This repository has been archived by the owner on Aug 29, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLLAMA.cs
219 lines (191 loc) · 8.34 KB
/
LLAMA.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
using FluentAssertions;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
using TorchSharp;
using TorchSharp.PyBridge;
namespace LLAMA;
public enum Role
{
System = 0,
User = 1,
Assistant = 2,
}
public record CompletionPrediction(string generation, string[]? tokens, float[]? logProbs);
public record Message(Role role, string content);
public record ChatPrediction(Message generation, string[]? tokens, float[]? logProbs);
public class LLaMA
{
private Transformer transformer;
private ITokenizer tokenizer;
public LLaMA(Transformer transformer, ITokenizer tokenizer)
{
this.transformer = transformer;
this.tokenizer = tokenizer;
}
public static LLaMA Build(
string modelFolder,
ITokenizer tokenizer,
int maxSeqLen,
int maxBatchSize,
string paramJsonPath = "params.json",
string modelWeightPath = "consolidated.00.pth",
string device = "cpu")
{
var stopWatch = new Stopwatch();
stopWatch.Start();
paramJsonPath = Path.Combine(modelFolder, paramJsonPath);
var modelArgs = JsonSerializer.Deserialize<ModelArgs>(File.ReadAllText(paramJsonPath)) ?? throw new Exception("Failed to deserialize model args");
modelArgs.VocabSize = tokenizer.VocabSize;
modelArgs.MaxSeqLen = maxSeqLen;
modelArgs.MaxBatchSize = maxBatchSize;
torch.set_default_dtype(torch.bfloat16);
// print model args
var modelArgsJson = JsonSerializer.Serialize(modelArgs, new JsonSerializerOptions { WriteIndented = true });
Console.WriteLine($"modelArgs: {modelArgsJson}");
var checkpointPath = Path.Combine(modelFolder, modelWeightPath);
var model = new Transformer(modelArgs);
var loadedParameters = new Dictionary<string, bool>();
model.load_py(location: checkpointPath, strict: false, loadedParameters: loadedParameters);
// print loaded parameters
foreach (var (key, value) in loadedParameters.OrderBy(x => x.Key))
{
Console.WriteLine($"loadedParameters: {key} {value}");
}
model = model.to(device);
stopWatch.Stop();
Console.WriteLine($"Loading checkpoint took {stopWatch.ElapsedMilliseconds} ms");
return new LLaMA(model, tokenizer);
}
public (int[][], float[][]?) Generate(
int[][] promptTokens,
int maxGenLen,
float temperature = 0.6f,
float topP = 0.9f,
bool logProbs = false,
bool echo = false,
string device = "cpu")
{
torch.Tensor? tokenLogProbs = null;
var batch = promptTokens.Length;
var param = this.transformer.Args;
batch.Should().BeLessThanOrEqualTo(param.MaxBatchSize, "Batch size should be less than or equal to the max batch size");
var minPromptLen = promptTokens.Min(x => x.Length);
var maxPromptLen = promptTokens.Max(x => x.Length);
maxPromptLen.Should().BeLessThanOrEqualTo(param.MaxSeqLen, "Prompt length should be less than or equal to the max sequence length");
var totalLen = Math.Min(maxPromptLen + maxGenLen, param.MaxSeqLen);
var tokens = torch.full(new long[] {batch, totalLen}, this.tokenizer.PadId, dtype: torch.int64, device: device);
for (var i = 0; i < batch; i++)
{
var promptLen = promptTokens[i].Length;
tokens[i, 0..promptLen] = torch.tensor(promptTokens[i], dtype: torch.int64, device: device);
}
if (logProbs)
{
tokenLogProbs = torch.zeros(batch, totalLen, this.tokenizer.VocabSize, dtype: torch.float32, device: device);
}
using (var _ = torch.no_grad())
{
var prevPos = 0;
var eosReached = torch.tensor(new bool[batch], device: device);
var inputTextMask = tokens != this.tokenizer.PadId;
torch.Tensor logits;
if (minPromptLen == totalLen)
{
logits = this.transformer.forward(tokens, prevPos);
tokenLogProbs = -torch.nn.functional.cross_entropy(input: logits.transpose(1, 2), target: tokens, reduction: torch.nn.Reduction.None, ignore_index: this.tokenizer.PadId);
}
for (int curPos = minPromptLen; curPos != totalLen; curPos++)
{
logits = this.transformer.forward(tokens[.., prevPos..curPos], prevPos);
torch.Tensor nextToken;
if (temperature > 0)
{
var probs = torch.softmax(logits[.., -1] / temperature, dim: -1);
nextToken = this.SampleTopP(probs, topP);
}
else
{
nextToken = torch.argmax(logits[.., -1], dim: -1);
}
nextToken = nextToken.reshape(-1);
// # only replace token if prompt has already been generated
nextToken = torch.where(inputTextMask[.., curPos], tokens[.., curPos], nextToken);
// print nextToken
Console.WriteLine($"nextToken: {string.Join(",", nextToken.data<long>())}");
tokens[.., curPos] = nextToken;
if (logProbs)
{
tokenLogProbs![.., (prevPos + 1) .. (curPos + 1)] = - torch.nn.functional.cross_entropy(input: logits.transpose(1, 2), target: tokens[.., (prevPos + 1) .. (curPos + 1)], reduction: torch.nn.Reduction.None, ignore_index: this.tokenizer.PadId);
}
eosReached |= (~inputTextMask[.., curPos]) & (nextToken == this.tokenizer.EosId);
if (eosReached.all().item<bool>())
{
break;
}
prevPos = curPos;
}
var outputTokens = new int[batch][];
var outputLogProbs = new float[batch][];
for (var i = 0; i < batch; i++)
{
// cut to max gen len
var start = echo ? 0 : promptTokens[i].Length;
var toks = tokens[i][start..(promptTokens[i].Length + maxGenLen)].data<long>().Select(x => (int)x).ToArray();
float[]? probs = null;
if (logProbs)
{
probs = tokenLogProbs![i][start..(promptTokens[i].Length + maxGenLen)].data<float>().ToArray();
}
// cut to first eos if any
if (toks.Contains(this.tokenizer.EosId))
{
var eosPos = Array.IndexOf(toks, this.tokenizer.EosId);
toks = toks[..eosPos];
if (logProbs)
{
probs = probs![..eosPos];
}
}
outputTokens[i] = toks;
if (logProbs)
{
outputLogProbs[i] = probs!;
}
}
return (outputTokens, logProbs ? null : outputLogProbs);
}
}
public CompletionPrediction[] TextCompletion(
string[] prompts,
int? maxGenLen = null,
float temperature = 0.6f,
float topP = 0.9f,
bool logProbs = false,
bool echo = false,
string device = "cpu")
{
if (maxGenLen == null)
{
maxGenLen = this.transformer.Args.MaxSeqLen - 1;
}
var prompTokens = prompts.Select(x => this.tokenizer.Encode(x, bos: true, eos: false)).ToArray();
var (outputTokens, outputLogProbs) = this.Generate(prompTokens, maxGenLen.Value, temperature, topP, logProbs, echo, device);
return outputTokens.Select((x, i) => new CompletionPrediction(this.tokenizer.Decode(x), x.Select(x => this.tokenizer.Decode([x])).ToArray(), logProbs ? outputLogProbs![i] : null)).ToArray();
}
private torch.Tensor SampleTopP(torch.Tensor logits, float topP)
{
(var probsSort, var probsIndex) = torch.sort(logits, dim: -1, descending: true);
var cumsum = torch.cumsum(probsSort, dim: -1);
var mask = cumsum - probsSort > topP;
probsSort[mask] = 0f;
probsSort /= probsSort.sum(dim: -1, keepdim: true);
var nextToken = torch.multinomial(probsSort, num_samples: 1);
nextToken = torch.gather(probsIndex, dim: -1, index: nextToken);
return nextToken;
}
}