-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmatrix.py
462 lines (372 loc) · 12.4 KB
/
matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#!/usr/bin/env python
from sys import stdout
__author__ = 'Laurence Armstrong'
authorship_string = "{} created on {} by {} ({})\n{}\n".format(
"matrix.py", "24/07/15", __author__, 15062061, "-----" * 15) \
if __name__ == '__main__' else ""
stdout.write(authorship_string)
from vector import Vector
class Matrix(object):
# Initialize matrix
def __init__(self, *elements):
if not elements:
raise DimensionError("Dimensions cannot be zero")
self.elements = []
vec_len = len(elements[0])
for element in elements:
if len(element) != vec_len:
raise DimensionError("Matrix components not of consistent length")
self.elements.append(Vector(*element))
# self.index = 0 # Iteration start index
# FOLLOWING FUNCTION DEFINE BUILT IN OPERATIONS ON MATRICIES
def __iter__(self):
"""
Make the matrix iterable
"""
# self.index = 0
return iter(self.elements)
# def next(self):
# """
# Access next item
# """
# if self.index == len(self.elements):
# raise StopIteration
#
# self.index += 1
#
# return self.elements[self.index - 1]
def __str__(self):
"""
Correctly print the matrix
"""
to_string = "["
for e in self.elements:
for i in e:
if round(i) == i:
i = str(int(i))
else:
i = "{:.2f}".format(i)
to_string += i + ' '
to_string += '\n '
to_string = to_string[:-3] + ']'
return to_string
def __len__(self):
"""
How many vectors long the matrix is
"""
return len(self.elements)
def __getitem__(self, item):
"""
Return vector at position item
"""
return self.elements[item]
def __setitem__(self, key, value):
"""
Set vector as position key to value
"""
if type(value) != Vector:
raise TypeError("Not a vector")
self.elements[key] = value
def __add__(self, other):
return self.add(other)
def __sub__(self, other):
return self.subtract(other)
def __mul__(self, other):
"""
Defines A * const as A.scale(const) where const is int or float
"""
if isinstance(other, (int, float)):
return self.scale(other)
elif isinstance(other, Matrix):
return self.multiply(other)
elif isinstance(other, Vector):
return self.multiply(Matrix(other).transpose())
else:
return NotImplemented
def __rmul__(self, other):
"""
defines const * A as A.scale(const) where const is int or float
"""
if isinstance(other, (int, float)):
return self.scale(other)
elif isinstance(other, Vector):
return self.multiply(Matrix(other).transpose())
else:
return NotImplemented
def __div__(self, other):
"""
Define A / const
"""
if isinstance(other, (int, float)):
return self * (1 / other)
else:
raise TypeError("Cannot divide vector by {}".format(other))
def __nonzero__(self):
"""
Define a zero matrix to be one of all zeros
"""
for r in self:
if r:
return True
return False
def __neg__(self):
"""
Define -A to give negative matrix
"""
return self * -1
def __delitem__(self, key):
"""
Define item deletion to delete from elements
"""
del self.elements[key]
def __eq__(self, other):
"""
Determine whether A and B are equal
"""
if not isinstance(other, Vector):
return False
elif self.row_num() != other.row_num() or self.col_num() != other.col_num():
return False
else:
for i, row in enumerate(self):
if row != other[i]:
return False
return True
# MATRIX MANIPULATION FUNCTIONS
def reset(self):
"""
Set matrix equal to identity matrix if it's square
"""
if self.row_num() != self.col_num():
raise NotSquareError
for i in range(len(self)):
self[i] = Vector(*[1 if i == j else 0 for j in range(len(self))])
def transpose(self):
"""
Transpose the current matrix, swapping columns with rows
"""
m_list = []
for i in range(self.col_num()):
v_list = []
for j in range(self.row_num()):
v_list.append(self[j][i])
m_list.append(Vector(*v_list))
return Matrix(*m_list)
def row_num(self):
"""
Returns the number of rows in the matrix
"""
return len(self.elements)
def col_num(self):
"""
Returns the number of columns in the matrix
"""
return len(self.elements[0])
def get_element(self, row, column):
"""
Get element A[row][column]
"""
return self[row][column]
def set_element(self, row, column, value):
"""
Set element A[row][column] = value
"""
self.elements[row][column] = value
def scale(self, const):
"""
Scale a whole matrix by a constant
"""
return Matrix(*[vect.scale(const) for vect in self.elements])
def add(self, b):
"""
Add b to self where b is another matrix
"""
if type(b) != Matrix:
raise TypeError("Not a matrix")
if self.row_num() != b.row_num() or self.col_num() != b.col_num():
raise DimensionError("Matrices must have the same dimensions")
m_list = []
for v in range(len(self)):
m_list.append(self[v] + b[v])
return Matrix(*m_list)
def subtract(self, b):
"""
Subtract b from self where b is another matrix
"""
if type(b) != Matrix:
raise TypeError("Not a matrix")
if self.row_num() != b.row_num() or self.col_num() != b.col_num():
raise DimensionError
m_list = []
for v in range(len(self)):
m_list.append(self[v] - b[v])
return Matrix(*m_list)
def multiply(self, b):
"""
Multiply the current matrix by matrix b
"""
if type(b) != Matrix:
raise TypeError("Not a matrix")
if self.col_num() != b.row_num():
raise DimensionError("Col(A) must equal row(B)")
m_list = []
for r in range(self.row_num()):
new_vect = []
for v in range(b.col_num()):
v_list = []
for i in range(b.row_num()):
v_list.append(b[i][v])
col_vector = Vector(*v_list)
new_vect.append(self[r] * col_vector)
m_list.append(Vector(*new_vect))
return Matrix(*m_list)
def determinant(self):
"""
Find the determinant of the matrix
"""
if self.row_num() != self.col_num():
raise NotSquareError("The matrix must be square to find the determinant")
if len(self) == 2:
# ad - bc
return self[0][0]*self[1][1] - self[1][0]*self[0][1]
else:
# Co-factor expansion
det = 0
for i, row in enumerate(self):
det += (-1)**i * row[0] * self.matrix_exclude(i, 0).determinant()
return det
def matrix_exclude(self, row=None, col=None):
"""
Return a matrix with 'row' excluded and 'column' excluded
"""
if row >= self.row_num():
raise DimensionError("Row does not exist")
if col >= self.col_num():
raise DimensionError("Column does not exist")
import copy
new_matrix = copy.deepcopy(self)
if row is not None:
new_matrix.remove_row(row)
if col is not None:
new_matrix.remove_col(col)
return new_matrix
def remove_row(self, i):
"""
Remove a given row, i
"""
if i >= self.row_num():
raise DimensionError("Row does not exist")
del self[i]
def remove_col(self, i):
"""
Remove a given column, i
"""
if i >= self.col_num():
raise DimensionError("Column does not exist")
for row in self:
del row[i]
# Elementary row operations
def row_add(self, i, j, scale=1):
"""
Add row i to j
"""
self[j] += self[i] * scale
def row_scale(self, i, const):
"""
Scale row i by const
"""
# Should probably be removed (unnecessary)
if i >= len(self):
raise DimensionError("Row does not exist")
self[i] = self[i].scale(const)
def row_switch(self, i, j):
"""
Switch row i with row j
"""
if i == j:
return
self[i], self[j] = self[j], self[i]
def invert(self):
"""
Return the inverted version of a matrix
"""
if self.row_num() != self.col_num():
raise NotSquareError("Matrix must be square to invert")
det = self.determinant()
if det == 0: # Would be divided by 0
raise ZeroDivisionError("Matrix is not invertible")
# rref(A|I) = (I|A)
# Add identity onto the end of the matrix
original_length = len(self[0])
new_matrix = Matrix(*self)
for i, row in enumerate(new_matrix):
row.extend([1 if j == i else 0 for j in range(original_length)])
new_matrix.rref()
# Remove identity from the front to obtain A-1
for row in new_matrix:
del row[:original_length]
return new_matrix
def echelon(self):
cur_row = 0
cur_col = 0
while cur_row < len(self):
if cur_col >= len(self[0]):
break
for row in range(cur_row, len(self)): # Go down columns
if self[row][cur_col] != 0:
self.row_switch(cur_row, row)
# Make everything below 0
for r in range(row + 1, len(self)):
if self[r][cur_col] == 0: # Already 0
continue
self.row_add(row, r, -(self[r][cur_col] / float(self[row][cur_col])))
cur_row += 1
# cur_col += 1
break
cur_col += 1
def rref(self):
self.echelon()
cur_row = 0
cur_col = 0
while cur_row < len(self):
if cur_col >= len(self[0]):
break
for row in range(cur_row, len(self)+1): # Go down columns
if row == len(self):
if self[row-1][cur_col-1] == 0:
self.row_scale(row-1, 1 / float(self[row-1][cur_col]))
if row-2 >= 0:
for r in range(row-2, -1, -1):
self.row_add(row-1, r, -(self[r][cur_col]))
cur_row += 1
break
else:
break
if self[row][cur_col] == 0:
if row == 0:
break
# if not self[row]:
# return
if row-1 >= 0:
if self[row-1][cur_col] == 0:
break
if cur_col >= 1:
if self[row-1][cur_col-1] != 0:
break
self.row_scale(row-1, 1 / float(self[row-1][cur_col]))
if row-2 >= 0:
for r in range(row-2, -1, -1):
self.row_add(row-1, r, -(self[r][cur_col]))
cur_row += 1
break
cur_col += 1
class DimensionError(Exception):
def __init__(self, value):
self. value = value
def __str__(self):
return "Incorrect matrix dimensions{}".format("; {}".format(self.value))
class NotSquareError(DimensionError):
def __init__(self, value):
self. value = value
def __str__(self):
return "The matrix is not square{}".format("; {}".format(self.value))