-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetLaneByHSV.py
78 lines (59 loc) · 2.24 KB
/
getLaneByHSV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import numpy as np
import config as cf
average = [ 69, 48, 150] #giay A4
r = (124, 166, 55, 38) #defaut rect to crop
cX = 160 #center
cY = 120
def getLaneCenter(img, getAVG = False):
global average, cX, cY
im = np.copy(img)
blur_img = cv2.medianBlur(img, 3)
#cv2.imshow('Blur', blur_img)
hsv = cv2.cvtColor(blur_img, cv2.COLOR_BGR2HSV)
#cv2.imshow('hsv', hsv)
# Select ROI
#print(cX, cY)
if (getAVG):
#r = (124, 166, 55, 38)
#roi = hsv[int(r[1]):int(r[1]+r[3]), int(r[0]):int(r[0]+r[2])]
roi = hsv[(cY-10):(cY+10) , (cX - 10):(cX+10)]
average = roi.mean(axis=0).mean(axis=0)
#print 'average', average
#r = cv2.selectROI(img)
#print (r)
# define range of color in ROI (using HSV color chanel)
lower_road = np.array([average[0]-20,average[1]-20,average[2]-30])
upper_road = np.array([average[0]+20,average[1]+20,average[2]+30])
#lower_road = np.array([average[0]-20,average[1]-20,average[2]-25])
#upper_road = np.array([average[0]+20,average[1]+20,average[2]+25])
# Threshold the HSV image to get only road colors
mask = cv2.inRange(hsv, lower_road, upper_road)
im2, contours, hierarchy = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
#contours, _ = cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cX = 160
cY = 120
if (len(contours) != 0):
maxCnt = max(contours, key = cv2.contourArea)
#print('area= ',cv2.contourArea(maxCnt))
if (cv2.contourArea(maxCnt) > 10000):
M = cv2.moments(maxCnt)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
#print (cX, cY)
cv2.drawContours(im, [maxCnt], 0, (0,255,0), -1)
cv2.rectangle(im, (cX-10, cY-10), (cX+10, cY+10), (255,0,0), 2)
cv2.circle(im, (cX, cY), 3, (0,0,255), -1)
#cv2.imshow('Maskkk', mask)
#cv2.imshow('img', im)
cf.center = cX
cf.img_result = im
return cX, im
def test():
img = cv2.imread('lane.jpg')
img = cv2.resize(img, (320, 240), interpolation=cv2.INTER_AREA)
x, im = getLaneCenter(img, True)
print('result', x)
cv2.imshow('image', im)
cv2.waitKey(0)
#test()