Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The provided new optimizer is sensitive on tiny batchsize #11

Open
GreatGBL opened this issue Mar 2, 2019 · 4 comments
Open

The provided new optimizer is sensitive on tiny batchsize #11

GreatGBL opened this issue Mar 2, 2019 · 4 comments

Comments

@GreatGBL
Copy link

GreatGBL commented Mar 2, 2019

The provided new optimizer is sensitive on tiny batchsize (<4), I am testing on the very simply linear regression, while others performance looks like nice currently.

Path:

1

Loss curve:
2

Zoomed Loss curve:
3

@Luolc
Copy link
Owner

Luolc commented Mar 2, 2019

That's very interesting. We didn't pay attention to the impact by batch size before.
Thanks for providing the new aspect to explore! 😄

Would you please provide more details of the experiments? Such as the hyperparameters of each optimizer, the scale of the dataset, etc.

@GreatGBL
Copy link
Author

GreatGBL commented Mar 4, 2019

import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import TensorDataset, DataLoader
import math
import torch
from torch.optim import Optimizer

generate M data points roughly forming a line (noise added)

M = 50

theta_true = torch.Tensor([[0.5], [2]])

X = 10 * torch.rand(M, 2) - 5

X[:, 1] = 1.0

y = torch.mm(X, theta_true) + 0.3 * torch.randn(M, 1)

def mse(t1, t2):

diff = t1 - t2

return torch.sum(diff * diff) / diff.numel()

def model(x):

return X @ theta

def cost_func(theta, X, y):

pred =  torch.mm(X, theta)

diff =  pred - y

loss =  (diff**2).sum(0) / X.shape[0]

return loss

Define

batch_size = 1

num_epochs = 100

loss_fn = F.mse_loss

train_ds = TensorDataset(X, y)

train_dl = DataLoader(train_ds, batch_size, shuffle=True)

model = nn.Linear(2, 1, bias=False)

Define a utility function to train the model

def fit(num_epochs, loss_fn, opt):

model.weight.data[0][0].fill_(2.00)

model.weight.data[0][1].fill_(4.00)

Loss =[]

Theta = np.zeros(shape=(1,2,num_epochs)) 

for epoch in range(num_epochs):

    for xb,yb in train_dl:
	
        pred = model(xb)
		
        loss = loss_fn(pred, yb)
		
        loss.backward()
		
        opt.step()
		
        opt.zero_grad()

    Loss.append(loss_fn(model(X), y))
    
    Theta[:,0,epoch] = model.weight.detach().numpy()[0][0]
	
    Theta[:,1,epoch] = model.weight.detach().numpy()[0][1]
    
Loss = np.array(Loss)

return Theta, Loss

ADAM_t, ADAM = fit(num_epochs, loss_fn, torch.optim.Adam(model.parameters(), lr=1e-2) )

SGD_t, SGD = fit(num_epochs, loss_fn, torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0) )
SGDM_t, SGDM = fit(num_epochs, loss_fn, torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9) )

ADAB_t, ADAB = fit(num_epochs, loss_fn, AdaBound(model.parameters(), lr=1e-2, final_lr=0.1) )

theta_0_vals = np.linspace(-2,4,100)

theta_1_vals = np.linspace(0,4,100)

theta = torch.Tensor(len(theta_0_vals),2)
J = np.zeros((len(theta_0_vals),len(theta_1_vals)))

for i, theta_0 in enumerate(theta_0_vals):

for j, theta_1 in enumerate(theta_1_vals):


    J[i,j] = cost_func(torch.Tensor([[theta_0], [theta_1]]), X, y)

xc,yc = np.meshgrid(theta_0_vals, theta_1_vals)

contours = plt.contour(xc, yc, J, 20)

plot_vals = range(0,num_epochs)

plt.plot(ADAM_t[0,0,plot_vals],ADAM_t[0,1,plot_vals],'-.',lw=2, label='Adam')

plt.plot(SGD_t[0,0,plot_vals],SGD_t[0,1,plot_vals],'-.',lw=2, label='Sgd')

plt.plot(SGDM_t[0,0,plot_vals],SGDM_t[0,1,plot_vals],'-.',lw=2, label='Sgd+momentum')

plt.plot(ADAB_t[0,0,plot_vals],ADAB_t[0,1,plot_vals],'-.',lw=2, label='AdaBound')

plt.scatter(theta_true[0].numpy(),theta_true[1].numpy(),marker='*', color='red',lw=2, label='gloal')

plt.legend(loc='lower left')

plt.figure()

plt.subplot(211)

plt.plot(range(ADAB.shape[0]),ADAB,'-.',lw=2, label='AdaBound')

plt.plot(range(ADAB.shape[0]),ADAM,'-.',lw=2, label='Adam')

plt.plot(range(ADAB.shape[0]),SGD,'-.',lw=2, label='Sgd')

plt.plot(range(ADAB.shape[0]),SGDM,'-.',lw=2, label='Sgd+momentum')

plt.subplots_adjust(top=2.92, bottom=0.12, left=0.15, right=2.95, hspace=0.2, wspace=0.35)

plt.legend(loc='upper right')

plt.subplot(212)

plt.plot(range(ADAB.shape[0]),ADAB,'-.',lw=2, label='AdaBound')

plt.plot(range(ADAB.shape[0]),ADAM,'-.',lw=2, label='Adam')

plt.plot(range(ADAB.shape[0]),SGD,'-.',lw=2, label='Sgd')

plt.plot(range(ADAB.shape[0]),SGDM,'-.',lw=2, label='Sgd+momentum')

plt.subplots_adjust(top=2.92, bottom=0.12, left=0.15, right=2.95, hspace=0.2, wspace=0.35)

plt.xlim((80, 100))

plt.ylim((0, 0.3))

plt.legend(loc='upper right')

@stevenyangyj
Copy link

When I used AdaBound to train a ShuffleNet V2 model with tiny batch (5-10), I met same problem. This optimizer might not be convergent.

Btw: when I used "adabound.AdaBound([{'params': part of model's params, 'lr':0...}])" to prevent some parameters be updated during training process, I would get error infomation means "cannot use lr = 0". But I can use "torch.optim.Adam([{'params': part of model's params, 'lr':0...}])" to implement this purpose.

Is this a BUG ??

@felipevw
Copy link

Hi,
I have been training with adabound in a custom dataset and I faced similar issues with low batch sizes.
The only doubt I have is that in the ReadMe, you provide a comparison graph of the different optimizers, I dont understand why the abrupt change in the epoch 150. I guess there is when the optimizers switches to SGD but why at this point? Does that mean that if I train a dataset through 1000 epochs, it will make a similar change in epoch 750?

Thank you for the help

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants