-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-vit.py
50 lines (37 loc) · 1.73 KB
/
train-vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import matplotlib.pyplot as plt
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
import config
import data
from nets import ViT
plt.style.use('ggplot')
def main():
model = ViT()
data_df = pd.read_csv(config.CSV_PATH)
train_df, val_df = train_test_split(data_df, test_size=0.1)
if config.ALIGN:
img_path = config.IMG_PATH + '_aligned'
else:
img_path = config.IMG_PATH
trainset = data.GTADataset(train_df, img_path, transform=data.TRAIN_TRANSFORMS, align=False)
valset = data.GTADataset(val_df, img_path, transform=data.EVAL_TRANSFORMS, align=False)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=8)
valloader = DataLoader(valset, batch_size=128, shuffle=False, num_workers=8)
wandb_logger = WandbLogger(project='GTA-VIT-Aligned')
checkpoint_callback = ModelCheckpoint(monitor='val_arr',
dirpath='data/checkpoints',
filename='Aligned-VIT-{epoch:03d}-{val_arr:.2f}',
save_top_k=3,
mode='max')
trainer = pl.Trainer(gpus=config.DEVICES,
logger=wandb_logger,
log_every_n_steps=config.LOG_STEP,
callbacks=[checkpoint_callback])
trainer.fit(model, trainloader, val_dataloaders=valloader)
print("Finished Training")
if __name__ == "__main__":
main()