-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathkitml.py
256 lines (205 loc) · 9.45 KB
/
kitml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding=utf-8
# Copyright 2023 Ling-Hao CHEN (https://lhchen.top) from Tsinghua University.
#
# For all the datasets, be sure to read and follow their license agreements,
# and cite them accordingly.
# If the unifier is used in your research, please consider to cite as:
#
# @article{chen2023unimocap,
# title={UniMocap: Unifier for BABEL, HumanML3D, and KIT},
# author={Chen, Ling-Hao and UniMocap, Contributors},
# journal={https://github.com/LinghaoChan/UniMoCap},
# year={2023}
# }
#
# @inproceedings{petrovich23tmr,
# title = {{TMR}: Text-to-Motion Retrieval Using Contrastive {3D} Human Motion Synthesis},
# author = {Petrovich, Mathis and Black, Michael J. and Varol, G{\"u}l},
# booktitle = {International Conference on Computer Vision ({ICCV})},
# year = {2023}
# }
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. We provide a license to use the code,
# please read the specific details carefully.
#
# ------------------------------------------------------------------------------------------------
# Copyright (c) Mathis Petrovich.
# ------------------------------------------------------------------------------------------------
# Portions of this code were adapted from the following open-source project:
# https://github.com/Mathux/AMASS-Annotation-Unifier
# ------------------------------------------------------------------------------------------------
import os
import pandas as pd
from sanitize_text import sanitize
from tools.amass import compute_duration, load_amass_npz
from tools.jtools import load_json, save_dict_json
from tools.kitml import load_kit_mocap_annotation, load_mmm_csv
from tools.saving import store_keyid
from tqdm import tqdm
def process_kitml(amass_path: str, kitml_path: str, kitml_process_folder: str, outputs: str = "outputs-json"):
"""
Process KIT-ML dataset and convert it into a specific annotation format.
Args:
amass_path (str): The path to the AMASS dataset.
kitml_path (str): The path to the KIT-ML dataset.
kitml_process_folder (str): Path to the folder containing amasspath2kitml.json.
outputs (str, optional): Output directory for saving processed annotations. Default is "outputs-json".
Returns:
dict: A dictionary containing processed annotations.
Raises:
FileNotFoundError: If amasspath2kitml.json does not exist.
TypeError: If the processed text contains non-ASCII characters.
"""
# Check amasspath2kitml.json
# The folder ./kitml_process is from the following open-source project:
# https://github.com/Mathux/AMASS-Annotation-Unifier
amasspath2kitml_path = os.path.join(
kitml_process_folder, "amass-path2kitml.json")
if not os.path.exists(amasspath2kitml_path):
raise FileNotFoundError(
"You should launch the cmd 'python kitml_text_preprocess.py' first")
# Create the output directory if it doesn't exist
os.makedirs(outputs, exist_ok=True)
# Define the path for saving the JSON index file
save_json_index_path = os.path.join(outputs, "kitml.json")
# Load the original mapping dictionary from amasspath2kitml.json
original_dico = load_json(amasspath2kitml_path)
# Initialize a dictionary for storing processed annotations
dico = {}
# Iterate through each entry in the original mapping dictionary
for keyid, path in tqdm(original_dico.items()):
# Construct the path to the KIT-ML CSV file
csv_path = os.path.join(kitml_path, keyid + "_fke.csv")
# Load motion data from the KIT-ML CSV file
mmm = load_mmm_csv(csv_path)
# Construct the path to the corresponding AMASS dataset NPZ file
npz_path = os.path.join(amass_path, path)
smpl_data = load_amass_npz(npz_path)
# Check if the lengths of motion sequences match between AMASS and KIT-ML
len_seq = len(mmm)
len_amass_seq = len(smpl_data["trans"])
if len_seq != len_amass_seq:
print(
f"Excluding {keyid}, as there is a mismatch between AMASS and MMM motions")
continue
# Set the start time and compute the duration
start = 0.0
duration = compute_duration(smpl_data)
# Define the end time as the duration of the sequence、
end = duration
# Load motion annotation texts from KIT-ML dataset
texts = load_kit_mocap_annotation(kitml_path, keyid)
# Skip if there are no motion annotation texts
if not texts:
continue
annotations = []
for idx, text in enumerate(texts):
# Sanitize the text to ensure it contains only ASCII characters
text = sanitize(text)
# Construct a unique segment ID
seg_id = f"{keyid}_{idx}"
element = {
# to save the correspondance
# with the original KIT-ML dataset
"seg_id": f"{keyid}_{idx}",
"text": text,
"start": start,
"end": end
}
# Check for non-ASCII characters in the text
if not text.isascii():
raise TypeError(
"The text should not have non-ascii characters")
annotations.append(element)
# Store annotations in the dictionary if there's at least one
if len(annotations) >= 1:
store_keyid(dico, keyid, path, duration, annotations)
# Save the processed annotations as a JSON file
save_dict_json(dico, save_json_index_path)
print(f"Saving the annotations to {save_json_index_path}")
# Return the processed annotations dictionary for saving csv file
return dico
def save_csv(kit_json):
"""
Save annotations from the KIT-ML JSON data into a CSV file in a specific format.
Args:
kit_json (dict): A dictionary containing KIT-ML JSON data.
Returns:
None
"""
fps = 20 # Frames per second for frame calculation
counting = 0 # Counter for generating new file names
# Create the 'kit_new_text' directory if it doesn't exist
os.makedirs("kit_new_text", exist_ok=True)
# Create an empty DataFrame to store CSV data
df = pd.DataFrame({
"source_path": [],
"start_frame": [],
"end_frame": [],
"new_name": [],
})
# Iterate through each entry in the KIT-ML JSON data
for keyid, dico in tqdm(kit_json.items()):
# Build the path to the source data file
source_path_file = "./datasets/HumanML3D/pose_data/" + \
dico["path"] + ".npy"
# Extract annotations from the KIT-ML JSON data
meta_annotation = dico["annotations"]
# Iterate through annotation segments
for seg in meta_annotation:
text = seg["text"]
start_frame = int(seg["start"] * fps)
end_frame = int(seg["end"] * fps)
# Generate a unique new name for the text file
idstr = "%06d" % counting
new_name = idstr + ".npy"
# Create a text file with the extracted text
txt_path = os.path.join("kit_new_text", idstr + ".txt")
with open(txt_path, "w") as f:
f.write(text)
# Create a new row for the DataFrame with annotation data
df_new_data = pd.DataFrame({
"source_path": [source_path_file],
"start_frame": [start_frame//1], # Convert to integer
"end_frame": [end_frame//1], # Convert to integer
"new_name": [new_name],
})
# Append the new data to the DataFrame
df = df._append(df_new_data, ignore_index=True)
counting += 1
# Save the DataFrame as a CSV file
df.to_csv('kitml_h3dformat.csv')
if __name__ == "__main__":
"""
This script processes KIT-ML dataset annotations and converts them into CSV files
in a specific format suitable for further analysis and use in machine learning tasks.
The script performs the following main steps:
1. It defines paths to the AMASS and KIT-ML datasets and specifies necessary parameters.
2. It calls the "process_kitml" function to process KIT-ML dataset annotations,
obtaining JSON annotations.
3. It then calls the "save_csv" function to save the processed annotations into
a CSV file named "kitml_h3dformat.csv".
4. The generated CSV file contains information about source paths, start and end frames,
and new file names.
5. The script is intended for preprocessing and organizing KIT-ML dataset annotations
for further analysis.
"""
# Define paths to the AMASS and KIT-ML datasets
amass_path = "datasets/amass_data/"
kitml_path = "datasets/kit-mocap/"
# Define the folder containing preprocessed KIT-ML data
kitml_process_folder = "kitml_process"
# Process KIT dataset and obtain JSON annotations
kit_json = process_kitml(amass_path, kitml_path, kitml_process_folder)
# Save processed annotations into CSV files
save_csv(kit_json=kit_json)