-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_supcon.py
82 lines (58 loc) · 2.65 KB
/
main_supcon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
from model import SimCLR2
from data import *
import torch
from pytorch_lightning import seed_everything
from pytorch_lightning import Trainer
from pytorch_lightning import loggers as pl_loggers
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=50, help='save frequency')
parser.add_argument('--batch_size', type=int, default=512, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=1000, help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--warm_epochs', type=int, default=10, help='warming')
parser.add_argument('--warmup_from', type=float, default=0.01, help='warming from')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--data_folder', type=str, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32, help='parameter for RandomResizedCrop')
# temperature
parser.add_argument('--temp', type=float, default=0.07, help='temperature for loss function')
opt = parser.parse_args()
opt.model_path = './save/SupCon/path_models'
opt.model_name = '{}_{}_epochs{}_lr_{}'.format("SimCLR", opt.model, opt.epochs, opt.learning_rate)
return opt
def main():
opt = parse_option()
seed_everything(114514, workers=True)
tb_logger = pl_loggers.TensorBoardLogger('./resnet_model/log/', log_graph=True)
trainer = Trainer(
accelerator="gpu",
limit_train_batches=opt.batch_size,
max_epochs=opt.epochs,
deterministic=True,
enable_checkpointing=True,
default_root_dir="resnet_model",
log_every_n_steps=8,
logger=tb_logger
)
torch.cuda.empty_cache()
torch.set_float32_matmul_precision('medium')
SimCLR2_model = SimCLR2()
SimCLR2_model.set_args(opt)
trainer.fit(SimCLR2_model, set_loader(opt, 256))
if __name__ == '__main__':
main()
# """
# python main_supcon.py --batch_size 2048
# --learning_rate 0.5 --temp 0.1
# --data_folder EmojiDataset
# --save_freq 25
# """