-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-densenet.py
52 lines (41 loc) · 1.94 KB
/
train-densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import matplotlib.pyplot as plt
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
import ISBI_data
import config
import data
import wandb
from nets import Densenet161
plt.style.use('ggplot')
def main():
model = Densenet161()
#data_df = pd.read_csv(config.CSV_PATH)
#train_df, val_df = train_test_split(data_df, test_size=0.1)
training_img_path = '../Training_Set/Training/'
evaluation_img_path = '../Evaluation_Set/Validation'
train_df = '../Training_Set/RFMiD_Training_Labels.csv'
val_df = '../Evaluation_Set/RFMiD_Validation_Labels.csv'
trainset = ISBI_data.ISBIDataset(train_df, training_img_path, testing=False)
valset = ISBI_data.ISBIDataset(val_df, evaluation_img_path, testing=True)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True, num_workers=20)
valloader = DataLoader(valset, batch_size=64, shuffle=False, num_workers=20)
wandb.init(project='ISBI-MSE-Densenet')
wandb_logger = WandbLogger(project='ISBI-MSE-Densenet')
checkpoint_callback = ModelCheckpoint(monitor='val_loss',
dirpath='data/checkpoints',
filename='BCE-Loss-Densenet-{epoch:03d}-{val_loss:.4f}',
save_top_k=3,
mode='min')
trainer = pl.Trainer(gpus=config.DEVICES,
# num_nodes=2,
logger=wandb_logger,
log_every_n_steps=config.LOG_STEP,
callbacks=[checkpoint_callback])
trainer.fit(model, trainloader, val_dataloaders=valloader)
print("Finished Training")
if __name__ == "__main__":
main()