOJv6+VlqH1ygWasuGpxkEEB9ateUx1MrzoCbsiUuf98jXMHQ0nj0NAMAx9E9pfb3ZVdZLD4eD4iZKyMLP31DDU6aBzIPvkOZ9BE1LPryzUnB6KOj001SK0Hv6+3vW0kzoZXk7TnRcRqdNy9sPsu2HfT8Z2wki48hmj3VrcRqnNzqGcwlNDUeXv3uw/foIj+cVnfb/VAs2DA/9w1yaoXNBp2iCgViYS1+ZdLoUXhRcRqctsJbDkGVjxqrHdvCPcPA0atzG1LKm6gqJS9h0vPxz1x6Dzx7WcKhLoZy2bZ2MMRZWfUNwgoPqPeavN+UWg8KLwIiICsON7+OJeOHEU/BvAkNfh0mFmVyU15HA4OJJf/PtQ1NHyd28O5ZzkXKsihNX3PzUUZYSaP969iQgJxNen/JDU6c6uP3+sM9eRUnhReBERMeQehDkjYc+Pxnbn4XDVf8GvnqllSe0pLrVzMPtkuUDzx7s22SdKzvp+H6uFyNDAsjk2LRrV473lu8g+WfH7Tj9TZ8Vj/Ws0hKTwovAiIvI7Wyks+y+kvAQ4oFl7YxipaVuzKxMT5BaWnBqGKh9qjDs5JykuPfuQVGU+GdWN7m0an39d1fj9rbWNRES8nY8v9P8XRF8On98LWZvhnT5wzSsQf5vZ1YmLBQf60T4yhPaRIWd8zW53kJVXZASaU8NRP+48wprdx8/5uVVdb8oZdOdFRKQuycuEz0fCrhRjO/6vcPWL4F/f3LrEbVV1HSlX3nnxriZxERE5u4bhcOdc6PsPsFgh/SOY0h+ytppdmbipxNZhRIQEUtlsFgtG11Fi6zCX1aTwIiJS11h9oO9jcNd8aNAcDm+Dd/rBug/Au27GixP4WC1MHBILcEaAOb09cUisS1ffVngREamrWveC+1dAm/5QehLmjzXmxBTlm12ZuJmrOkTw1h2daB5S/mGHzUMCndImXV2a8yIiUtfZ7fDja/DD0+CwQeMLjW6k5peaXZm4GT1ht5YovIiInKc9q2DOPZB7AHwCYPB/ofMIqIXHzIv8mSbsiohI9UV3h/uWw0WDwFYEC/5urJNUmGt2ZSLlKLyIiMjv6jeG2z6FK/4fWH1h8+fwdm84mG52ZSJlvCa8JCcnExsbS0JCgtmliIh4NqsVLv8/GLEIQlrB8V3w3hXw0zvqRhK3oDkvIiJSuZPHYe4Y+GWhsX3JEBg6CeqFmlqWeB/NeREREeeo1wj+8pGxmKPVD7Z+CW/3gv1pZlcmdZjCi4iInJ3FAt1Gwz3fQGg0ZO+F9wfBqmQNI4kpFF5ERKRqWnSG+5dD7HVgL4Fv/gGf3AYnjpldmdQxCi8iIlJ1gSFw83S45mXjWTDbv4bJvWDvT2ZXJnWIwouIiFSPxQIJI2Hk9xDWBnL3w9TBsOI142m9IrVM4UVERM5PREe4bxl0GGYsK/D9RPj4Fig4YnZl4uUUXkRE5PwFNISb3oUhr4NvIOz8Dib3hD0rza5MvJjCi4iI1IzFAp2Hw6gfoElbyDsE066BlBc1jCS1QuFFREScI7w9jFoCcbeBw26sUv3hjZCfZXZl4mW8JrxoeQARETcQ0ABumAzX/Q/8guC3JcYw0m/LzK5MvIiWBxARkdqRtQ1mDYfDWwEL9HkM+jwKVh+zKxM3pOUBRETEfM3aGfNgLrsTcMCy/8KM6yAvw+zKxMMpvIiISO3xD4LrJsGNU8CvPuxeDm9dDjsXm12ZeDCFFxERqX0dbzGeCRPeAU4cgQ9vgsX/AVup2ZWJB1J4ERER12hykfFU3i53Aw5Y/jJMHwI5B8yuTDyMwouIiLiOXz249lUYNhX8G8LelUY30vZvza5MPIjCi4iIuF6HG41hpIg4OHkMPr4Zvv032ErMrkw8gMKLiIiYo3EbuOc7SLzP2F75Bky9GrL3mVuXuD2FFxERMY9vAFz9AtzyAQSEwP5UYxhp21dmVyZuTOFFRETMFzsU7k+ByE5QmA2f3gaLHofSYrMrEzek8CIiIu6hUQzc/Q10H2tsr/4fvD8Iju82sypxQwovIiLiPnz9YdAzcNunEBgKB9fB5N6wZb7ZlYkbUXgRERH3c/FguH8FtEyEohz47E74ajyUFJpdmbgBhRcREXFPoVEw4iu4/EFjO/UdeO8KOPqruXWJ6dwuvPzyyy/Ex8eXverVq8fcuXPNLktERMzg4wdX/Af+OhuCGkPGBni7D2yaY3ZlYiKLw+FwmF1EZfLz84mJiWHPnj3Ur1+/Su+pzpLaIiLiQXIPwux7jKfyAnQeDlf9F3z8Yc9KyM+EBuEQ3QOsPqaWKtVXnd/fvi6q6bzMnz+fAQMGVDm4iIiIFwuOhKQvYdl/IeUlSJtmrE5tK4L8rPLHXfW80X4tXqnaw0YpKSkMGTKEyMhILBZLhUM6ycnJxMTEEBgYSNeuXUlNTT2v4j777DNuvfXW83qviIh4IR9f6P8vuPNzCAiGnH3lgwtA7iH47C51KHmxaoeXgoIC4uLiSE5OrvDrM2fOZNy4cUycOJF169YRFxfHoEGDyMr6/YcrPj6eDh06nPE6ePBg2TG5ubmsXLmSq6+++jy+LRER8Wqt+4BfUCVfPDUbYtEEsNtcVpK4TrWHjQYPHszgwYMr/forr7zCqFGjGDFiBACTJ09m4cKFvP/++0yYMAGA9PT0c55n3rx5XHnllQQGBp71uKKiIoqKisq2c3Nzq/BdiIiIR9uzEvIzznKAA3IPGMe17uWyssQ1nNptVFxcTFpaGgMHDvz9BFYrAwcOZNWqVdX6rKoOGT333HOEhISUvaKioqpdt4iIeJj8TOceJx7FqeHlyJEj2Gw2wsPDy+0PDw8nI+NsCbm8nJwcUlNTGTRo0DmPffzxx8nJySl77dun1UhFRLxeg/BzHwPGvBjxOm7ZbRQSEkJmZtXSckBAAAEBAbVckYiIuJXoHkZXUe4hyua4VGTR48ZxzTu4rDSpfU6989KkSRN8fHzOCB6ZmZk0b97cmac6Q3JyMrGxsSQkJNTqeURExA1YfYx2aAAsf/riqe3ARnBsJ7w7ANZOBfd9rJlUk1PDi7+/P507d2bx4sVl++x2O4sXL6Z79+7OPNUZxowZw5YtW1izZk2tnkdERNxE7FC4ZQYER5TfHxwJt3wAD6TBRVdCaSEseAjm3AOFaurwBtUeNsrPz2fnzp1l27t27SI9PZ2wsDBatWrFuHHjSEpKokuXLiQmJvLaa69RUFBQ1n0kIiLiNLFDod01lT9h97aZsOpNWPwfY0mBgz/DzdMgIs7UsqVmqr08wNKlS+nXr98Z+5OSkpg2bRoAkyZN4sUXXyQjI4P4+HjeeOMNunbt6pSCK5OcnExycjI2m43t27dreQAREfndvlSYfbfxUDsffxj0LCSMBMufh5zELNVZHsCt1zY6H1rbSEREKnTiGMwbA798ZWxfMhSGvgn1Qk0tSwzV+f3tdqtKi4iI1IqgMPjLx8ZijlY/2Dof3u4NB9LMrkyqSeFFRETqDosFuo2Ge76B0GjI3gPvDYJV/1M3kgfxmvCiVmkREamyFp3hvhRj6MheAt88Dp/ebgwtidvTnBcREam7HA5Y8y588w+wFUNIFAx7H6ISza6sztGcFxERkaqwWCBxFIz8HsIuMLqRpg6GH18Hu93s6qQSCi8iIiIRcXDvMuhwE9hL4bsn4JNboeCo2ZVJBRReREREAAKD4ab34NrXwDcQdnwLk3saD8ATt+I14UUTdkVEpMYsFugyAkYuhsYXQd5BmHYtpLykYSQ3ogm7IiIiFSnKh4UPw4ZPje0L+sGNU6BBU3Pr8lKasCsiIlJTAQ3ghslwXTL41oPflsDky2FXitmV1XkKLyIiIpWxWOCyO+DepdC0nbH444zrYOl/wW4zu7o6S+FFRETkXJq1g1FLjCDjsMPS5+CD6yEvw+zK6iSvCS+asCsiIrXKP8gYQrrhHfCrbwwfTe4Jv/5gdmV1jibsioiIVNfh7TB7BGRuAizQ62Ho+zj4+JpdmcfShF0REZHa1LSt8VTeziMAByx/CaYPgdyDZldWJyi8iIiInA+/ejDkNePBdv4NYe9KYxhpx3dmV+b1FF5ERERq4tJhcN8yaN4RThyFj4YZywvYSsyuzGspvIiIiNRU4zZwz3eQeK+x/ePrMPVqyN5nbl1eymvCi7qNRETEVH6BcPWLcMsMCAiB/anGMNK2r8yuzOuo20hERMTZju+GWSPg4Dpju9sYGPgk+PqbWZVbU7eRiIiImRrFwN3fGKEFYHUyTL3KCDVSYwovIiIitcHXH656Fv7yCQSGwoE0mNwbtsw3uzKPp/AiIiJSm9pdDfcvh5aJUJQDn90JX42H0iKzK/NYCi8iIiK1LbQVjPgKLn/Q2E59B967Ao7+am5dHkrhRURExBV8/OCK/8Dts6BeGBxaD2/3gU2fm12Zx1F4ERERcaW2V8L9K6BVdyjOM9ZI+vIhKDlpdmUeQ+FFRETE1UJaQNIC6PUIYIG0qfDuQDiyw+zKPILXhBc9pE5ERDyKjy8M+Dfc+TkENTFWqH67D6yfaXZlbk8PqRMRETFbXgbMGQm7lxvbl90Bg18E/yBz63IhPaRORETEkzRsDnfNg76PAxb4+UOY0h+ytpldmVtSeBEREXEHVh/oOwGS5kODcDi8Fd7pCz9/ZHZlbkfhRURExJ207m10I13QD0pPwry/wRf3Q1G+2ZW5DYUXERERd9OgGdzxOfT/N1issP4TmNIPMjebXZlbUHgRERFxR1Yr9H4Ehi+EhpFwZLsxDyZtGnhXr021KbyIiIi4s+gexjDShVdAaSF8+SDMuQcKc82uzDQKLyIiIu6ufmO4/TNjeQGLD2yaA+/0MZYYqIMUXkRERDyB1Wos7Hj3IghuCcd+M57Kmzqlzg0jKbyIiIh4kqhEuH85XHw12Irhq0dgVhIU5phdmcsovIiIiHiaoDD4y8cw6Dmw+sGWeTC5FxxIM7syl/Ca8KK1jUREpE6xWKD73+CebyC0FWTvgfcGweq3vH4YSWsbiYiIeLqT2TB/LGz90ti++Bq4bpJxh8ZDaG0jERGRuqReKNzyAVz9Evj4wy8L4e3esG+N2ZXVCoUXERERb2CxQOIouOc7aNQacvbB1KvgxzfAbje7OqdSeBEREfEmkfFwXwq0vxHspfDdv+GTv0DBUbMrcxqFFxEREW8TGAzD3odrXwOfANjxDUzuCXtWmV2ZUyi8iIiIeCOLBbqMgFE/QOMLIe8gTLsGlr/s8cNICi8iIiLerHkHuHcZdLwVHDZY/B/46CbIP2x2ZedN4UVERMTbBTSAG96GoZPAtx78+oMxjLRrudmVnReFFxERkbrAYoFOd8K9S6BpO8jPgBlDYenzYLeZXV21KLyIiIjUJc0uMebBxN8BDjssfRY+uB7yMs2urMoUXkREROoa//pwfbIxlORXH3alwOTL4dclZldWJQovIiIidVXcX+DepdCsPRQchg9ugB+eBlup2ZWdlcKLiIhIXda0LYxaDJ2HAw5IedGYC5N70OzKKqXwIiIiUtf51YMhr8NN74F/A9jzo9GNtON7syurkFuGl1dffZX27dsTGxvL//3f/+FlC1+LiIi4p0uHGUsLNO8IJ44az4P5biLYSoyv221Ge/XG2cafJnUpWRxulgwOHz5Mt27d2Lx5M35+fvTu3ZuXXnqJ7t27V+n91VlSW0RERCpQUgjf/gvWTDG2o7oa82NSXiw/nBQcCVc9D7FDa3zK6vz+dss7L6WlpRQWFlJSUkJJSQnNmjUzuyQREZG6wy8QrnkJbp4OAcGw7ydY8Pcz58HkHoLP7oIt811aXrXDS0pKCkOGDCEyMhKLxcLcuXPPOCY5OZmYmBgCAwPp2rUrqampVf78pk2b8sgjj9CqVSsiIyMZOHAgbdq0qW6ZIiIiUlPtr4dRS8DqV8kBpwZvFk1w6RBStcNLQUEBcXFxJCcnV/j1mTNnMm7cOCZOnMi6deuIi4tj0KBBZGVllR0THx9Phw4dzngdPHiQ48ePs2DBAnbv3s2BAwdYuXIlKSkpldZTVFREbm5uuZeIiIg4Sd4hsJec5QAH5B6APStdVpJvdd8wePBgBg8eXOnXX3nlFUaNGsWIESMAmDx5MgsXLuT9999nwoQJAKSnp1f6/lmzZnHhhRcSFhYGwDXXXMPq1avp3bt3hcc/99xzPPXUU9X9NkRERKQq8qv45N2qHucETp3zUlxcTFpaGgMHDvz9BFYrAwcOZNWqVVX6jKioKFauXElhYSE2m42lS5dy8cUXV3r8448/Tk5OTtlr3759Nf4+RERE5JQG4c49zgmqfeflbI4cOYLNZiM8vPw3EB4ezrZt26r0Gd26dePqq6/msssuw2q1MmDAAIYOrXwWc0BAAAEBATWqW0RERCoR3cPoKso9RNkcl3Isxteje7isJLfsNnrmmWfYunUrmzdv5o033sBisZzzPcnJycTGxpKQkOCCCkVEROoIq4/RDg3An38fn9q+6r/Gca4qyZkf1qRJE3x8fMjMLD/ulZmZSfPmzZ15qjOMGTOGLVu2sGbNmlo9j4iISJ0TOxRumQHBEeX3B0ca+53wnJfqcOqwkb+/P507d2bx4sVcf/31ANjtdhYvXszYsWOdeSoRERFxpdih0O4ao6soP9OY4xLdw6V3XE6rdnjJz89n586dZdu7du0iPT2dsLAwWrVqxbhx40hKSqJLly4kJiby2muvUVBQUNZ9VFuSk5NJTk7GZjPnUcUiIiJez+oDrXuZXUX1lwdYunQp/fr1O2N/UlIS06ZNA2DSpEm8+OKLZGRkEB8fzxtvvEHXrl2dUvC5aHkAERERz1Od399ut7ZRTSm8iIiIeB6PX9tIREREpDJeE17UKi0iIlI3aNhIRERETKdhIxEREfFaCi8iIiLiURReRERExKN4TXjRhF0REZG6wesm7Obk5BAaGsq+ffs0YVdERMRD5ObmEhUVRXZ2NiEhIWc91qlrG7mDvLw8AKKiokyuRERERKorLy/vnOHF6+682O12Dh48SMOGDbFYLCQkJFS40nRF+8+173QqdNVdncpqr433V+XYsx2j66zrfC7eep0r2l9XrnNVjj+f61zZ19zpOldWY229vy783eFwOMjLyyMyMhKr9eyzWrzuzovVaqVly5Zl2z4+PhVe3Ir2V3VfcHCwS/7nqKz22nh/VY492zG6zrrO5+Kt17mi/XXlOlfl+PO5zpV9zZ2uc2Xnr63315W/O851x+U0r5mwW5kxY8ZUeX9V97lKTc9dnfdX5dizHaPr7LxjdZ1r/n5XXueK9teV61yV48/nOlf2NXe6zs44v7v+TLvb3x0V8bpho9qkp/e6hq6za+g6u4aus2voOruOO1xrr7/z4kwBAQFMnDiRgIAAs0vxarrOrqHr7Bq6zq6h6+w67nCtdedFREREPIruvIiIiIhHUXgRERERj6LwIiIiIh5F4UVEREQ8isKLiIiIeBSFFydZsGABF198MRdddBHvvvuu2eV4rRtuuIFGjRoxbNgws0vxavv27aNv377ExsbSsWNHZs2aZXZJXik7O5suXboQHx9Phw4dmDJlitklebUTJ04QHR3NI488YnYpXismJoaOHTsSHx9Pv379au08apV2gtLSUmJjY1myZAkhISF07tyZlStX0rhxY7NL8zpLly4lLy+P6dOnM3v2bLPL8VqHDh0iMzOT+Ph4MjIy6Ny5M9u3b6d+/fpml+ZVbDYbRUVFBAUFUVBQQIcOHVi7dq3+7qgl//znP9m5cydRUVG89NJLZpfjlWJiYti0aRMNGjSo1fPozosTpKam0r59e1q0aEGDBg0YPHgw3377rdlleaW+ffvSsGFDs8vwehEREcTHxwPQvHlzmjRpwrFjx8wtygv5+PgQFBQEQFFREQ6HA/17snbs2LGDbdu2MXjwYLNLESdQeAFSUlIYMmQIkZGRWCwW5s6de8YxycnJxMTEEBgYSNeuXUlNTS372sGDB2nRokXZdosWLThw4IArSvcoNb3OUnXOvNZpaWnYbDaioqJquWrP44zrnJ2dTVxcHC1btmT8+PE0adLERdV7Dmdc50ceeYTnnnvORRV7JmdcZ4vFQp8+fUhISOCjjz6qtVoVXoCCggLi4uJITk6u8OszZ85k3LhxTJw4kXXr1hEXF8egQYPIyspycaWeTdfZdZx1rY8dO8Zdd93FO++844qyPY4zrnNoaCjr169n165dfPzxx2RmZrqqfI9R0+s8b9482rZtS9u2bV1Ztsdxxs/zihUrSEtLY/78+Tz77LNs2LChdop1SDmA44svvii3LzEx0TFmzJiybZvN5oiMjHQ899xzDofD4fjxxx8d119/fdnXH3zwQcdHH33kkno91flc59OWLFniuOmmm1xRplc432tdWFjo6NWrl2PGjBmuKtWj1eRn+rTRo0c7Zs2aVZtlerzzuc4TJkxwtGzZ0hEdHe1o3LixIzg42PHUU0+5smyP44yf50ceecQxderUWqlPd17Oobi4mLS0NAYOHFi2z2q1MnDgQFatWgVAYmIimzZt4sCBA+Tn5/P1118zaNAgs0r2SFW5zuIcVbnWDoeD4cOH079/f+68806zSvVoVbnOmZmZ5OXlAZCTk0NKSgoXX3yxKfV6qqpc5+eee459+/axe/duXnrpJUaNGsUTTzxhVskeqSrXuaCgoOznOT8/nx9++IH27dvXSj2+tfKpXuTIkSPYbDbCw8PL7Q8PD2fbtm0A+Pr68vLLL9OvXz/sdjuPPvqougWqqSrXGWDgwIGsX7+egoICWrZsyaxZs+jevbury/VoVbnWP/74IzNnzqRjx45l494ffPABl156qavL9VhVuc579uzh3nvvLZuo+8ADD+gaV1NV/+6QmqnKdc7MzOSGG24AjE66UaNGkZCQUCv1KLw4ydChQxk6dKjZZXi977//3uwS6oSePXtit9vNLsPrJSYmkp6ebnYZdcrw4cPNLsFrXXDBBaxfv94l59Kw0Tk0adIEHx+fMybRZWZm0rx5c5Oq8j66zq6ja+0aus6uoevsGu52nRVezsHf35/OnTuzePHisn12u53FixdruMKJdJ1dR9faNXSdXUPX2TXc7Tpr2AhjYtHOnTvLtnft2kV6ejphYWG0atWKcePGkZSURJcuXUhMTOS1116joKCAESNGmFi159F1dh1da9fQdXYNXWfX8KjrXCs9TB5myZIlDuCMV1JSUtkxb775pqNVq1YOf39/R2JiomP16tXmFeyhdJ1dR9faNXSdXUPX2TU86TprbSMRERHxKJrzIiIiIh5F4UVEREQ8isKLiIiIeBSFFxEREfEoCi8iIiLiURReRERExKMovIiIiIhHUXgRERERj6LwIiIiIh5F4UVEREQ8isKLiIiIeBSFFxEREfEo/x/K1fwAqV4KugAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -701,10 +700,88 @@ } ], "source": [ - "plt.plot(n_galaxies, jnp.abs(peak_gs[:, 0] - 0.02), '-o')\n", - "plt.plot(n_galaxies, sigma_e/ jnp.array(n_galaxies), '-o')\n", + "plt.plot(n_galaxies, jnp.abs(peak_gs[:, 0] - 0.02), '-o', label=\"$|\\hat{g} - g|$\")\n", + "plt.plot(n_galaxies, sigma_e/ jnp.array(n_galaxies), '-o', label=\"$\\sigma_e / N$\")\n", "plt.xscale('log')\n", - "plt.yscale(\"log\")" + "plt.yscale(\"log\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "42edd2b9-adf7-4c30-aa47-920dcadc1bfd", + "metadata": {}, + "source": [ + "## Sanity check scatter of magnitude after shear" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "9e8f2984-b14e-475e-93e5-6a3e44db99e0", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(Array(0.00070613, dtype=float64), Array(0.00060315, dtype=float64), 0.001)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# sanity check magnitude scatter\n", + "from bpd.prior import sample_ellip_prior, shear_transformation, sample_mag_ellip_prior\n", + "k1 = random.key(42)\n", + "g1 = 0.02\n", + "sigma_e = 1e-3\n", + "e_samples = sample_ellip_prior(k1, sigma=sigma_e, n=100_000)\n", + "e_sheared = shear_transformation(e_samples, jnp.array([g1, 0.]))\n", + "\n", + "ep_mag = jnp.sqrt(e_sheared[:, 0]**2 + e_sheared[:, 1]**2)\n", + "e_mag = jnp.sqrt(e_samples[:, 0]**2 + e_samples[:, 1]**2)\n", + "\n", + "ep_mag.std(), e_mag.std(), sigma_e" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "46623275-179a-4a9a-8f77-0b31f14f39ff", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(Array(0.00070637, dtype=float64),\n", + " Array(0.00070665, dtype=float64),\n", + " Array(0.00060315, dtype=float64))" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "e_sheared[:, 0].std(), e_samples[:, 0].std(), e_mag.std()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf9cccd1", + "metadata": {}, + "outputs": [], + "source": [ + "# error on mean shear? " ] }, { @@ -718,6 +795,14 @@ "## Test no noise" ] }, + { + "cell_type": "markdown", + "id": "3987466f", + "metadata": {}, + "source": [ + "**Note:** Does not work" + ] + }, { "cell_type": "code", "execution_count": null, @@ -1036,7 +1121,7 @@ "kernelspec": { "display_name": "bpd_gpu2", "language": "python", - "name": "bpd_gpu2" + "name": "python3" }, "language_info": { "codemirror_mode": { diff --git a/notebooks/test-shear-inf-with-prior1.ipynb b/notebooks/test-shear-inf-with-prior1.ipynb index 1ee9588..d0a2e1f 100644 --- a/notebooks/test-shear-inf-with-prior1.ipynb +++ b/notebooks/test-shear-inf-with-prior1.ipynb @@ -319,7 +319,7 @@ "kernelspec": { "display_name": "bpd_gpu2", "language": "python", - "name": "bpd_gpu2" + "name": "python3" }, "language_info": { "codemirror_mode": {