-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
218 lines (165 loc) · 6.14 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# search.py
# ---------
# Licensing Information: Please do not distribute or publish solutions to this
# project. You are free to use and extend these projects for educational
# purposes. The Pacman AI projects were developed at UC Berkeley, primarily by
# John DeNero ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and Pieter
# Abbeel in Spring 2013.
# For more info, see http://inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
"""
In search.py, you will implement generic search algorithms which are called
by Pacman agents (in searchAgents.py).
"""
import util
from util import Stack
from util import PriorityQueue
from util import Queue
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def expand(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (child,
action, stepCost), where 'child' is a child to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that child.
"""
util.raiseNotDefined()
def getActions(self, state):
"""
state: Search state
For a given state, this should return a list of possible actions.
"""
util.raiseNotDefined()
def getNextState(self, state, action):
"""
state: Search state
action: action taken at state
For a given state, this should return the next state after taking action from state.
"""
util.raiseNotDefined()
def getActionCost(self, state, action, next_state):
"""
state: Search state
action: action taken at state.
next_state: next Search state after taking action.
For a given state, this should return the cost of the (s, a, s') transition.
"""
util.raiseNotDefined()
def getCostOfActionSequence(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other
maze, the sequence of moves will be incorrect, so only use this for tinyMaze
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
e = Directions.EAST
return [w, w, w, w, s, s, e, s, s, w]
def depthFirstSearch(problem):
stack = Stack()
visited = set()
start_state = problem.getStartState()
vertex = {"from": None, "to": None, "current_pos": start_state}
stack.push(vertex)
while not stack.isEmpty():
vertex = stack.pop()
current_state = vertex["current_pos"]
if current_state in visited:
continue
visited.add(current_state)
if problem.isGoalState(current_state):
break
for action in problem.getActions(current_state):
next_state = problem.getNextState(current_state, action)
if next_state not in visited:
next_vertex = {"from": vertex, "to": action, "current_pos": next_state}
stack.push(next_vertex)
return getPath(vertex)
def getPath(vertex):
actions = []
while vertex["from"] != None:
actions.insert(0, vertex["to"])
vertex = vertex["from"]
return actions
def breadthFirstSearch(problem):
queue = Queue()
visited = set()
start_state = problem.getStartState()
vertex = {"from": None, "to": None, "current_pos": start_state}
print(problem.getActions(start_state))
queue.push(vertex)
while not queue.isEmpty():
vertex = queue.pop()
current_pos = vertex["current_pos"]
if current_pos in visited:
continue
visited.add(current_pos)
if problem.isGoalState(current_pos):
break
for action in problem.getActions(current_pos):
next_state = problem.getNextState(current_pos, action)
if next_state not in visited:
next_vertex = {"from": vertex, "to": action, "current_pos": next_state}
queue.push(next_vertex)
return getPath(vertex)
def uniformCostSearch(problem):
"Search the node of least total cost first."
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
start = problem.getStartState()
queue = PriorityQueue()
visited = set()
vertex = {"from": None, "to": None, "current_pos": start}
cost = {}
queue.push(vertex, 0)
cost[start] = 0
while not queue.isEmpty():
vertex = queue.pop()
state = vertex["current_pos"]
if problem.isGoalState(state):
break
visited.add(vertex["current_pos"])
for next_state, action, stepCost in problem.expand(state):
new_cost = cost[state] + stepCost
if next_state not in visited:
cost[next_state] = new_cost
total_cost = new_cost + heuristic(next_state, problem)
next_vertex = {"from": vertex, "to": action, "current_pos": next_state}
queue.update(next_vertex, total_cost)
return getPath(vertex)
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch