-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnllb_que.py
164 lines (138 loc) · 6.15 KB
/
nllb_que.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import locale
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import NllbTokenizer
from tqdm.auto import tqdm, trange
import re
import sys
import typing as tp
import unicodedata
from sacremoses import MosesPunctNormalizer
from transformers import AutoModelForSeq2SeqLM
from transformers import NllbTokenizer
import gc
import random
import numpy as np
import torch
from tqdm.auto import tqdm, trange
from transformers.optimization import Adafactor
from transformers import get_constant_schedule_with_warmup
LANGS = [('spanish', 'rus_Cyrl'), ('quechua', 'tyv_qu')]
def cleanup():
"""Try to free GPU memory"""
gc.collect()
torch.cuda.empty_cache()
def gpe(x=None):
return "UTF-8"
def word_tokenize(text):
# a very naive word tokenizer for languages with English-like orthography
return re.findall('(\w+|[^\w\s])', text)
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
non_printable_map = {
ord(c): replace_by
for c in (chr(i) for i in range(sys.maxunicode + 1))
# same as \p{C} in perl
# see https://www.unicode.org/reports/tr44/#General_Category_Values
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
}
def replace_non_printing_char(line) -> str:
return line.translate(non_printable_map)
return replace_non_printing_char
def preproc(text):
clean = mpn.normalize(text)
clean = replace_nonprint(clean)
clean = unicodedata.normalize("NFKC", clean)
return clean
def fix_tokenizer(tokenizer, new_lang='tyv_qu'):
"""
Add a new language token to the tokenizer vocabulary
(this should be done each time after its initialization)
"""
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[new_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = new_lang
# always move "mask" to the last position
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if new_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(new_lang)
# clear the added token encoder; otherwise a new token may end up there by mistake
tokenizer.added_tokens_encoder = {}
tokenizer.added_tokens_decoder = {}
def get_batch_pairs(batch_size, data=df_train):
(l1, long1), (l2, long2) = random.sample(LANGS, 2)
xx, yy = [], []
for _ in range(batch_size):
item = data.iloc[random.randint(0, len(data)-1)]
xx.append(preproc(item[l1]))
yy.append(preproc(item[l2]))
return xx, yy, long1, long2
def main():
locale.getpreferredencoding = gpe
trans_df = pd.read_excel('sp_qu_mt_corpus.xlsx')
train_dev, df_test = train_test_split(trans_df, test_size=0.10, random_state=42)
df_train, df_dev = train_test_split(train_dev, test_size=0.111, random_state=42)
tokenizer = NllbTokenizer.from_pretrained('facebook/nllb-200-distilled-600M')
smpl = df_train.sample(5653, random_state=1)
smpl['qu_toks'] = smpl.quechua.apply(tokenizer.tokenize)
smpl['sp_toks'] = smpl.spanish.apply(tokenizer.tokenize)
smpl['qu_words'] = smpl.quechua.apply(word_tokenize)
smpl['sp_words'] = smpl.spanish.apply(word_tokenize)
mpn = MosesPunctNormalizer(lang="en")
mpn.substitutions = [(re.compile(r), sub) for r, sub in mpn.substitutions]
replace_nonprint = get_non_printing_char_replacer(" ")
texts_with_unk_normed = [text for text in tqdm(texts_with_unk) if tokenizer.unk_token_id in tokenizer(preproc(text)).input_ids]
tokenizer = NllbTokenizer.from_pretrained('facebook/nllb-200-distilled-600M')
fix_tokenizer(tokenizer)
model = AutoModelForSeq2SeqLM.from_pretrained('facebook/nllb-200-distilled-600M')
model.resize_token_embeddings(len(tokenizer))
model.model.shared.weight.data[added_token_id+1] = model.model.shared.weight.data[added_token_id]
model.model.shared.weight.data[added_token_id] = model.model.shared.weight.data[similar_lang_id]
cleanup()
model.cuda();
optimizer = Adafactor(
[p for p in model.parameters() if p.requires_grad],
scale_parameter=False,
relative_step=False,
lr=1e-4,
clip_threshold=1.0,
weight_decay=1e-3,
)
batch_size = 32 # 32 already doesn't fit well to 15GB of GPU memory
max_length = 128
warmup_steps = 1_000
training_steps = 57000
losses = []
scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps)
model.train()
x, y, loss = None, None, None
cleanup()
tq = trange(len(losses), training_steps)
for i in tq:
xx, yy, lang1, lang2 = get_batch_pairs(batch_size)
try:
tokenizer.src_lang = lang1
x = tokenizer(xx, return_tensors='pt', padding=True, truncation=True, max_length=max_length).to(model.device)
tokenizer.src_lang = lang2
y = tokenizer(yy, return_tensors='pt', padding=True, truncation=True, max_length=max_length).to(model.device)
y.input_ids[y.input_ids == tokenizer.pad_token_id] = -100
loss = model(**x, labels=y.input_ids).loss
loss.backward()
losses.append(loss.item())
optimizer.step()
optimizer.zero_grad(set_to_none=True)
scheduler.step()
except RuntimeError as e:
optimizer.zero_grad(set_to_none=True)
x, y, loss = None, None, None
cleanup()
print('error', max(len(s) for s in xx + yy), e)
continue
if i % 1000 == 0:
print(i, np.mean(losses[-1000:]))
if i % 1000 == 0 and i > 0:
model.save_pretrained("save")
tokenizer.save_pretrained("save")
LANGS = [('s', 'rus_Cyrl'), ('quechua', 'tyv_qu')]
main()