Skip to content

Latest commit

 

History

History
65 lines (46 loc) · 1.48 KB

data_orgnize.md

File metadata and controls

65 lines (46 loc) · 1.48 KB

Data Organization

This document is an instruction for preparing the pre-trained VGG-16 model and training datasets.

For organizing data:

1. Download datasets

VGG16 Model:

wget http://www.vlfeat.org/matconvnet/models/fast-rcnn-vgg16-pascal07-dagnn.mat

List File:

wget http://mftp.mmcheng.net/liuyun/rcf/data/bsds_pascal_train_pair.lst

Three DataSets:

wget http://mftp.mmcheng.net/liuyun/rcf/data/HED-BSDS.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/PASCAL.tar.gz
wget http://mftp.mmcheng.net/liuyun/rcf/data/NYUD.tar.gz

2. Create directory to store the data

mkdir $RootFolder/data/HED-BSDS_PASCAL

3. File Reorganization

Under the directory where you save your datasets and the list file, unzip all three datasets:

tar -xf /<download>/PASCAL.tar.gz
tar -xf /<download>/HED-BSDS.tar.gz 
tar -xf /<download>/NYUD.tar.gz

Copy the unzipped datasets and the list file to the HED-BSDS_PASCAL directory:

cp bsds_pascal_train_pair.lst $RootFolder/data/HED-BSDS_PASCAL/bsds_pascal_train_pair.lst

cp PASCAL/ $RootFolder/data/HED-BSDS_PASCAL/PASCAL/

cp HED-BSDS $RootFolder/data/HED-BSDS_PASCAL/HED-BSDS/

cp NYUD $RootFolder/data/HED-BSDS_PASCAL/NYUD/

Also copy the test data:

cp $RootFolder/data/HED-BSDS_PASCAL/HED-BSDS/test $RootFolder/data/HED-BSDS_PASCAL/test

4. Rename the pre-train model:

cp fast-rcnn-vgg16-pascal07-dagnn.mat $RootFolder/vgg16convs.mat

5. Start training!

python train_RCF.py to start training