-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomp2.py
178 lines (147 loc) · 5.87 KB
/
comp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
'''
arxiv
'''
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from utils import EarlyStopping, init_layers, load_dataset
class GCN(torch.nn.Module):
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
super(GCN, self).__init__()
self.layers = torch.nn.ModuleList()
self.layers.append(GCNConv(in_dim, hid_dim, cached=True))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hid_dim))
for _ in range(n_layers - 2):
self.layers.append(
GCNConv(hid_dim, hid_dim, cached=True))
self.bns.append(torch.nn.BatchNorm1d(hid_dim))
self.layers.append(GCNConv(hid_dim, out_dim, cached=True))
self.dropout = dropout
def forward(self, x, adj_t):
for i, layer in enumerate(self.layers[:-1]):
x = layer(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.layers[-1](x, adj_t)
return x.log_softmax(dim=-1)
class SAGE(torch.nn.Module):
def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
super(SAGE, self).__init__()
self.layers = torch.nn.ModuleList()
self.layers.append(SAGEConv(in_dim, hid_dim))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hid_dim))
for _ in range(n_layers - 2):
self.layers.append(SAGEConv(hid_dim, hid_dim))
self.bns.append(torch.nn.BatchNorm1d(hid_dim))
self.layers.append(SAGEConv(hid_dim, out_dim))
self.dropout = dropout
def forward(self, x, adj_t):
for i, layer in enumerate(self.layers[:-1]):
x = layer(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.layers[-1](x, adj_t)
return x.log_softmax(dim=-1)
def train(model, data, train_idx, optimizer):
model.train()
optimizer.zero_grad()
out = model(data.x, data.adj_t)[train_idx]
loss = F.nll_loss(out, data.y.squeeze(1)[train_idx])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data, split_idx, evaluator):
model.eval()
out = model(data.x, data.adj_t)
y_pred = out.argmax(dim=-1, keepdim=True)
train_acc = evaluator.eval({
'y_true': data.y[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['acc']
valid_acc = evaluator.eval({
'y_true': data.y[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['acc']
test_acc = evaluator.eval({
'y_true': data.y[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['acc']
return train_acc, valid_acc, test_acc
def pipe(model_name, hid_dim, l, lr, wd, epochs, patience, dropout, mean_method=None, device='cuda', init_name='virgo'):
dataset = PygNodePropPredDataset(name='ogbn-arxiv',
transform=T.ToSparseTensor(),
root="/mnt/jiahanli/datasets")
data = dataset[0]
data.adj_t = data.adj_t.to_symmetric()
data = data.to(device)
split_idx = dataset.get_idx_split()
train_idx = split_idx['train'].to(device)
if model_name == 'gcn':
model = GCN(data.num_features, hid_dim,
dataset.num_classes, l, dropout).to(device)
else:
model = SAGE(data.num_features, hid_dim,
dataset.num_classes, l, dropout).to(device)
# initialize model using dgl-implemented method and datasets
g, _ = load_dataset('arxiv', device=device) # g here is only used for calculating C2
if init_name == 'virgoback':
init_layers(g, model_name, model.layers, init_name, num_classes=_.num_classes, pyg=True)
elif init_name == 'virgo':
init_layers(g, model_name, model.layers, init_name, mean_method=mean_method, num_classes=_.num_classes, pyg=True)
else:
init_layers(g, model_name, model.layers, init_name, pyg=True)
evaluator = Evaluator(name='ogbn-arxiv')
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
train_acc_list, valid_acc_list, test_acc_list = [], [], []
best_valid_acc, final_test_acc, cnt = 0.0, 0.0, 0
for epoch in range(epochs):
loss = train(model, data, train_idx, optimizer)
result = test(model, data, split_idx, evaluator)
train_acc, valid_acc, test_acc = result
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
final_test_acc = test_acc
cnt = 0
else:
cnt += 1
print(
f'Epoch: {epoch:02d} | '
f'Loss: {loss:.4f} | '
f'Train: {100 * train_acc:.2f}% | '
f'Valid: {100 * valid_acc:.2f}% | '
f'Test: {100 * test_acc:.2f}% | '
f'Patience: {cnt}/{patience}')
train_acc_list.append(train_acc)
valid_acc_list.append(valid_acc)
test_acc_list.append(test_acc)
if cnt >= patience:
print("Early Stopping!")
break
print('============================')
print(f'Final Test: {final_test_acc:4f}')
test_acc_list.append(final_test_acc)
return train_acc_list, valid_acc_list, test_acc_list
def run_test():
searchSpace = {
"model_name": 'gcn',
"hid_dim": 256,
"l": 5,
"lr": 1e-3,
"epochs": 10,
"patience": 50,
"init_name": 'virgo',
"mean_method": 'harmonic',
"wd": 5e-6,
"dropout": 0.0
}
pipe(**searchSpace)
if __name__ == '__main__':
run_test()
print(1)