-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize_results.py
170 lines (147 loc) · 6.17 KB
/
visualize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import pickle
import re
import visualization
import jax.numpy as jnp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from collections import defaultdict
from typing import Dict, Tuple
os.environ['PYTHONIOENCODING']='UTF-8'
os.environ['OMP_NUM_THREADS']='1'
def parseargs():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
parser.add_argument(*args, **kwargs)
aa('--in_path', type=str,
help='path/to/results')
aa('--out_path', type=str,
help='path/to/plots')
aa('--dataset', type=str, default='mnist',
choices=['mnist', 'imagenet', 'real-world'])
aa('--distribution', type=str,
choices=['homogeneous', 'heterogeneous'],
help='whether class distribution is uniform or non-uniform')
aa('--metric', type=str,
choices=['accuracy', 'cross-entropy'])
aa('--verbose', action='store_true',
help='whether or not to show plot')
args = parser.parse_args()
return args
def get_results(
PATH: str,
dist: str,
) -> Dict[str, Dict[str, Dict[str, float]]]:
results = defaultdict(lambda: defaultdict(dict))
for root, _, files in os.walk(PATH, followlinks=True):
for f in files:
if re.compile(r'(?=^performance)(?=.*pkl$)').search(f):
path_split = root.split('/')
distribution = path_split[4]
if distribution == dist:
n_samples = path_split[3]
n_samples = int(re.compile(r'\d+').search(n_samples).group())
seed = path_split[5]
training = path_split[7]
if training == 'pretraining':
if re.compile(r'frozen').search(root):
training += '_frozen'
performance = pickle.loads(open(os.path.join(root, f), 'rb').read())
try:
results[training][n_samples][seed]['accuracy'] = performance['accuracy']
results[training][n_samples][seed]['cross-entropy'] = performance['loss']
except KeyError:
results[training][n_samples][seed] = {}
results[training][n_samples][seed]['accuracy'] = performance['accuracy']
results[training][n_samples][seed]['cross-entropy'] = performance['loss']
results = sort_results(results)
return results
def sort_results(
results: Dict[str, Dict[str, Dict[str, float]]],
) -> Dict[str, Dict[str, Dict[str, float]]]:
def sort_dict(splits: Dict[str, Dict[str, float]],
) -> Dict[str, Dict[str, float]]:
return dict(sorted(splits.items(), key=lambda kv:kv[0], reverse=False))
return {training: sort_dict(splits) for training, splits in results.items()}
def dict2df(
results: Dict[str, Dict[str, Dict[str, float]]],
metric: str,
) -> pd.DataFrame:
n_rows = range(len([val[metric]
for split in results.values()
for initializations in split.values()
for val in initializations.values()]))
results_df = pd.DataFrame(
columns=['samples', 'performance', 'training'],
index=n_rows, dtype=float)
i = 0
for training, split in results.items():
for n_samples, initializations in split.items():
for val in initializations.values():
results_df.loc[i, 'samples'] = n_samples
if metric == 'accuracy':
performance = val[metric] * 100
else:
performance = val[metric]
results_df.loc[i, 'performance'] = performance
if re.search(r'^ml', training):
results_df.loc[i, 'training'] = 'MLE'
elif re.search(r'frozen$', training):
results_df.loc[i, 'training'] = 'OOO (frozen)'
else:
results_df.loc[i, 'training'] = 'OOO'
i += 1
return results_df
def prepare_df(df: pd.DataFrame) -> Tuple[pd.DataFrame, np.ndarray, np.ndarray]:
samples = df.samples.unique().astype(int)
spaces = np.linspace(0, samples.max(), len(samples))
df['samples'].replace({num: el for num, el in zip(samples, spaces)}, inplace=True)
return df, samples
def rearrange_results(results: pd.DataFrame) -> pd.DataFrame:
subsets = []
for training in results.training.unique():
subset = results[results['training'] == training]
subset = subset.rename({'performance': training}, axis='columns')
subset = subset.drop(['training'], axis=1)
subset = subset.reset_index(drop=True)
subsets.append(subset)
results = subsets.pop(0)
for subset in subsets:
results = results.join(subset[subset.columns[1]])
results['samples'] = results['samples'].apply(int)
return results
if __name__ == '__main__':
# parse arguments
args = parseargs()
# create directory to save plots
out_path = os.path.join(args.out_path, args.dataset, args.distribution, args.metric)
if not os.path.exists(out_path):
print('\n...Creating directories to save figure.\n')
os.makedirs(out_path)
# get results
results = get_results(args.in_path, args.distribution)
df = dict2df(results, args.metric)
df = df[df['samples'] != 500]
if metric == 'accuracy':
rearranged_df = rearrange_results(df)
visualization.plot_scatters(
results=rearranged_df,
dataset=args.dataset,
out_path=out_path,
verbose=args.verbose,
)
df, samples = prepare_df(df)
# plot results
visualization.plot_lines(
results=df,
samples=samples,
metric=args.metric,
dataset=args.dataset,
out_path=out_path,
verbose=args.verbose,
)